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PRODUCTS OF UNIFORM SPACES 

MIROSLAV HUSEK, Praha 
(Received June 10, 1977) 

Coreflective subcategories (we always mean full subcategories) of Unif are those 
classes of uniform spaces which are closed under sums and quotients. The dual 
notions to sums and quotients are products and subspaces, respectively. It is proved 
in [Huseka] that if a coreflective subcategory of Unif is productive and hereditary, 
then it must be the whole Unif; but it may happen that a proper coreflective sub
category of Unif is either productive or hereditary. Here we shall investigate the pro
ductivity of coreflective subcategories of Unif. Productivity of several special coreflec
tive classes were investigated e.g. in [Isbelli] (topologically fine spaces, locally fine 
spaces), in [Poljakovi,2]j [ЬЬеИз] (proximally fine spaces). 

The first part of this paper deals with infinite products, namely with finding the 
least cardinal of indices determining whether a product belongs to a class. In the 
second part, finite products in coreflective classes are investigated. 

By a space we always mean a uniform space. We shall use terms from [Cech] and 
[IsbellJ. Two nets {M^}^, {АГа}̂  are said to be adjacent in a space X if the net 
{<Мд, N^y^A is eventual in any uniform neighborhood of the diagonal l^. By DX 
we mean the uniformly discrete modification of X, by pX the precompact modifica
tion of X, A space X is said to be J^-fine, where #" is a concrete functor defined 
on Unif into Ж, if Unif (X, Y) = Ж{^Х, ^Y) for all spaces 7. A metric space is 
usually denoted by <M, d"), a cover composed of г-balls by S/'^, In a product П^*' 

the symbol pr̂  means the projection J][Zf -> X{^ f defined in fJX^ depends on J 
if/x = fy provided рГ| x = pr̂  у for each i e J (i.e., if prj x = prj y). 

By Р„(Я, Уй), X and к cardinals, we denote the following uniform space: the under
lying set is Z X (0,1), where X is the set of all subsets Л с x, |л| < Я; a base of 
uniform covers consists of %в, В eX, 

^B = {«Л, 0 » u «Л, 1» I ^ eZ} u {«Л, 0>, {A, 1У)\ЛЕХ, A^B} 

(roughly speaking, Р„(Д, x) is an adjacent pair of nets on the set {Л cz % | |л| < X} 
ordered by inclusion — we shall identify P„(U>O, COQ) with adjacent sequences). 
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By Р^(Я, %) we denote the quotient of P„(A, к) when X x (l) is contracted to 
a point 00 (in other words, Р,(Я, x) is a convergent net {Л cz x | | л | < Д} together 
with its limit oo and with the topologically fine uniformity. We may identify Pt{>(, %) 
for regular x with x + 1 (all points except x are isolated). 

Several results of this paper were published in [Husek4 5,б] (the paper [Husekg] 
contains a survey of adjacent nets and their applications) but mostly in weaker for
mulations; besides, some methods of the present paper are simpler than in [Husek4], 
where only factorizations of mappings were used (mainly those of proximal charac
ter — for a survey of topological factorizations see e.g. [Husek2]). 

Theorem 1. The following conditions are equivalent for a coreflective sub
category ^ of Unif: 
(a) ^ contains all products {or powers) of uniformly discrete spaces, 
(b) A product belongs to ^ if all finite subproducts belong to ^. 

Proof. The only nontrivial implication: if (a) is fulfilled and all finite subproducts 
of Yl^i belong to ^ , then JJXi e ^ . Suppose first that / is countable, I = WQ. We 

I I 

know that ^ contains 2^°, hence it contains COQ X (COQ + l) (a quotient of COQ X 2̂ °®) 
and hence also its retract Pjo^o^ ^o) = (<^? уУ\х = уоту = COQ]. L e t / : f]X„ -> 

-> <M, dy be such that / : с Yi^n -^ M is uniformly continuous (c is the coreflection 
too 

onto ^). I f / i s not uniformly continuous on fl^n^ then for an e > 0 and any uniform 
CÛO 

cover ^ of Yi^n there are x^, j ^ lying in a member of 'Ш, with J</x^ , / j^> ^ e. 
CÖO 

There is a keœo such that d^fx.fy} < e/3 provided pr„ x = pr„y for M n S k 
(if not, then for any ke COQ we could find â t, b^. with pr„ a,^ = pr„ bu for all n S к 
and d<^fak,fbi^y ^ e/3; but {д^}, {fô } are adjacent in the product f]^-^« of discrete 

coo 

spaces). Pick out a„ e X„ for n > к and put Z = Y[X„ x ({a„ | n > /c}), g = fjZ. 

