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1. INTRODUCTION

If f is a convex function defined in a Euclidean n-space E" then the set N( f) of all
points at which f is not differentiable is small. There exist several works concerning
the sets N(f) ([1]) or, which is almost equivalent, the sets of all singular boundary
points of convex bodies in E" ([8], [5], [1], [3]). In the present article we give a char-
acterization of the magnitude of sets N(f) in E". By the same method we obtain also
an infinite dimensional generalization of our result. We also characterize the magni-
tude of sets Sy(f) defined in [1]. If we write in the sequel “Banach space”, we mean
“real Banach space”.

We shall say that f is a convex function defined in a Banach space B if its domain
D, is an open convex subset of B and f is convex on D,. If f is a convex function de-
fined in E" then for any x € D there exists [1] a maximal linear manifold L, such
that xe L, and f/D, N L, is differentiable at x. For 0 £ k < n, S, is the set of all
x € D, for which dim L, £ k. It is proved in [1] that S, is the union of countable
many compact sets of finite k-dimensional Hausdorff measure. In [1] it is further
proved that for k < 2 the set S; can be covered by countably many k-cells of finite
k-measure. These results were obtained in [1] as consequences of theorems con-
cerning ‘“‘upper semi-continuous collections™.

In the case n = 2, k = 1 the result of Anderson and Klee [1] was improved by
BesicovircH [3]. He proved that in E* any set S;(f) = N(f) is countably rectifiable.

In the infinite dimensional case we are interested in continuous convex functions
defined in a separable real Banach space B. Let f be such a function. It is well-known
that the set N(f) of all points at which f is not Gateaux differentiable is of the first
category. Further information concerning the sets N(f) follows from results on
differentiation of Lipschitz functions ([4], [7]). A more precise result was proved
by ARONsZAIN in [2]. He proved that N(f) belongs to the class U° which is defined
as follows:
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1. Let 0 + ae B, Z(a) = {4 = B, A is Borel, A n {x + at, te R} is countable
for any x € B}.

2. For any sequence {a,}, a, + o, Z{a,} = {4 = B, A = UA,, 4,¢€Z(a,)}.

3. U° = NZ{a,}, the intersection being taken over all sequences {a,} complete
in B.
The result of Aronszajn implies that y(N(f)) = 0 for any Gaussian measure u
on B. Now we shall state our main results.

Definition 1. We shall say that M < E" is a (¢ — c)-surface of dimension k
(k = 1, ..., n — 1)if there exists a permutation 7 of the numbers 1, ..., n and 2n — 2k
convex functions fy4 15 gx+1» «- > fu g» defined on the whole space E* such that M
is the set of all (xy,..., x,) € E" such that y; = f{yy, ..., %) — 9;(¥1 ---» ¥i) for
j=k+1,..,nwhere y;, = x,fori=1,...,n.

Notation. If M is a subset of a vector space, then Lin M is the linear hull of M.

Definition 2. Let B be an infinite dimensional Banach space. A set M is called
a (¢ — c)-hypersurface if there exist a closed subspace H = B and a vector ve B
such that B = H + Lin {v}, and two Lipschitz convex functions f, g defined on the
whole H such that :

M = {x + (f(x) — g(x)) v, xe H} .

Theorem 1. A set M = E" is a subset of the set Si(f) (0 < k < a) for a convex
function f defined in E" iff M can be covered by countably many (¢ — c)-surfaces
of dimension k.

Theorem 2. A subset M of a separable real Banach space B is a subset of the set
N(f) for a continuous convex function f defined in B iff M can be covered by count-
able many (¢ — c)-hypersurfaces.

These theorems are quite analogous to each other and their proofs are almost
identical. We shall also prove a generalization of Theorem 2 which is an analogue
of Theorem 1 in the separable infinite dimensional case.

Theorem 1 immediately implies the results of [1] mentioned above since any
difference of two convex functions in the finite dimensional space is locally Lipschitz
and any Lipschitz image of a set of a finite k-dimensional Hausdorff measure is
of a finite k-dimensional Hausdorff measure. The fact that S; can be covered by
countably many k-cells which is proved in [1] for k < 2 clearly follows from Theorem
1 for any 0 < k < n. It is almost obvious that Theorem 1 improves the results of
[1] also in the cases k = 1, 2, as well as the result of [3] (see Example 1).

