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Czechoslovak Mathematical Journal, 28 (103) 1978, Praha 

ON MEANS OF SUBHARMONIC FUNCTIONS 

D. H. ARMITAGE, Bslfast, and F. T. BRAWN, Cardiff 

(Received February 26, 1976) 

1. INTRODUCTION 

Let P, Q denote points in Я" (n ^ 2), let PQ be the euclidean distance of P from g, 
and write 

B{P, a) = {QeR" :PQ < a} (0 < a g + oo) , 

S(P, a) = {QeR'^:PQ=- a} (0 < a < + oo) . 

Let О denote the origin of axes in i^". For brevity, we put B(a) = B{0, a), S(a) = 
= S(0, a). We denote the element of Lebesgue surface area on a sphere by da and 
the element of Lebesgue volume by dv. For a function/, defined in B(a), and integrable 
over every S{r) for 0 < r < a, the spherical mean J^{f, ') : (O, a) -^ R is given by 

^n^ J Sir) 

where s„ denotes the surface area of S(l). If further f is locally integrable in B(a) 
the volume mean J / ( / , •) : (0, a) -» Я is given by 

V jB(r) 

where r„ denotes the volume of B(l). Provided that Jf{f, •) is Cauchy-Riemann 
integrable on every subinterval (0, r] of (O, a), the two means are related by the 
equation 

(1) ^{f,r)^\[f-'.M{f,t)dt, 

When / is subharmonic in B(a), certain properties of the means J^{f, r) and 
ея/(/, r) are well-known. For example, both means are continuous, increasing*) 

*) The terms increasing' and ^decreasing' are used in the wide sense. * 
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functions of г, and convex functions of log r (when n = 2) and r^ " (when n ^ 3). 
In this paper we examine the behaviour of the quotient 

4 / ' r ) = ^ ( / , r ) / ^ ( / , r) ( ^ / ( / , г ) ф О ) , 

in particular indicating conditions on / which guarantee that -â(/, r) is a decreasing 
function of r on (0, a). Our first result concerns positive powers of harmonic functions. 

Theorem 1. / / h is harmonic and not identically zero in B(^a) then Ê{h^, •) is 
decreasing on (0, a). If p > 0, p =¥ 2, then there exists a harmonic function H 
in jR" such that .а(|я|^, •) is not decreasing on any non-empty interval (0, a). 

For a sufficiently differentiable function / denote by ЛУ the j- th iterated laplacian 
of / (i.e. A 7 - / , ЛУ = Л/, A{/ = Л(А-''-У), j = 1, 2, . . . ) . The positive part of 
Theorem 1 will follow from the more general 

Theorem 2. Let f : B(^a) -^ R be analytic and suppose that à^f{0) ^ 0 for each 
non-negative integer j . 

(i) / / ЛУ(0) > 0 for at least one non-negative integer k, then J ( / , •) is de­
creasing on (0, a). 

(ii) / / àJf{0) = 0 for each non-negative integer j , then J/{f, •) = 0 ow (0, a). 

We give an example in § 6 to show that the condition àJf{0) ^ 0 for all j cannot 
be relaxed. Initially we derive Theorem 2 from the following theorem which, espe­
cially in its apphcation to harmonic functions, seems to be of some independent 
interest. 

Theorem 3. / / / : B{a) -> R is analytic, A^f(^0) ^ Ofor each non-negative integer j 
and A^f{0) > Q for at least one non-negative k, then log J^{f, r) is a convex func­
tion of log r for 0 < r < a. 

Corollary. / / h is harmonic and not identically zero in B{a), then log ^(ft^, r) 
is a convex function of log r for 0 < r < a. 

The counterexamples proving the negative part of Theorem 1 are given in § 4. 
They also serve to show that, in Theorem 2, / cannot be replaced by | / |^ for any 
p > 0, p Ф 1, Further, they show indirectly that Theorem 3 and its corollary become 
false if/(respectively /г )̂ are replaced by |/ |^ (respectively |/îp^) with p > 0, p #= 1. 

It will be noticed that the counterexamples satisfy H(0) = 0, and we may ask 
whether, if the extra condition /z(0) ф 0 is inserted in Theorem 1, any positive result 
for ^( |й |^ •) with p > 0, jp Ф 2 can be obtained (e.g. with p = 1 we have, trivially, 
J(|/î|, •) constant on some interval (0, a)). More generally, we shall consider J(s, •) 
for a subharmonic function 5. We have the following result concerning the behaviour 
of Ê(S, r) for small values of r. 
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Theorem 4. Let s be subharmonic and analytic in B(^a). 

(i) If s[0) > 0 then there exists a e (0, a] such that ^[s, •) is decreasing on (0, a). 

(ii) If s{0) < 0 then there exists a e (0, a] swc/z f/iat ^(5, •) /5 increasing on (0, a). 

(iii) / / 5(0) = 0 and J({s, r) > 0 /o r eac/z r e (0, a) r/î^« there exists a e (0, a ] 
such that «â(s, •) LS monotonie on (O, a). T/ze possibilities ^(s, •) strictly 
increasing, strictly decreasing, and constant can all occur. 

(iv) There exists an infinitely differentiable subharmonic function и in R" such 
that u{0) > 0 and â{u, •) /5 not monotonie on any non-empty interval 
(0, a), and there exists an infinitely differentiable, non-negative subharmonic 
function V in R" such that v[0) = 0 and the limit 

lim l{v, r) 

does not exist. 