Since g is uniformly continuous (Z is a retract of с П^и)' there is a uniform cover 'iT 
coo 

of Z refining/" ^[^g/з]. Let ^ be the preimage of 1Г along the projection pr^ : П^«""^ 
CÖ0 

-> Z and put x'c^ = pr^x^, j ^ = pr^ J^. Then d(fx^Jy^y ^ d{fx^Jx'^y + 
+ difx'^, fy'^^i^y + dify^Jy^y < e/3 + e/3 + sjS = s because pr„ x<̂  = pr„ x^, 
Р̂ л J-^ = Р̂*и j i foï* all и ^ /с and x^, j ^ lie in a member of i^. This contradiction 
impHes that f]X„ = с П-^п- Now we know that for any set / , all countable sub-

c o o COQ 

products of Yi^i belong to ^ . If / : с Yl^i -> M is uniformly continuous, then / : 

: n ^ - ^ i -> M is uniformly continuous (since H ^ ^ f ^̂  ^^^^ ^^^^ ^ Yi^t)- Hence / 
depends on countably many coordinates J and thus it is uniformly continuous on 
YY^i because YY^i î  ^ retract of с Yl^v Again we have Yl^i == ^ Yl^t-
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Corollary. Ä coreflective subcategory о/Unif is productive iff it is finitely produc
tive and contains all products ofuniformly discrete spaces. 

Using the fact that finite products of uniform quotients are uniform quotients (this 
result was communicated to me by M. D. RICE), one can esaily see that the core
flective hull of all products of uniformly discrete spaces is the least productive core
flective subcategory of Unif. The details and a comparison of various productive 
coreflective subcategories of Unif will appear in a joint paper with M. D. Rice. The 
first nontrivial productive coreflective subcategory in Unif was constructed in [Rice] 
(a subclass of proximally fine spaces). 

In the first part of the proof of Theorem 1 we used only the fact that the space 
Pu{coo, coo) belongs to ^ , so that the following two conditions are equivalent for 
a coreflective ^ in Unif: 

(a) Ä countable product belongs to ^ if all finite subproducts belong to ^. 

(b) Р„(шо, шо) e "€, 

Clearly, in (b) we may replace Рм(со, со) by any one of the spaces COQ X (COQ + 1), 
(ßQ X 2^°, 0)0°. Also, it is easy to see that condition (b) is equivalent to the condition 
that ^ contains all metric spaces. 

The condition (a) in Theorem 1, as formulated, may be difficult to decide. We 
shall try to find a better condition. There are two "disjoint" approaches — one via 
countable sequences, the other via countably directed nets. 

Define transfinitely cardinals 5̂  : 5̂  is the first cardinal such that there is a non-
continuous real-valued / on 2"̂ * which is continuous on all images of Р̂ (соо> ^ß) iî̂  2**, 
for all Д < a. Clearly, 5o = COQ, 5̂  is Mazur's sequential cardinal ([Mazur], [Noble]). 
The cardinal s^ is not smaller than the first uncountable weakly inaccessible cardinal 
[Mazur]; in fact, there are many weakly inaccessible cardinals before 5̂  and, under 
MA, Si is the first (two-valued) measurable cardinal [Cudnovskii]. 

Theorem 2. Any one of the following conditions implies that a product belongs 
to a coreflective ^ in Unif whenever all countable subproducts belong to ^: 

(i) ^ contains all spaces Puip^u ^)j 
(ii) ^ contains all spaces Pt{coo, s j . 

Proof. Suppose that all countable subproducts of YlXi belong to ^ and l e t / be 
I 

uniformly continuous on the coreflection с JJXi i^ ^ ^^^^ ^ metric space <M, d}. To 

prove t h a t / i s uniformly continuous on \\^ь it suffices to show that it factorizes via 
I 

a countable subproduct. 
If / does not depend on countably many coordinates, then for any countable 

J (= / there are x"̂ , y' in Yl^i with prj x = pr^ y, d<^fx'^, fy'} ^ e for a fixed e > 0. 
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If we assume (i), then we obtain a contradiction because {x*̂ }, {y-̂ j are adjacent 
in П-^^ of the type Pja)i , | / |) . 