The proof of Theorem 1 immediately yields a result on singular boundary points
of convex bodies in Euclidean spaces (Theorem 3).
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Theorem 2 and the result of [2] mentioned above imply that any (¢ — c)-hyper-
surface belongs to U°. We can obtain this fact also directly from the proof of Theorem
2 without using the results of [2]. Thus the Aronszajn’s result mentioned above
follows from Theorem 2. However, we do not know any example of a set from U°
which cannot be covered by countably many (¢ — c)-hypersurfaces. Therefore we
do not know whether Aronszajn’s result characterizes the magnitude of sets N(f).

Added in the proof. Let f (x) be a continuously differentiable function defined
on (0, 1) for which the derivative f'(x) is of unbounded variation on each subinterval
I = (0, 1). Then Graph f = E* is from U° but cannot be covered by countably many
(¢ — c)-hypersurfaces. This example shows that our Theorem 2 improves Arons-
zajn’s result.

2. LEMMAS

Let B be a Banach space, f a real function defined in B and a € B, ve B. We shall
denote the derivative of f at the point a in the direction v by D, f(a). Thus

D, f(a) = lim (1/n) (f(a + ho) - f(a) .

The assertions of the following proposition are well known.

Proposition 1. Let B be a Banach space. Let f be a continuous convex function
defined on an open convex set D, = B. Let a€ D,. Denote by L, the set of allve B
such that there exists D, f(a). Then the following assertions hold:

(i) Let S be the set of all continuous affine functions s defined on B whose graphs
support the graph of f at the point (a, f(a)) (in other words: s(a) = f(a) and s(x) <
= f(x) for x € B). Then

L,={v:s(a +v) =sy(a +v) forany s €8, s,eS}

and D, f(a) = s(a + v) — s(a) for any se S and ve L,.

(ii) L, is a closed linear subspace of B.

(iti) f is Gdteaux differentiable at a iff L, = B. In this case and only in this case
S = {s} and the graph of s is the unique supporting hyperplane of the graph of f
at the point (a, f(a)).

(iv) If B is finite dimensional then f is Gdteaux differentiable at a iff it is Fréchet
differentiable at a.

Proof. The assertion (i) follows easily from Theorem 43A from [9]. The assertions
(ii), (iii) are easy consequences of (i). The assertion (iv) is well known (see e.g. Theorem
42D from [9]).

Lemma 1. Let Bbea Banachspaceand let M = B x R be a set such that for any
point m = (e, t) € M there exists a continuous affine function g,, defined on B such
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that g,(e) = t and g,(x) < y for any point (x, y) € M (in other words: the closed
hyperplane Graph g,, “supports” M at (e, t)). Then there exists a sequence {f,};°,

of convex Lipschitz functions defined on the whole B such that M < J Graph f,.
n=1

Proof. For any integer n denote by A, the set of all points m € M for which g,

is Lipschitz with the constant n. Then clearly M < U 4,, the function f,(x) =

n=1
= sup g,,,(x) is a convex Lipschitz function on B and A4, = Graph f,. Therefore
meAn
M < U Graph f,.
n=1

Notation. If X is a Banach space, then X"’ is its dual space.
The main idea of the present article is contained in the following lemma.

Lemma 2. Let B a Banach space(finite or infinite dimensional). LetK be a proper
subspace of B of a finite dimension u, let {e,, ..., e,} be a basis of K.Let x,€ B’,
i=1,..,u be continuous linear functionals for which x(e;) = 6;. Let H =
={veB:x{v)=0,i=1,...,u}. Then B=K + H and for any ve B we have
v = x{v) e; + n(v) where n is the projection on H “in the direction of K”. Let f
be a continuous convex function defined on a convex subset D, of B. Let A = D,
be a set such that for any point a € A and any v € K the derivative D,,f(a) does not
exist. Then there exist convex Lipschitz functions Zi(h), Ti(h), i = 1,...,u, j =
=1,2,..., defined on the whole subspace H such that any point a € A fulfils the
equations

xy(a) = Z{(n(a)) — Ti(x(a)),

x(a) = Z(n(a)) - Ti(n(a))

for some integer j.