Corollary, Let h be harmonic in B(a) and suppose that h(0) Ф 0. 
(i) If p ^ 1 then there exists a e (0, a ] such that ^{\h\^, •) /5 decreasing on (0, a)-

(ii) If 0 < p ^ 1 then there exists a e (0, ^] such that -â(|/i|^, •) is increasing 

on (0, a). 

The counterexamples proving the negative part of Theorem 1 show that, if the 
condition /г(0) Ф 0 is dropped from this corollary, part (i) becomes false except for 
p — 2, We shall give an example in § 6 to show that, without the condition /i(0) ф 0, 
part (ii) also becomes false. We shall show also that in general a < a (§ 6). 

The key result in the proof of Theorem 4 is 

Theorem 5. Let j , к be integers such that 0 < j < к and let f : B(a) -^ R be 
2/c + 2 times continuously differentiable with Ay'(0) = 0 (0 ^ i < k, j Ф j), 
/sJfip) Ф 0, ЛУ(0) Ф 0. / / A-'/(0), А У ( 0 ) have the same {respectively opposite) 
signs then there exists a e ( 0 , a] such that J ( / , •) is decreasing (respectively in­
creasing) on (0, a). / / / : B(a) -> R is not identically zero and is analytic, and 
А'ДО) Ф Ofor only one value of i then â{f, •) is constant on (0, a). 

Finally we give some results for large values of r. 

Theorem 6. Let h be harmonic in R" and let p ^ 1. Then h is a polynomial of 
degree m if and only if 

lim ^(Iftk, r) = ^^— , 
Г-+00 n + mp 

and h is not a polynomial if and only if 

limJ(l/z|^r) = 0 . ^ 
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The question whether ^[h^, r), when p is an even integer, is ultimately incn asing 
or decreasing, shows a difference in behaviour between the cases n = 2, n ^ 3 for 
harmonic polynomials. 

Theorem 7. (i) / / h is a harmonic polynomial in R^, then J(/2^^, r) [q = 1, 2, ...) 
decreases for sufficiently large r. 

(ii) When n ^ 3 there exists a harmonic polynomial h in R" such that ^(h^^, r) 
(q = 2, 3, ...) increases strictly for sufficiently large r. 

(iii) There exists h harmonic in R^ such that u{h^, •) is not monotonie on any 
interval [Q, +OO). 

2. PROOF OF THEOREM 3 

First we prove 

Lemma 1. / / / : B{a) -> R is analytic, then Ji{f, •) is analytic on (0, a). 

Suppose that Го e (0, a) and that P e 5(го). Choose polar coordinates r, 9^, Ö2, . . . 
..., ö„_i centred at О such that P = {TQ, njl, njl, ..., njï). Since / is an analytic 
function of Xi, X2, ..., x„, which are in turn analytic functions of r, в^, ..., в„^1 in 
a neighbourhood of P, f is an analytic function of r, 0^, ..., ö„_ ̂  in a neighbourhood 
of P (see e.g. H. Cartan [2, § IV.2.2]). Hence there is a positive number op such that, 
in B[P, op), f has an absolutely convergent, uniformly convergent series representation 
of the form 

00 

/ ( r , в,,..., 0„_i) = Z (r - ГоГ/„(0„ •••, дп-г) . 
ш = 0 

If now N[P) is a measurable subset of S(ro) n Б(Р, (̂3p) and 

N{P, r) = {(r, e„ ..., ö„_i) e «" : (r«, Ö„ .. „ ö„_,) eiV(P)} , 

then provided that |r - Го| < iôp, N{P, r) a B{P, Ô) and 

f / d a = i ; ( r - r o ) ' " f / „ d a , 
jNiP,r) ' " - O JjN{P,r) 

whence it follows that the function 

f /da 
JiV(P,r) 

is analytic on (го — iSp, Гд + i^p). The set {В{Р, i<3); P e S(?'o)} ŝ an open cover 
of 5(го) and therefore has a finite subcover 

{ß(Pi, 1,5,,.), B{P„ iô,J, ..., ß(P,, i^^J) , 
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say. Let 

ЩР,) = ß ( P „ i^p.) n S{ro), 

N{Pj) = {B{Pj, iô,^) n S(ro)) x ' u B{P„ 0,^) {j = 2, 3 , . . . , î ) . 

Then for any positive number r, {iV(Py, r) : j = 1, 2, ..., ^} is a disjoint measurable 
cover of 5(r). Hence, if \r ~ Го| < ^ min (<5p̂ , ..., (5p̂ } = ^, say, then 

^(/, r) = (l/v-i) i Г /da. 
• / -1 jNiPj,r) } N{Pj,i 

Since each term in this sum is an analytic function of r on (го — S, r^ -\- ô), it follows 
that ^#(/ , r) is analytic on this interval and therefore, since VQ is arbitrary, on (0, a). 