I 
Now pick out a point a e f|X,-and put 

X = {xE YlX, I |{/ I pr,x Ф pr, a}\ й coo} . 

The sets J, = {iel\ there are x, у in X, prj_(,.)X = ptj-^iy y, d(fxjy} ^ e} are 
finite (otherwise we obtain two adjacent sequences in a "countable" subproduct 
Y\.Xi X {pYi^jo) with non-adjacent /-images). Thus the restriction fx depends on 
J 

a countable set J = (JJi/n- It remains to prove that under (ii), / depends on J. i.e., 
n 

if X is a fixed point in YlXi, у ^X, pr^ j ; =: x, pr;_j у = a, then fx = fy. If we 

define g on 2'^' by gz = d{f(zx),fo Sj о pvj (zx)>, where Sj is the canonical embed
ding of Yl^i onto Yl^i X (prj_j a) and pr,- (zx) is pr,- x if pr,- z = 1 and is pr^ a 

J J 
otherwise. If {zt} -> z in 2'^', then {z^x} -^ zx in fl^h so that g is continuous if we 

suppose (ii). Consequently, g {1} = 0 which means that /depends on J. 
The proof of sufficiency of (ii) is a uniform analogue of Mazur's proof for fac

torizing sequentially continuous mappings on products of separable metrizable 
spaces. 

The condition (i) is satisfied e.g. if ^ contains all spaces admitting Шо, and (ii) e.g. 
if ^ contains all topologically fine spaces. The result of Theorem 2 holds also if ^ 
contains all Baire-fine spaces ([Tashjian], [Hager]); in this case ^ need not contain 
all Pj^pu ^) but to prove the assertion, one needs only (see our proof) that a Baire 
m a p / o n Y\Xi preserves adjacent nets of types P„(a>i, %), which is true. Consequently, 

I 

our selection of ^ ' s in Theorem 2 is not the most general one — of course, also ^ 
consisting of all uniformly discrete spaces has the property that a product belongs 
to ^ if all countable subproducts belong to ^ . It will follow from Theorem 4 that 
there is no se such that an analogue of Theorem 1 holds for countable subproducts 
instead of finite ones in (b) and se instead of powers of uniformly discrete spaces 
in (a). 

Theorem 2 may be given another form by means of inductive generation, e.g., 
for (ii): Any product of uniform spaces is inductively generated by canonical 
embeddings of countable subproducts and by spaces Рг{щ, s^, or Y\Xi is inductively 

I 
generated by the topological modification of Y\^Xi and by a (Corson) I-product 

I 

ofx;s. 
Combining Theorems 1 and 2 we obtain 
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Theorem 3. The following conditions are equivalent for a coreflective sub
category ^ of Unif containing all spaces P„(cOi, %) or all spaces Ptipo^ -̂ a)-

(a) ^ contains all countable powers of uniformly discrete spaces; 
(b) ^ contains all metrizable spaces; 
(c) a product belongs to ^ if all finite subproducts belong to ^. 

The assumption on ^ is superfluous if s^ does not exist. 

Corollary. A product is proximally fine iff all finite subproducts are proximally 
fine. 

In Corollary, the proximally fine spaces may be replaced by any coreflective sub
category of Unif containing metrizable spaces and topologically fine spaces, e.g., 
by ^-fine spaces for functors «^ preserving proximities. 

The last corollary was proved in [Husek4] by means of factorization theorems; 
one of them is also a consequence of the proof of Theorem 2 but the direct proof is 
simpler: 

Any proximally continuous f on Yl^t ^^^^ ^ metric space depends on countably 

many coordinates (see also [Tashjian]). As is shown in [Husek4], we cannot assume/ 
to be defined only on a subspace of fl^i ^^ i^ ^^e case of uniformly continuous 

mappings, [Vidossich] — in such a case / depends on less than card / coordinates 
provided cof card / ф COQ, but not generally on countably many coordinates. 

We shall show in Theorem 7 that if ^ is finitely productive coreflective and contains 
all topologically fine spaces (i.e., all topologically fine spaces with unique accumula
tion points), then ^ = Unif Of course, there are productive coreflective ^ Ф Unif 
containing all Pt{coo, s^). 