Proof. Let a € 4 and let M, be the set of all functionals g € K’ such that f(a) +
+ g(x) < f(a + x) for any x e K. The set M, is evidently convex and closed. We
shall prove that it is a u-dimensional convex set. Suppose on the contrary that this

is not true. Then there exists g, € M, and g, €K', ..., g,-1 € K’ such that for any
u—1

g € M, there exist real numbers c,, ..., ¢,_; such that g = g, + Y, ¢;g;. Therefore
c=1

there exists a nonzero v e K such that g(v) = go(v) for any g € M,. Therefore by
Proposition 1, (i) D, f(a) exists and this is a contradiction. Since M, is u-dimensional
there exist points m; € M,, i = 0, 1, ..., u, such that the vectors m; — mo,j = 1,...,u,
are linearly independent and m; have rational coordinates with respect to the basis
xi/K, i =1,...,u. Since there are only countably many possibilities for {m,-, i =
=0,1,...,u} we can suppose without any loss of generality that the vectors m;,
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i=0,1,...,u, lie in M, for any ae A. Let p;, i =0, ..., u, be continuous linear
functionals on B (they exist by Theorem 43A from [9]) such that p; extends m;
and pyx) < f(a + x) — f(a) for any xeB and i=0,1,..,u. Let G=
= {(x,f(x))eB x R, xe A}. Let V; = B x R be the graph of p;, i =0, ..., u.
Clearly Bx R=H x R+ V;fori =0,...,u. Let n; be the projection of B x R
on H x R “in the direction of ¥;”. Thus if ze B x R and z = (h + k, y) where
heH, keK, we have n(z) = (h, y — m{k)). Let b = (a, f(a)) € G, a = hy + ko-
Since the closed hyperplane T; = b + V;, i = 0, ..., u supports the graph of f at
the point b, n(T;) = T; n H x R s a closed hyperplane in H x R which “supports”
the set 7,(G) at the point 7,(b) in the sense of Lemma 1. In fact, n{(T;) is thc graph
of the continuous affine function s(k) = f(a) + pi(h — a), n{b) = (ho,f(a) —
— myko)) and s(ho) = f(a) — m{k,). Further, any point ¢ € n(G) is of the form
(hy, f(hy + ky) — mky)), hy € H, k; € K, and we have s(h,) = f(a) + pfh, — a) £
< f(hy + k) — my(k,). By Lemma 1 there exist convex Lipschitz functions Ci(h),
j=1,2,..., defined on H such that n(G) is covered by the union of the graphs of the
functions CJ(h). Consequently, for any point (a, y)€ G, a = h + k, the equations

1) y = mo(k) = C(h),

hold for a multiindex (jo, ..., j,). The equations

©) (my = mo) (k) = (Cb — C1) (h),

(my = mo) (k) = (CF — C) (1)

follow immediately from (1). The linear functionals m, — m,, ..., m, — m, are
linearly independent and the set of all multiindices (jo, ..., j,) is countable. Thus if we
solve the equations (2) with respect to the unknowns x,(a) = x,(k), ..., x,(a) = x,(k)
we obtain the assertion of Lemma 2 since the set of all functions on H of the form
C — C’ where C, C’' are Lipschitz convex functions forms a linear space.

3. THE INFINITE DIMENSIONAL SEPARABLE CASE

Definition. 3 Let B be an infinite dimensional Banach space. Let M < B. We
shall say that M is an (0 — u)-dimensional (¢ — c)-surface if there exist K, H, x,, ...
..., X, 7 as in Lemma 2 and Lipschitz convex functions Z,, T, ..., Z,, T, defined
on H such that M is the set of all points y € B for which

x1(9) = Zy(a(y)) — Ty(n(y))

.........................

x(y) = Z(n(y)) — Tn(»)) -
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Evidently the notion of the (oo — 1)-dimensional (¢ — c)-surface coincides with the
notion of the (¢ — c)-hypersurface defined in the first part of the present article.