Now suppose that/satisfies the hypotheses of Theorem 3. Since/is analytic there 
exists a positive number b such that 

00 

f{p) = i:FÀP) (р^чь)), 
m = 0 

where F^ is a homogeneous polynomial of degree m in the coordinates [x^, ..., x„) 
of P and the series converges uniformly in B(b). Hence, if r G (0, Ь), 

(2) . / / ( / , r) = X -//(f., ?•) = I r'-J^iFzn., 1) = Z fl^r^"', ^2m ^ / ï 7 1^ __ V ^ i-2m 

r̂l = 0 m = 0 

say, the odd values of m making no contribution to the right-hand side since, when m 
is odd, each term of F^ is an odd function of at least one of the coordinates x^, ..., x„, 
so its integral over S{r) is zero. By comparison with Pizzetti's formula (see e.g. 
duPlessis [3; p. 30]) or by direct computation, we see that a^ in (2) is given by 

(3) a„, = (2^m! n{n + 2 ) . . . (n + 2m ~ 2))"^ Л^ДО), 

which is non-negative by hypothesis. 
Next we show that the series on the right-hand side of (2) converges to ^#(/, r) 

for r e (0, a). Let с be the radius of convergence of the series. Since the series converges 
to ^ ( / , r) for r e (0, b) and, by Lemma 1, J^{f, r) is analytic on (0, a) by the principle 
of analytic continuation the series converges to J^{f, r) for r e (0, min {a, c}). Hence 
it is enough to prove that с ^ a. Since «^ ^ 0 for each m, the sum function of the 
series in (2) has no analytic continuation to any neighbourhood of c. (See e.g. 
TiTCHMARSH [4; § 7.21] for a proof of the corresponding result for complex series. 
The proof for real series is the same). However, if с < a, then ^Ж(f, .) would provide 
such a continuation, so we conclude that с ^ a, and the required result follows. 

Now define a function g on the open disc with radius a and centre the origin in the 
complex plane by 

m = 0 
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Then, by the result of the last paragraph and the fact that a^ ^ 0 for each m, 

M{J, r) = g{r) = sup g(re'^) {0 < r < a) . 

Hence, by applying the Hadamard three circles theorem to g, we obtain the convexity 
of log J/{f, r) as a function of log r for г G (О, a). 

To prove the Corollary to Theorem 3, we note that a harmonic function h in B(Ü) 
is analytic (see e.g. BRELOT [1; Appendix § 15]), and therefore /i^ is analytic. If h is 
not identically zero, then J^(h^, •) is not identically zero and, by (2), (3), h^ has at 
least one iterated laplacian which does not vanish at the origin. It suffices to show 
therefore that, for each j ^ 0, A-'/î  ^ 0, and this is straightforward. In fact if V 
denotes the gradient operator in R" 

A4^ = h^ ^0, A'h^ = 2\Vh\^ ^ 0 , 

dh I 
A4i^=4Y 

dxi - b © - ' 
but for each i = 1,2,..., dhjoxi is itself a harmonic function, and the result may be 
proved by induction in an obvious way. 

3, PROOF OF THEOREM 2 

Theorem 2 (ii) is immediate from (2), (3). Suppose that the hypotheses of Theorem 
2 (i) hold. If we again write fi(r) = ^#(/, r), the condition that log ji(r) is a twice 
continuously differentiable function of log r on (0, a) is equivalent to the condition 
that r jLt'(r)jiJ,(r) is a continuously differentiable increasing function on (O, a). Now 

^XLr) = ^ f-^ ß{t)dt\ = 
0 / dr \r" ß{r) ^ 

since r n'{r)ln(r) increases. 
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Theorem 2 (i) may also be proved directly, that is, without using Theorem 3, by 
using equations (l) and (2) to establish the equation 

00 

(4) AL '•) = I 
= 0 2m + n 

and then computing ^ ' ( / , r) when ß(f, •) is expressed as the quotient of the power 
series in (4) and (2). 

4. PROOF OF THEOREM 1 

The result for <a(/î , •) when h is harmonic and not identically zero follows from 
Theorem 2 (i), by noting that A-^h^ > 0 for each non-negative j and that h^ has at 
least one iterated laplacian which does not vanish at O. It remains to give the counter­
examples to show that when p > 0, p ф 2, there exists a harmonic function H in R" 
such that ^(|Я|^, •) does not decrease on (O, a) for any positive a. When 0 < p < 2 
such an H is given by 

H{xi, X2,..., x„) = x,{l + {n- l)xl - 3{xl + . . . + Xn)) . 

Clearly H is harmonic in R", and with polar coordinates (r, 0^, ..., 9„-i) such that 
Xi = r sin 6^ 

|Я(г, ö l , . . . , (9„_i)|^= r^jsin^il^ll - r^{3 - (n + 2 ) s in^öJ | ^ = 

- r^|sin e^\P [1 - pr^{3 -(n + 2) sin' 0 J ] + 0(r'^'') 

for small r. Hence 

(5) е#( |Я|^ r) = ar^ - br^"-^ + 0(rP-'''), 

where a > 0 and depends only on n, p and (see e.g. [3; p. 18]) 

J - I t / 2 J -nil J-n 

cos"-^ öl cos"-3 02 . . . COS Ö„_2 d0„_i dö„-2 ••• dÖj = 
/•it/2 

= s-J, s„_ip cos--^ 0i{3lsin 011^ - (n + 2) jsin 0,1"+^} d0i > 0 . 
J-n/2 

To obtain the last inequality, we Used the equations 

Г c o s ' - ^ 0 i | s i n 0 i | ' ' + 4 0 i - (p + l ) ( p + „ ) - i Г cos" -^0 i l s in0 i | ' ' d0 , , 
J-"/2 J-W2 

3 - (p + 1) (n + 2) (p + n)-' = (2 - p) (и - 1) (p + n)-^*. 
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From equations (l) and (5) we easily obtain 

(6) . < | Я | ^ r) - an{p + n)-' r' - bn{p + n + 2)-' r^^^ + 0(r''+'') . 