It follows from the proof of Theorem 2 that we may replace countable products 
in the condition (a) in the remarks following Theorem 1 by products Yl^t with 

I 

ca rd / < 5i. Thus, in the case that 5̂  does not exist, a coreflective subcategory is 
productive iff" it is countably productive iff* it is finitely productive and contains 
a converging sequence; in this case the coreflective hull of metrizable spaces is pro
ductive and thus coincides with the coreflective hull of all powers of uniformly dis
crete spaces (see [Husek, Rice]). 

The following example shows that we cannot omit (i), (ii) from Theorem 2. 

Example 1. Let S be a strongly rigid Hausdorff" compact space of infinite cardi
nality at least x (for the existence see e.g. [Trnkova]). Put 

A = { ( x j e S"" I card ( x j < %} , В = S"" - A . 

Then Л Ф 0, Б Ф 0 and i f / i s a continuous mapping on S^ into S'*, X < x, such that 
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the image meets Л, then it is contained in Ä (this follows from the fact [Herrlich] 
that / must be a product of constant maps or projections). Thus the noncontinuous 
mapping / : S'' -> 2 equal to 0 on Л and to 1 on Б has the property that all com
positions/о g, g : S^ -> S^ being continuous, X < к, are continuous. 

Thus a product need not be inductively generated by all uniformly continuous 
mappings on countable subproducts into the product. Moreover, we have proved 

Theorem 4. For any infinite cardinal x there are coreflective subcategories ^ 
in Unif and spaces X^e^, ^ < x, such that \\^^Ф^ ^"^ П ^^ ^ '^ f^^ ^^У 

f] < X. 
There is a simpler example showing that a product need not be inductively generated 

by canonical embeddings of countable subproducts: 

Example 2. P u t / : 2""' -> 2 , / { x J = 0 if all but countably many x^ are 0 , / { x J = 1 
otherwise. Then / is not continuous on 2^^ but it is continuous on all countable 
canonical embeddings of 2^^ into 2^ \ 

The next part is devoted to finding special cases when a finite product belongs to 
a coreflective subcategory ^ . Theorem 5 is basic for a general consideration. 

Theorem 5. Let f : X x Y-^Z be proximally continuous and separately uni
formly continuous, Y being a precompact space. Then f is uniformly continuous. 

Proof. We may assume that Z is complete metrizable and У is Hausdorff*. The 
equalities and inclusion in the next formula are taken in Set and U(Z, pZ), U(X, Z) 
have uniformities of uniform convergence (see [Isbelli]): 

ЩХ X y, pZ) = U(y, U(X, pZ)) =) U(y, U(X, Z)) = U(X X XZ), 

We must prove that under the conditions imposed on / , the corresponding map 
/ * : У-> U(X, Z) is uniformly continuous. To prove that, it suffices to show that the 
image /* [У] is precompact in U(Z, Z) (then the uniformities of U(X, pZ), U(Z, Z) 
coincide on / * [ У ] . We may suppose now that X is uniformly discrete and У is 
compact ( / can be uniformly continuously extended on the completion of DX x У 
into the Samuel compactification of Z, but the image of the completion lies in Z). 
Suppose / * [ y ] is not precompact in U(X, Z); there exist countable sets {y„} a 
c: y, {x^„} = X' <=. X and e > 0 such that for any m, n we have ^</<x^„, j^„>, 

fi'^mn^ УтУУ ^ £• Embed У into a power of the closed interval [0, 1]. For any m, n 
the restriction fl{x^„) x yfactorizes via a countable subpower [Vidossich] and hence 
there is a projection pr of У into a countable subpower and a mapping g :X^ x 
X pr [ y ] -> Z such that g{x, pr y} = /<x, y} for all xeX\ y eY, The mapping g 

is proximally continuous on metrizable X' x pr [У] (because 1^' x pr is proximal 
quotient), thus uniformly continuous. Consequently, / : X ' x y - > Z is uniformly 
continuous, which is a contradiction with the properties of {y„}, {xm«}-
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Theorem 5 was proved in [Husek4] by another method: by induction both on the 
density of X and the uniform character of F, the mapping/ is step by step factorized, 
finally via a metrizable productif ' x Y'; in that approach, the conditions on / in 
Theorem 5 may be weakened, but for our purposes such a generalization is irrelevant. 

