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GRAPHS OF FINITE ABELIAN GROUPS

DeNNIs BERTHOLF, Stillwater, and GARY WALLSs, Hattiesburg

(Received January 5, 1976)

Let G be a finite group. We define the intersection graph of G to be the undirected
graph (without loops or multiple edges) whose vertices are in one-to-one correspon-
dence with the non-identity subgroups of G, where two vertices are joined by an edge
if and only if the corresponding subgroups intersect.

In his paper, [1], BOHDAN ZELINKA conjectured that a finite, abelian group was
determined by its intersection graph. Any two non-isomorphic cyclic primary groups
of the same height show that this conjecture is false. In this paper we show that the
conjecture is true for finite, abelian groups with no cyclic Sylow subgroups.

Let v be a vertex of a graph. We define the star of v, denoted st(v), to be the set of
vertices which are joined by an edge to v, together with v. A connected component
of a graph is said to be complete if each of its vertices is connected to every other
vertex by an edge. It is easy to see that a finite abelian group has a complete inter-
section graph if and only if it is cyclic of prime-power order.

A homocyclic, abelian group is an abelian group which is the direct sum of iso-
morphic cyclic groups. If G is an abelian p-group, we define ,(G) = {x e G | p*x =
= 0}. Clearly, 2,(G) is a characteristic subgroup of G.

Let g(G) be the intersection graph of G. We define the reduced graph of G, r{G),
to be the maximal subgraph of G which has all of its connected components complete.

Lemma 1. Let G be a finite, abelian p-group.

(a) The vertices of the reduced graph of G correspond to the nonidentity cyclic
subgroups of G.
(b) The number of connected components is the number of minimal subgroups
of G.
() If 1 + H, K = G, then
(i) if st(Vi) < st(Vx). then rank (H) < rank (K), and
(i) if st(Va) < st(Vx), then rank (H) < rank (K), where Vg, Vi are vertices
of the intersection graph which correspond to H and K, respectively.

(d) The reduced graph is the result of applying the following procedure to the
intersection graph of G:
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If the connected components of the graph are complete, terminate the
procedure. Otherwise, remove from each connected component which is not
complete all the vertices whose stars are maximal (with respect to inclusion).
Repeat the procedure.

(¢) The procedure in part (d) will terminate in n steps where n is the rank of G.

Proof. (a) A vertex in the reduced graph of G could not correspond to a non-
cyclic subgroup. (Otherwise, the connected component which contained it would
not be complete.) Since the reduced graph is maximal with this property, it clearly
must contain a vertex corresponding to each cyclic subgroup. If not, the graph could
clearly not be maximal.

(b) This is clear from part (a), as each minimal subgroup must be contained in
a unique component of the reduced graph.

(c) Part (i). If st(Vy) < st(Vk), K must contain all the minimal subgroups of H.
Hence, rank (K) 2 rank (H).

Part (ii). If st(Vy) < st(Vy), there exists a subgroup H’ so that H' n K = | and
H' n H = 1. Pick a minimal subgroup of H' n K. Since it is independent of H,
we have rank (K) > rank (H), as required.

(d) Let n = rank of G. Clearly, at the first stage in the procedure we will remove
all subgroups of rank n, as their stars contain everything.

At the next step we will remove all subgroups of rank n — 1. If the stars of any of
these subgroups were not maximal, by part (c) there would be a subgroup of larger
rank.

Continuing in this manner, we see that at the i step of the procedure we will
remove all subgroups of rank n — i 4+ 1. Hence, after n steps the only remaining
vertices will correspond to cyclic groups, each connected component will be com-
plete, and the procedure will terminate.

Since the procedure cannot remove any vertices corresponding to cyclic subgroups
(if a connected component contained vertices corresponding only to cyclic subgroups,
it would be complete), the result of this procedure is the reduced graph.

(e) This was proved in part (d).

Lemma 2. If G is a finite, homocyclic, abelian p-group, then G is determined by
its intersection graph.

Proof. Let g(G) be the intersection graph of G. Apply the procedure in part (d)
of lemma 1, to this graph. By part (e) of lemma 1, the process of reducing the graph
enables us to determine the rank of G.