Since a > 0 and Ь > 0 it follows from (5) and (6) that, for sufficiently small r, 

4\H\', r) > ——, 
p + n 

and 
lim j ( | H | ^ r ) - —"—, 

r-̂ 0+ p + n 

so that ^( |я |^ , •) is not decreasing on (O, a) for any positive a. 
When p > 2 and H is given by 

Я(х1, X2, ..., x„) = xi(l -(n- l)xl + 3{xl + ... + x^)) , 

then J ( | H | ^ , •) is not decreasing on (O, a) for any positive a, the details of the proof 
being similar to those in the previous case. 

5. PROOF OF THEOREM 5 

Since / is 2/c + 2 times continuously diflferentiable Pizzetti's formula [3, p. 30] 
holds, and, under the hypotheses of Theorem 5 reduces to 

(7) . # ( / , r) = (2^j! n{n + 2)...{n + 2j -2))-' A^/(0) r^^ -f (2^/c! n(n + 2) . . . 

...(n + 2k- 2))-' ЛУ(0) r^^ + 0{r^'^^) = cr^'' + dr^' + 0{r^'^^) , 

say, for small r. 
Using (l) we obtain 

2J + П 2k + n 

whence, using (7), 

\27 + n 2A: + и / 

2j + n c(2k + n) 

and so .â(/, •) decreases for small r if с and d have the same sign, and increases if с 
and d have opposite signs, which is the first result of the theorem. I f / i s net identically 
zero and analytic in В(а), and A'/(0) Ф 0 for only one value of i then the Pizzetti 
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representation 

Jl{f, T) - {Vl\ n{n + 2) ... (^ + li - 2))-^ Ä'/(0) r^' (0 < r < a) 

is exact, and clearly ^ ( / , •) is constant on (0, a). 

6. PROOF OF THEOREM 4 

To prove parts (i) and (ii) we first note that if .#(s, •) is constant on (0, a) then these 
results are trivial. Otherwise there exists a smallest positive integer j such that 
A^'s{0) Ф 0 for, if not, Pizzetti's formula gives that J^{s, r) - s{0) = 0(r^^^^') for 
all positive integers к whence .#(s, r) — s(0), being an analytic function of r for 
small r, is zero on (0, a) and .#(5, •) is constant. Further A-'s(O) > 0 since otherwise, 
again by Pizzetti's formula, 

..#(5, r) = 5(0) - cr^' + 0{r^J^^) , 

with с > 0, and J/(s, •) would decrease for small r. Parts (i) and (ii) now follow 
from Theorem 5. 

To prove part (iii) we note that .///(5, •) is not constant on (O, a) and, as in the proof 
of parts (i) and (ii), the first non-vanishing iterated Laplacian A^s(O) is positive. 
If A's(0) = 0 for all / > j then .#(s, r) - cr^' {c> 0, 0 < r < a) and l{s, «) is 
constant on (0, a). An example of this case (with j = l) is 

s(xi,X2, ...,X„) = xl . 

Otherwise there exists a smallest / > j such that A's(O) ф 0 and, by Theorem 5 
j ( s , •) is either decreasing or increasing on (0, a) for some a > 0, according to 
whether Л^(0) is positive or negative. Examples of these cases are given respectively 
(with a = + GO) by 

"^li^l? -^2' •••? ^n) — ^1 + -̂ '1 5 5'з(^Х ,̂ X2, • • . , Xjj) = -^1 X^ -\~ X^^ , 

In connection with the last example it is worth noting that, by a straightforward 
calculation, 

(s,.r)^^^ r^-~r^ + 
45„ V 4 16 

(S3, r) = ^^^!lZll.^ll^r' -- -~^L_,4 ^ 
4s„ \n + 2 n + 4 n + 6 

and 

sign J (.b, r) = sign I h 1, 
^ V(4 + n) (2 + n) (6 + n) (2 + n) 16(4 + n) (6 + n ) / 
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so that, for example, ^'(«3, 2) < 0 and therefore a < a in general. This example 
also serves to show that the result of Theorem 2 fails to hold if one of the iterated 
laplacians A^'f(0) is negative. In fact .^(53, r) is increasing both for small r and for 
large r. 

The Corollary to Theorem 4 follows by applying the theorem to |/i|^ in the case 
p ^ 1 and to — I/г I'' in the case 0 < p g 1 (|/z|^is analytic in some neighbourhood 
of О since it is the composition of P -> \h(P)\ which is analytic in some neighbourhood 
of O, and X -^ x^, which is analytic in some neighbourhood of |/г(0)|). 

To show that part (ii) of the Corollary is false without the condition h{0) Ф 0, 
we again use the example, previously employed in § 4, 

Я(хд, X2, ..., x„) = Xi(l - {n - 1) xl + 3{xl + .. . + x^)) . 

When 0 < p < 2, similar reasoning to that in § 4 yields that .а(|я|^, •) is not in­
creasing on (0, a) for any positive a, and this includes the range 0 < p ^ 1 of part 
(ii) of the Corollary. 

It; Tcmains therefore to give the example of a subharmonic function и e C°°(Ä") 
such that M(0) > 0 and ^(w, •) is neither increasing nor decreasing on any non­
empty interval (O, a). In order to reduce the length of the proof, we work only with 
n = 3. The generahzation to higher dimensions is straightforward but involves 
lengthy calculations. 