Theorem 6. Ä product Yl^i of proximally fine spaces is proximally fine provided 

all but at most one of spaces Xi are precompact. 

Proof. By Corollary to Theorem 3 we may suppose that / i s finite. Thus it suffices 
to show that X x Yis proximally fine for X, У proximally fine and У precompact; 
this assertion follows directly from Theorem 5, 

Theorem 6 for finite products and all Xi precompact was stated in [PoljakovJ, 
proved for infinite / and all Xi precompact in [Isbell2] and for two factors, one 
proximally fine, the other countably compact, in [Kurkova] (by refining Poljakpv's 
method of investigating N x ßN), and in the form stated here in [Husek4]. 

By the same proof as that of Theorem 6 we can prove that if ^ is a coreflective 
subcategory of Unif generated by a class J^ of proximally continuous mappings in 
the sense that X e^ provided the maps from ^ defined on X are uniformly conti
nuous, then Yl^i £ ^ if all ^i ^ ^ and all but at most one of X/s are precornpact. 
Such ^ are just all J^-fine spaces where J^ is a functor Unif -> Ж preserving proximity 
(i.e., the canonical functor Unif -> Prox factorizes via ^), e.g. when #" is any upper 
modification in Unif preserving topology. Clearly, such ^ contain all proximally 
fine spaces; the next example shows that not all coreflective ^ containing all proximal
ly fine spaces fulfil the above analogue of Theorem 6. 

Example 3. Let Z be a precompact infinite space the proximally fine modification 
of which is uniformly discrete (e.g. the finest precompact uniformity on an infinite 
set) and let ^ be the coreflective hull of all proximally fine spaces and of Z . Then 
X X соф^ because any uniformly continuous / on X into X x со is uniformly 
continuous into ^ X , and the proximally fine modification of X x ш is DX x со. 

(Û 

One can prove that if ^ is coreflective in Unif and contains all proximally fine 
spaces,, X is proximally fine precompact and Уе ^ , then X x Ye^ because X x Y 
is the least upper bound of ^У, Z x Dy. 

X • ' 

N. NOBLE in his review for Math. Reviews (MR 44 # 3280) pointed out that 
there is a gap in the proof of Theorem 2 in [Husekj], but no counterexample to 
Theorem 2 was known; the next example provides one. First, let us recall the assertion 
of Theorem 2 in [Huseki]: A îspaceP is locally pseudocompact iff* for any quotient 
mapping g onto a fc'-space the product Ip x ^ is quotient. (Quotients are taken in 
the category of completely regular spaces.) 
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Example 4. It is known that Theorem 5 is not true for continuous / instead of 
proximally continuous, moreover, there are pseudocompact spaces X, Y with a non-
pseudocompact product X x У. Take such X, У separable Hausdorfi' with topolo
gically fine uniformities, and let f :X x У-> M, M metric, be a continuous not 
uniformly continuous mapping. The mapping / factorizes via 1^ x pr : X x У-> 
-^ X X 7', 7'compact Hausdorff(Lemma 3 in [Husek4]). If Ix x pr is a topological 
quotient, then the factorized map f':Xx У -> M is continuous, hence uniformly 
continuous, because X x FVis topologically fine — a contradiction. Clearly, 1;̂  x pr 
is both a proximal and a uniform quotient map. 

Theorem 7. Let ^ be a coreflective subcategory oj JJnif containing all topologically 
fine spaces. If X x De^ for a uniformly discrete space D, then X x Ye^€ for 
any Ye ^ admitting dX and with card Y ^ card D. 

Proof. The case of finite dX is trivial, so suppose that dX ^ COQ. Let c{X x Y) 
be the coreflection of Z x 7, where X, 7 have the properties from Theorem 7. We 
must prove that i f / : Z x Y-^ M, M metric, and / is uniformly continuous on 
c{X X 7), then / is uniformly continuous on X x 7. For any 5 from a dense set S 
in Xoï cardinality JX, the uniformly continuous //(5) x 7 factorizes via a projection 

(•Ox y ^ ^ ^ ( s ) x Z ) , 

for a uniformly discrete D^ (since 7 admits COQ) and thus / factorizes via a projection 