Since G is homocyclic, G is isomorphic to the direct sum of m copies of the cyclic
group of order p”. Any minimal subgroup, {x), is contained in a cyclic summand C
with complement D. If p*y = x with y e C and if z € D has order less than Pt
then y + z will generate a cyclic subgroup of order p*+1 containing x. It is easy to
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see that all the cyclic subgroups of order p*** which contain x are obtained in this

n—1

way; hence N = Y (p”~')* is the number of cyclic subgroups containing x. This is
k=0

the number of vertices in the connected component of g(G) which contain x. Thus,
by counting the number of vertices in any connected component — they all have the
same number — we can determine N. Also m is determined by the fact that 2™ — 1
is the number of minimal subgroups, which is the same as the number of connected
components. Since p is known this determines n. (It is the number of 1’s in the base p
expansion of N.)

Notice that in the above proof, we have seen that every connected component of
the reduced graph of a homocyclic, abelian p-group contains the same number of
vertices and this number determines the group.

Lemma 3. Let G be a finite, abelian p-group. Then G is determined by its inter-
section graph.

Proof. Suppose G = A; @ ... ® A,, where the A4; are the homocyclic com-
ponents of G. We will show how to determine the 4; from the intersection graph of G.
We assume without loss of generality that

A;=®Zp; with ny <n,<..<n, and j=1,..,r.

Note that if n = rank (G), then n = ) m,
i<

Let r(G) be the reduced graph of G. The process of reducing the graph has enabled
us to determine the rank of the rank of G. If {(x) is a cyclic subgroup, we denote
by (x)§ the set of vertices in the connected component of r(G) which contains V.

The proof will now proceed in the following steps.
(1) Let xe G, x = Y, a; with a;€ 4; such that {x) is a minimal subgroup of G.
i=1

Then if [ is the smallest integer such that a, #+ 0, we have |(x)g| = l(al)ﬁl.

Proof. H=Q,(@® 4;) is a homocyclic group. By the proof of lemma 2,
i=1l

|(x)%| = |(a;)%|- We will set up a 1-1 correspondence between (x)§ and (a,)§. Let ¢
be a 1-1 correspondence between (x)§ and (a;)§ which preserves orders. Suppose
-1 r

Z=U+ V where Ue @ 4; and Ve ® A4;. Then, clearly, Z e (x)§ if and only if

j=1 j=1
Z =U + y(V)e(a)s.

Let S = {|(x)§||x is a cyclic subgroup of G}. Let s, < s, <... <s, be the
distinct elements of S. Furthermore, let ¢; be the number of connected components

’

of r(G) which have s, vertices, for i = 1,..., r".

(2) r = ' and the m;, 1 < i < r are determined.
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Proof. As in part (1), let {(x) be a minimal subgroup, where x = Y a, a;eA,

i=1
then l(x)2| = |(a,)$l where [ is the smallest integer such that a, #+ 0. Thus, r' < r.
However, if {a;) and <{a;.) are minimal subgroups of A; and A;,; respectively,
then |(a;)5| < |(ai+1)3]- (This follows since if H = ,(G), by part (1) |(a,)5| =
= |(ai+1)',: , and (a,)§ = (a;)5, while there is a larger cyclic subgroup containing
a;yy.) Hence, r < r', and thus r = r".

From part (1), the number of connected components which have s, vertices is the
number of minimal subgroups which are contained in A4,. This number must then
be p""* + ... + p + 1. Thus, m, is determined.

Suppose by induction that m,, ..., m,_;,, has been determined. An easy
calculation shows that the number of minimal subgroups contained in A4,_; is
t,_i[p™ ™ =1*1 As above this number determines m,_;, the rank of A,_,. Thus,
all the m’s are determined.

(3) All the A;’s (and hence G) are determined.

Proof. All that remains is to determine the n;’s. Now s, is the same as the number
of vertices in a connected components of Q, (G), a homocyclic group. By lemma 2,
n, is determined.

Suppose by induction that ny, ..., n; are determined. An easy calculation shows
that s;,, must be of the form

ni+1—1
s; + p(m.n,+..,+min,-) Zl (pj)n~(m1+...+m;)—1
J=ni
this clearly determines n;, ;.
Now since all the n;’s are determined, all the A4;’s are determined and hence G is

determined. This completes the proof.

Theorem. If G is a finite, abelian group with no cyclic sylow subgroups, then G
is determined by its intersection graph.

Proof. By the theorem in [1], from the intersection graph of G, we can determine
the intersection graph of each of the sylow subgroups of G.

By lemma 1 (e), the rank of each sylow subgroup is determined. Similarly, the
number of minimal subgroups is determined. This number must be of the form
p"" ' + ...+ p + 1 where n is the rank. As n > 1, this clearly determines p. This
establishes the result.
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