Define for each j = 1, 2, .. . ,/ , . : [0, + 00) -^ R by / / x ) = {2' ~ x'^y (x ^ 0), 
/,(0) - 0, and и J : K^ -> jR by 

^jiP)-fjiOP) (PeR'). 

Then Uj is subharmonic in R^ and we have 

Lemma 2. There exists an infinitely dijferentiahle subharmonic function uJ 
in R^, depending only on OP, such that w*(P) = Uj(P) whenever 0 g OP ^ 2~^~^^^^ 
or OP ^ 2-^•+^/^^ and 

(8) 0 ^ uJ(P) - Uj(P) й Г' (P e jR^). 

In fact, using the infinitely differentiable mollifying function given by 

фJiP) = aJCкp(iOPy-ßjУ' {OP<ßj), фJ(P) = 0 (OP^ßj), 

where ßj > О and (Xj is chosen such that the integral of фj over R^ is 1, we may take м* 
to be the convolution Uj * фj given by 

и , * ф , ( Р ) = Г фJ{Q)uJ{P~~Q)dv{Q) {PER'). 

It then follows from familiar theorems that uJ e C°°(P^) and is subharmonic in R^, 
and it is clear that uJ, like Uj, depends only on OP. Further, since Uj is harmonic 
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in R^\S{2~-'), it follows that м *= Uj when OP й 2'-' - ßj and when OP ^ 
^ 2~^ + ßj [1, Appendix §4] and the invariance of harmonic functions under 
convolution with фJ also gives, with Hj{P) = 2^ - {0P)~^ (F G R^ \ {O}), that 
when OP > ßj 

4(^)= f </>Xô)H;(P-ô)d.(ô)^ 

^|£/Хе)я,(р- ^)d.(ß)|̂  

^Hnp)-uj{p), 

Taking ßj <2''J~\ we have that wJ(P) - м/Р) = 0 when OP S. ßp so that 
w* ^ Wy in R^, and the easily established inequality 

\uJ(P) - Uj(P)\ й sup \uj{P ~ Q)~ Uj{P)\ (P 6 P^) 

together with the uniform continuity of Uj on R^ shows that the inequaUties (8) hoid 
for suitably small ßj. This completes the proof of the lemma. 

Define Jf : [0, + oo) -^ P by 

/ ; ( x ) = ii*(x,0, . . . , 0 ) , 
and write 

a J = max sup \ff^'\x)\ , bj = (a^ + a2 + ... -^ aj)'^ . 
O^i^j JC6(0,1) 

Now let / : [0, + oo) -> P be defined by 

and w : P^ -> P by u{P) = f{OP) + 1 . 
We shall show that 

(i) и is subharmonic in P^, 
(ii) и e ^^{R^), 

(iii) (p{u, •) is not decreasing on any non-empty interval (0, a). 

To establish (i) we note that, when P Ф 0, w is the sum a finite number of subhar­
monic functions plus the limit of an increasing sequence of harmonic functions 
(since iij is harmonic and non-negative when OP ^ 2""-^^^/^^), and и is bounded 
above in P^, since 

00 

" ^ 1 + ^1 YJ~^ < +CX) . 

Hence и is subharmonic in P^ \ {O}. Since, as is proved below, и E C^^R^), it remains 
only to point out that the mean-value inequalities for u, for balls with centre O, 
are trivially satisfied since w ^ w(0) = 1 in P^. 
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We now turn to (ii) and prove that (a) / G ^ ^ ( O , + oo) and (b) f'\x)lx -> 0 as 
X -* 0 + for f = 0, 1, 2, ..., which is enough since м is a function of OP only. 

(a) If Xo ^ 2'^'^ then in the neighbourhood (2"^^/^^ +oo) of XQ 

00 CX) 00 

so / is infinitely differentiable at XQ. If 0 < XQ < 2~^^^, then there exists a unique 
positive integer m such that 2"'""^/^ < Xo ^ 2"'""^^^^. Then, in some neighbourhood 
of Xo, 

00 

fix) ^ {2m)-" b„f*(x) + X {2j)-J bjfj{x) = 
j = m+l 

oo 00 

= {2m)'"'b„f*{x) + X j-^'bj-x-' X (2j)-'^-. 
j = m + l j=m+l 

SO t h a t / i s infinitely differentiable at XQ. 

(b) If X > 0, then, in some neighbourhood of x, 

/(.v)= E {yrbjf*{y), 
2 - J - l / 1 2 ^ ; C 

SO that, for any non-negative integer z, 

f'\^)= E {2j)-4jfr'\x), 

differentiation of the series for / yielding uniformly convergent series by the choice 
of bj. If now X < 2"^'^^^^ then 

\f%x)\u S {УГ' = о{х) ( X - - 0 + ) . 

In the last step we used 

00 °0 

E (2;)-^ ^ Z r ^ = 0{pe-'''^'') (p - o)) . 

Finally we establish (iü)- ^^ ^^ ^^^^ ^^ show that for sufficiently large m, 

% , 2 - ' " - ^ / ^ ) < % , 2 - ' " " ^ / ^ ' ) . 