(since 7 admits dX and / is continuous), where ß is a uniformly discrete space, 
card D ^ card 7. It follows that X x D G ̂  and that 1^ x pr is a retraction, hence 
a quotient map c(X x 7) -> X x 5 . Consequently, / is uniformly continuous on 
Z X 7 

By a similar procedure we can prove: 

Any product of spaces having linearly ordered bases is proximally fine (Theorem 3 
in [Husek4]). ßy Theorem 5, it suffices to prove the assertion for finite products 
к 

Y\X„, where we may suppose that the uniform character of X„ is less than that of X„ +1, 
0 
n = 0, . . . , fc — 1. By virtue of the second factorization theorem following Corollary 

к 
to Theorem 3, any proximally continuous mapping on f|X^, into a metric space 

0 
factorizes proximally continuously yia a product of XQ and of a uniformly discrete 
space. If Zo is metrizable, the proof is complete, if not, we can use the factorization 
theorem once more. As a consequence, we obtain: 
/ / a coreflective ^ in Vnif contains all proximally fine spaces and X x D e^ for 
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a uniformly discrete space D, then X x Yl^t ^ ^ provided Xi have linearly ordered 
bases and card Yl^t = ^^^^ ^• 

Indeed, X x JJ^i î  inductively generated by Z x D and D' x Yi^t- This last 
result is not true e.g. for topologically fine spaces (a product of a uniformly discrete 
space and of a compact metrizable one need not be topologically fine. 

The last part of the paper deals with cases which are opposite to those from the 
foregoing part: with finding spaces from ^ the product of which does not belong 
to ^. The following result gives a rather general answer (a weaker form appeared 
as Example 2 in [Husek4]). 

Theorem 8. Any uniform space X is a quotient of a product D x P where D is 
a uniformly discrete space and P is topologically fine with at most one accumulation 
point. Moreover, card D = card P = cardX provided X is infinite. 

Proof. Put Y = (X X X — Ix) X (O, 1) with the base of uniform covers consisting 
of 

{«X, y, i}) I i e (0, 1), ix,y}eX X X -U}KJ 

u {«X, y, 0>, <x, y, 1» I <x, y) 6 t/ - 1;,} , 

и being a symmetric uniform neighborhood of the diagonal Ix- Then the mapping 
f:Y-^X, 

/<x, J, 0> = x , /<x, J, l> = y , 

is quotient [IsbellJ. Let D be the uniformly discrete space on the setX x Z — l̂ -
and let P be the set (Z x Z — Ix) ^ (oo), со фХ x Z, endowed with the topolo
gically fine uniformity of the topology having at most one accumulation point oo 
with the base of neighborhoods {(U — Ix) ^ (^) | U a symmetric uniform neigh
borhood of Ij}. It is easy to see that the mapping g : D x P -^ Y, 

giz^, Z2> = <Zi, 1> if Zi Ф Z2 , giz^, z^y = <Zi, 0> if ẑ  = Z2 

is a retraction. Consequently, the map h = f о g : D x P -^ X is quotient. 

Corollary. Let С be a coreflective subcategory of JJniî containing all topologically 
fine spaces. If ^ Ф Unif, then ^ is not finitely productive. 

Theorem 8 and its Corollary are true if we replace "topologically fine" by "pro-
ximally discrete" [Husek, Rice]. 

We see that for any infinite uniformly discrete space D there is a topologically 
fine space P such that D x P is not proximally fine. We shall show now that the 
space D can be replaced by any (proximally fine) non-precompact space. 

We shall denote by Cone the following functor Unif -> Unif: 
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ConeZ is the quotient of X x [0Д] along X x (O), for / : Z -^ У, C o n e / = 
= {<^j y} -^ O X y}} ' Cone X -> Cone Y. 

One can easily prove that Cone X has the sets 

{U X VI,\UG^, fc Ф 0} U (X X (FO - (0)) u (O)), 

for a base, where <̂  is a uniform cover of X, {P^}o is a uniform cover of [0, 1] such 

that 0 G Fo - и Ffc. 
1 

Formally, v̂ e shall use also Cone X, Cone/for a set X and a set-mapping/in the 
obvious meaning. 

The components ix = {x -^ <x, 1>} of the natural transformation / : ly^jj ->• Cone 
are embeddings. 

For any space P there is a natural transformation I : P x Cone X -^ Cone (P x X) 
with the components Ip = {<<x, f>, y ) -> <<x, ;;>, />}. 