First 

(9) Щи, 2""'") = 1 + . l ^ m - ' bjf*{2-"-^'^) > 

> 1 + (2m + l ) - " - - ! &m+i/m+i(2-'"-' ' ') = 1 + b„+i(m + l ) - " - i (1 - 2"^/«). 
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Next 

(10) ^(«,2- '" ' ' / i ' ) = i + E {yyHjffii---^''')^ 
j~m+i 

S 1 + {2m + ly"-' b^^.iT"^' - 2-^^"') + b„^, £ j-J = 

== 1 + (m + l ) - ' " -^ b^^,( l - 2-^^/^^ Ч- o(l)) , 

as m "> 00. Thirdly, using equation (1), we have 

(11) ^{u, 2-""'/ ' ') ^ 1 + E(2;)''" b,- з.г^*"" '̂/! '̂ /V/0 d/ > 
• ' • = 1 Jo 

> 1 + b„ + i 3 . ( 2 m + 2)- ' "~^23"" + ^/* ^2""^'/^ - /)d/ = 
j 2 - ' " - l 

= 1 + b„+i(m + l ) - ' " - i ( l + i 2 - ^ / * - i 2 - " / i ^ ) . 

Finally, using equation (1), inequality (8) and the fact that, by the subharmonicity 
of each M*, ^(uj, 2-"-'") й J^{u*, 2-"-4% 

(12) ^{u, 2 - - 1 / « ) й 1 + b,„+i(2m + 2)- ' " - i ^ ( « ^ + 1 , 2-"'-^/«) + 

+ f; bj{2j)-J^{u*,2-'"-"')è 
j = m + 2 

2-m-l/6 

S 1 + b„+i(2m + г)-"--» 3.2^^'"+i/*' / ' ( /„+,( /) + 
J2--.-1 

CO 

+ (m + l)-'"-i)d/ + b„+i X {УГЧ/А^''"~"')+Г') < 
j = m + 2 

. ( {I'2-*' - / )d / + 0{{m + l ) - - ' ) ) + 2b„,, Z r = 

= 1 + b„+i(m + l ) - ' " -V(l + i 2 - » / ^ - 12-=/« + o(l)) 

as m -^ 00. To prove that й{и, 2~'"-^'^) < J ( M , 2''"'^'^^) for sufficiently large m, 
it is enough to prove, by inequalities (9), (10), (11) and (12) that 

(1 + C{m) ö l ) (1 + C{m) D2) < (1 + C{m) D3) (1 + C{m) D^) , 

where 
C(m) = b„+i(m + !)-•"-' , D, = l + ^2-''^ - i 2 - " \ 

D2 = l - 2 - " / ^ ^ Dy=\+i2-"^ -i2-'"^', D^ = 1 - 2 ' ' ' \ "̂  

and to pi-ove this equality for large m, it is enough to show that Di + D^ < Dy + D^. 
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By rearrangement this condition may be reduced to 2^^^(2^'^ - l) > 2^^^^ - 1, 
which is easily verified. 

By a similar construction we may also obtain an example of an infinitely dif-
ferentiable, subharmonic function v in R^ such that v > 0 in J R ^ \ { 0 } , V[0) = 0 
and lim J(t;, r) does not exist as ?' ~> 0 + . In fact, with и defined as in the previous 
example, we take v = и — 1 in R^. Using obvious modifications of inequalities (9) 
to (12), we obtain that 

^(i;,2-'"-^/^) < Di /Д, + ö( l ) , ЦиЛ"'"''^'^) > D^\D2 -f- o(l) 

as m -> 00. The non-existence of lim M{v, r) as r -» 0 + now follows from the ine­
quality D^D2 < D2D4. which is easily verifiable by direct computation. 

7. PROOF OF THEOREM 6 

Given a function f : R" ^ R and r e (0, + 00), let L/(/, r) be the supremum o f / 
over S{r). 

Suppose that h is harmonic in JR" and that a, I are numbers such that a > 1, / > 0. 
Then \h\ is subharmonic in R" and is therefore dominated by its Poisson integral /j^j 
in B[ocl). Applying a Harnack inequality to /|/,|, we obtain 

U{\h\, I) й t/(/|fti, 0 й C(a, n ) / , „ (0) = C(a, n) Ji{\h[ otl) , 

where 

C(a, n) - a"~^(a + l ) (a - l ) ^ " " . 

By Holder's inequality, if p ^ 1, then 

l/(|/i|^ /) й (C(a, п)У Ji{\hY, al) . 

By applying this formula twice, we see that if r, / > 0, 

^ ^ Щк^.г)- {V{\h[rlo)y " l ^ ( / l ^ r / a ) j 

Now define 7 : (0, + 00) -> jR by 

y{r) = log .#(/î^, r)/log r . 

If /z is not a polynomial, then for each real k, r~^ Ji{h^, r) -> 00 (r -^ 00) (see e.g. 
[1 ; Appendix]), so that y(r) -^ 00 (r ~» 00). If r > a^ > 1, then 

(14) У/(/z^ r/a^) (^/(/l^ r/a))~^ = 

= exp {y{rla'^) log r/a^ — 7(^/^) log r/a) ^ exp ( -y(r /a) log a) . 
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Since .M^h^, •) is increasing on (0, + со), we have, by using (1), (13), (14) and the 
fact that y(r) -+ oo (r -»• oo), 

J(|/i|P, r) = nr-" I f"~' ЩН\\ t){JH\h\', r)Y' dr ^ 

g «'•""Il <""' -'̂ (lAl", г/аЗ)(^(|/,|'', r))-i df + f' Г-" dfl ^ 

1 .^(/гЛ r/a) 
pr/a3 

< fir"" f" ^ exp (~-ip 7(r/a) log a) dt + 1 - a ^̂  -^ 

-> 1 - a-^" (r-> oo). 

Since this holds for each a > 1, «â(|/z[̂ , r) -> 0 (r -> oo). 

If P is a polynomial of degree m in BP, then it is easy to see that 

M{\F\\ r) = Cr"^]^ + 0(r'"^~i) (r -> oo) , 

where С > 0, whence, by using (1) to estimate .^(|P|^, r), we find that .â([p|^, r) -> 
->- л/(п + m/?) (r -> oo). 

The various results of the theorem now follow. 

8. PROOF OF THEOREM 7 

To prove part (i) we note that, except in the trivial case where h is homogeneous 
and ^(й^^, r) is constant, we may write (taking polar coordinates (r, Ö) with origin Ö) 

h{r, в) = ar"" cos {M9 + ^M) + br^ cos (iVÖ + ô^) + /zi(r, ö) , 

where a ф 0, Ь ф 0, M, iV are positive integers with M > N, ô^ and ĵy lie in the 
range [0, In) and 

4^%^)= E V'"cos(m0 + (5J, 

with c^ constant and è^ e [0, In) for m = 0, 1, 2, ..., Â  — 1. We then have that 

{h{r, 0))̂ « = (ar^ cos (M0 + ^M) + br^ cos (No + ô^))^'' + 

+ 2^(ar^ cos (M0 + ^M) + br^ cos {NO + (5^))'^"' /ii(r, в) + 
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(cos (MO + ^ м ) ) " " ' cos(N0 + Ô^) + q{2q ~ i) û2,-2^,2^м(2,-2) + 2^ 

(cos (MO + ö^)y''-^{cos{Ne + .5^))^ + 0(r*^(2,-3) + 3N') + 

+ 2«a^''-V^(^''-"(cos(MÖ + ôм)Y^^-' h,{r, Ö) + o(r* ' '^ ' ' -2 '^2^- ' ) . 

Since M > N 
•2n 

(ces (Mo + ом)У^-' cos (JVÖ + ;̂v) d0 = О , 

and 

and so 

Г 
J 0 

J" 
Jo 

(cos (Ме + ^ M ) ) ' " " ' ^ I ( ^ Ö) = О , 

where с and d are positive. The result now follows easily by a technique similar to 
that used in proving Theorem 5. 

To demonstrate part (ii) we use the example 

A(Xi, X2, . . ., X„) = 1 - 2Xi + X2 + Хз - 1 - / l i ( X i , X2, . . ., X„) , 

say, which is harmonic in R^ for n ^ 3. Since h^^ is a polynomial of degree 4q, A'̂ /ẑ ^ 
is identically zero for к > 2q. We shall prove that A^Vi^^{0) > 0 and Л^^"^/г^^(0) < 
< 0, and since 

h^^ = hi'' ~ 2qhl'-^ + P , 

where P is a polynomial of degree 4q — 4, it is enough to prove that A^^hl^(O) > 0 
and А^^~Чг1^'~\0) > 0 or equivalently that A'"/z7(0) > 0 for any integer m > 2. 
First we prove by induction on m that A'"(r^'/i7~*) (O) ^ 0 for m = 2, 3, ..., and 
/ = 0, 1, ..., m, where r^ = xj + X2 + X3. For m = 2 it is easy to verify that 
A^T^O) > 0, A^r^/zi(0) = 0, and A^-h^O) > 0. Suppose the indicated inequahties 
A"^(r2^7î7-^)(0) ^ 0, z = 0, 1, ..., m hold for some m ^ 2. Then for ; = 0, К . . . 
..., m + 1, 

дт + 1(^2;^т+1-,>^ ^ A-(2X2; + 1) r^^'-^/iT"'"'' + 

+ 2j{m + 1 -j) г^''-ЧГ'\Уг^ . V/ii) + (m + 1 ~ j) (m - j) r^^7i?-'-^lV/iil^) . 

Now 

Hence 
Vr^ . V/ii = 4/zi , |V/iip = Sr^ + 4/îi . 

дт+1(^2,;^т+1-у^ = A'"(2j(4m - 2j + 5) r^^-^/iT^'-^' + 

+ 4(m + 1 - ;) (m - j) {2г^^'-ЧГ'''' + r'^'/iT"')) • 
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Note that the first term on the right vanishes if J = 0 and the second term vanishes 
if / = m ox j — m 4- 1, so may we write 

m 

where â  ^ 0 for i = 0, 1, ..., m, whence ^r''\r^'h'l^^~'){0) ^ 0, and the induc­
tion is complete. To prove the strict positivity of ISP'h^{0) for m ^ 2 we note that 

дт-ы^т + 1 ^ 4 ц ^ ^ ^̂  A-(2r^/i7-^ + /ï7) , 

whence 

and the result follows by induction on m, noting that h^h\{^) > 0. Hence A^^/i^^(0) > 
> 0, ^^•'^~^h'^'^{0) < 0, and Pizzetti's formula gives 

2« И _ 

where с > 0, J > 0, whence J(/i^^, r) increases strictly for sufficiently large r, by 
a technique similar to that used in proving Theorem 5. 

We note that if we took 1 + /ii instead of 1 — /i^ in this example then aih^"*, r) 
would decrease strictly for sufficiently large r. This exhausts the possibilities for the 
behaviour of J ( / Î^^, r) for large r, when h is a polynomial, since ^(/z^^, r), being 
a rational function of r, must be ultimately monotonie. 