If D is a uniformly discrete subspace of X, then by kjy we shall denote a standard 
mapping on X into the hedgehog Cone D: first pick out a uniformly continuous 
pseudometric d on X with (i<x, y} ^ 2 for all different x, у from D, and put 

kj)X = 0 if d{x, j> ^ 1 for all у e D , 

kj)X = <y, 1 — J<x, j>> if d<(x, _у> < 1 for a у G D . 

Theorem 9. Le^ D be a uniformly discrete subspace of a space X. If D x P is not 
proximally fine, then X x P is not proximally fine. 

Proof. There is a proximally continuous f : D x P -^ M which is not uniformly 
continuous. We shall prove t h a t / ' = Cone / о Ip о (к^ x Ip) on X x P into Cone M 
is proximally continuous (certainly it is not uniformly continuous because its 
restriction to D x P i s / ) . It suffices to prove that Cone / is proximally continuous 
and this fact follows from the easy equality Cone {pM) = p(Cone M). 

Corollary ([Husekg]). Л proximally fine space X is precompact iff X x Y is 
proximally fine for any proximally fine Y. 

In general, there is no proximally continuous extension / ' of a proximally con
tinuous / : Л -^ С on a space В containing Ä into a space D containing С (as sub-
spaces): let Л be a non-proximally fine subspace of a proximally fine space P, and 
l e t / b e proximally continuous, not uniformly continuous on Ä into a space С 

One can easily extend Theorem 9 to other coreflective subcategories. The first 
extension has the same proof: 

Let ^ be an upper modification in Unit and D a uniformly discrete subspace of X. 
If D X P is not ^fine, then X x P is not ^fine. 
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(The case when #" does not preserve topology is trivial because only uniforrnly 
discrete spaces are J^-fine; in the case when #" preserves topology (i.e., when #" is 
finer than p, or J^[0, 1] = [0, 1]) one uses e.g. Theorem 5 to prove that Cone ( ^ M ) 
is finer than ^[COÏIQ M ) , which is sufficient to our purposes). It is easy to find 
bireflective subcategories of Unif with Cone J^M Ф J^Cone M (e.g., in that generated 
by the real line, #" Cone щ = p Cone COQ Ф Cone COQ = Cone J^COQ). 

The second partial extensions of Theorem 9 use the following easy observation 
(we denote here m^ = min {cardX | X e Unif — ^}): Let <̂  ID < '̂ be coreflective 
subcategories of Unif containing topologically fine spaces and with m^ = m^' ; 
if ^ has the property that for any X e^ with uniform covering character bigger than 
m^ there is a topologically fine P such that X x P ф^, then ^ ' has the same property. 
If we take e.g. ^ to be all proximally fine spaces, then for any non-precompact Z e ^ ' 
there is a topologically fine P such that X x P ф^' (e.g. if ^ ' are all coz-fine spaces 
or topologically fine spaces). 

The next examples show that Theorem 9 is not valid in general. 

Example 5. Let ^ be a coreflective hull of [0, 1] x Cone COQ. Then [0 ,1] x сооф"^ 
(since [0, 1] X Cone COQ is connected, the coreflection of [0, 1] x COQ in ^ is ^ [ 0 , 1]) 

coo 

and, clearly, [0, 1] x Cone ще^. 

Example 6. Let P be a 0-dimensional space such that COQ x P ф^, where ^ is 
coreflective in Unif. Then COQ X P does not belong to the coreflective h u l l ^ of all 
X X Cone a with X e ^ , a cardinal (indeed, any uniformly continiious / : X x 
X Cone a -^ COQ X P factorizes via the projection X x Cone a -> X) and, moreover, 

the coreflections of coo x P in both ^ , ^ coincide. 
If we define transfinitely coreflective subcategories ^^ = (j ^^, where ^Q is the 

ß<oc 

category of all topologically fine spaces, then (J^^ = ^^ is coreflective in Unif with 
a 

the properties: 

^00 contains all topologically fine spaces, 
there is a countable 0-dimensional P such that COQ X P ф ̂ ^ , m^^ = coo, 
X X Cone (OQ e ^ ^ for each X e^^, 
if #" is an upper modification in Unif such that each X e ^„^ is #'-fine, then #" is 

the identity. 
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