To prove part (iii), we show first that there exists a sequence (/i^) of harmonic 
polynomials in R^ and sequences (Я^), (Я^), (x^) of positive numbers such that for 
each positive integer m 

(a) \hj^r, e)\ < l'^^é^ where (r, 0) are polar coordinates centred at 0, 

(р)я, <я;<и„^1, 
m m 

(y) 4( Z У̂Г> 0̂ - 4( I ^/^ ^̂0 > XЛ̂  = 1' 2,..., m) . 

We have seen (§ 4) that there exists a harmonic polynomial /ij in Ä^ such that 
^{h\, •) is not decreasing on (O, oo). Hence there exist positive numbers Я ,̂ Я ,̂ Xj 
such that Я1 < Я1 and 

Now suppose that we have found /i^, ...,/i,„, Я1 , . . . , Я^, Я ,̂ ..., Я^. x^, ..., x^ 
satisfying (a), (ß), (у). Choose an integer к such that к > 21 and /c/3 is larger than 

m 

the degree of ^ /ly, and put 

hm + i{r, 0) = 7(r^ cos ke - dP^ cos УкО), 

where y, (5 are constants to be fixed later satisfying 0 < у < (2'"^^(3/с)!)~^ and 
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о < s < 1. Then hm + i is harmonic in R^ and 
/ к 3k \ 

Vfe! (З/с)!/ 

Put 
m+ 1 m+ 1 m+ 1 

i = l J = l i = l 

Now clearly we may fix y so small that, for any д e (0, 1), IA(A;) — ^{^i} > Xi(l ^ 
= 1, . . . , m). A straightforward calculation making use of the facts that kjS > 

m 

> deg Y, hj and 
j = i 

Л27Г Г2п 

COS /ci^ cos /C2Ö do = cos k^O sin /C2Ö do = 0 (/ĉ  ф /C2) 
Jo Jo 

yields 

and using (l) we get 

^ ' yik^X 3fc + 1 4fc + 1 6/c + 1/ 

The limiting processes implied by the o-notation are independent of b. Now choose 
a number e satisfying 

(15) 0 < - ^ - - + — ^ < ^ 
2fc + 1 1 6 ^ 2 8*(6fe + 1) 

Then there exists a number R depending only on г (not on 6) satisfying R > 2X'„ 
such that when r ^ R 

\Ф{г) - i7*(3r*' - Aôr"' + 12.5^r" + 35^1^")! < Ьу^г^' + ô^'h'"'') 

and 

Z('-) - iy I + + -z < Ь £ + ^ ' r^ • 
\2k + 1 3k + I 4fc + 1 6k + 1/1 \2k + 1 / 

Hence, when r ^ R 

3 - £ 4ôr'' ,3,2 3, 125^'^" 3 5 V " 

2fc + 1 3 ^ + j^ 4/c + 1 6fc + 1 ^ . 

~ T T 7 ^ " 4 5 " r ^ ^ T e ~ 5 ^ ^ V ^ T l 2 5 V * T 3 < 5 V ^ "̂  '̂ '̂"̂  ^ 
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3 + 8 4ôr^' ,3/2 3, noh""' 3(5^^ + г6^1^г^^ + + 
2/с + 1 Ък + 1 4 ^ ± J 6/с + 1 

Hence, there exists а number г' such that О < г' < | with the property that 

(16) iMr) < + 
^ ^ ^ ^ 2/c + 1 3 - e 16^2 

whenever r^R and r̂̂ ^ < г\ Now fix ^ so small that ôR^^ < г'. Then, by (16) and 
the choice (15) of £, 

, . , 1 £ £ 1 3 353 1 

2/c + 1 2/c + 1 16 V2 2/c + 1 8̂ (6/c + 1) 352 2k + 1 

Let Я' - (8<5)"̂ /2^ Then (ЗК'̂ ^ = | > e' > (5Ĵ ^̂  so R' > R and therefore 

3 - £ 1 £ 3 3 

y(R'\ 2/c + 1 2(3/c + 1) 16 72 16(4/c + 1) %\6k + 1) 
^ ^ ^ ^ f £ 3 3 

3 + £ - - + + — + - -
2 16^2 16 8̂  

By (15) and the inequahty 

£ 3 1 
e + + < _ 

16 72 8̂  16 
which follows from (15), we obtain 

^ ' n\2k+\ 
1 3 

+ __ _ > 

> 
11 

2{Ък + 1) 16(4fc + 1) 

4 f Ji 1 3 \ ^ 
\lk + 1 2(3/c + 1 ) 32(2/c + l ) j ~ 

^ J_ / _99 16 \ 
~ 88 V2fe + 1 3/c + 1 j • 

Since к > 21, 64(2fc + 1) < 43(3A; + 1), from which it follows that 

The induction is completed by taking Я„+1 = JÎ, l^+i = Ä' and 
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By (a) the series ^ /z^ is locally uniformly convergent in R^. Let its sum be h. 

Then h is harmonic in R^ and for each positive integer I we have by (y). 

m m 

Ê{h\ я;) = lim j(( I hjY, A;) > lim щ x /,/, я,) = ф\ i,). 
m -» 00 J = 1 m -> 00 J = 1 

Since Я,„ -> со, Я^ -^ 00 and À^ < Я^, it follows that iQi'^y •) is not decreasing on 
any interval (Q, + oo). On the other hand, by Theorem 6, l{h'^, r) --> 0 (r -^ oo), 
so ^(/1"^, •) is not increasing on any interval [g, + 00). 
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