Proposition 2. Let B be an infinite dimensional separable Banach space. Let f
be a continuous convex function defined on an open convex subset D; of B. Let u
be an integer. Let A = D, be the set of all points ae A for which there exists
a u-dimensional subspace K, = B such that for any o + veK,, D, f(a) does not
exist. Then A can be covered by a countable union of (0 — u)-dimensional (¢ — c)-
surfaces.

Proof. Let C be a countable dense subset of B. Let L, be the set of all v € B for
which there exists D, f(a). The set L, is a closed linear subspace of B by Proposition 1,
(ii). Since L, n K, = {0}, there exists a u-dimensional subspace K; such that
L,nK; = {0} and K} has a basis c;,..., ¢, where ¢, €C,...,c,e C. For any
u-tuple (cy, ..., ¢,) of linearly independent elements of C, denote by A(cy, ..., c,)
the set of all a € 4 for which L, n Lin (cy, ..., ¢,) = {0}. Clearly A = UA(cy, ..., ¢,).
By Lemma 2 any set A(cy, ..., c,) can be covered by a countable union of (o0 — u)-
dimensional (¢ — c)-surfaces. This implies the assertion of Proposition 2 immediately.

Proposition 3. Let B be an infinite dimensional Banach space. Let u be an integer.
@

Let A =\) A, where any A, is an (o — u)-dimensional (¢ — c)-surface. Then
n=1
there exists a continuous convex function f such that for any a e A there exists

a u-dimensional subspace K, such that for any o # veK,, D, f(a) does not exist.

Proof. Let u be an integer. Let K, H, x1, ..., X,, Z;, Ty, ..., Z,, T, be as in De-
finition 3 and
A, = {y:x(y) = Z(n(y)) — T(n(y)), i = 1, ..., u}.
Put

9o(y) = Ty(n(y)) + ... + T(n(y)) + x,(») + ... + x(»)
and

g/y) = Zx(y)) + 9o(y) — Tin(»)) — x{»)
fori=1,...,u, yeB.

The functions g, ..., g, are clearly Lipschitz and convex. Put f, = max (g, -+ 9u)-
Then f, is Lipschitz and convex and for any point a € 4, and any 0 % ve K, D, f.(a)
does not exist. In fact, if a € 4,, then we have go(a) = g,(a) = ... = g,(a) = fu(a@)
and therefore for y = a + k, k € K, we have

1(¥) = fi(@) + max ((x,(k) + ... + x,(k)) = x,(k), ...
oo (%1(K) + oo+ x,(K)) = xK), x,(k) + ... + x,(k)) =
= fa) + h,(k).
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If veK, then D,f,(a) exists iff D, h,(0) exists. Further, D, h,(o) exists for v =
= ve, + ... + v,e, iff there exists D, h(0,...,0), where w = (v,...,v,) and
(g oo %) = max ((X; + oo+ %) = Xy oo (60 + oo+ X)) = X Xp + o+ X)) =
=X, + ... + x, — min (0, xy, ..., X,).

This follows from the fact that the function h, corresponds to the function h in
the isomorphism between E' and K defined by the identification (cy,...,¢,) =
=ce; + ... + ce,. If we put g(xq,...,x,) = min (0, x,, ..., x,) then it is easy
to see that D (0, ..., 0) exists for no o # we E". Therefore D, h(0, ..., 0) exists

for no o + we E*. Now it is clearly sufficient to put f = Z ¢,fn where ¢, > 0 are
sufficiently small numbers. It is possible to put ¢, = n~? (sup |fu(x)[)~". Theorem 2

‘which is stated in the first part is a consequence of Proposmon 2 and Proposition 3
in the case u = 1.

Note 1. If we write in the definition of the (¢ — c)-hypersurface (Definition 2)
“‘continuous convex functions f, g> instead of ‘“convex Lipschitz functions f, g”,
Theorem 2 also holds. It follows easily from Lemma 1.

4. THE FINITE DIMENSIONAL CASE

Proof of Theorem 1. We must prove the following assertions:

(A) Let f be a convex function defined in E". Then S(f) can be covered by count-
ably many (¢ — c)-surfaces of dimension k.

(B) Let M < E" be a countable union of (¢ — c)-surfaces of dimension k. Then
there exists a convex function f defined on E" such that M = S,(f).

Let f be a convex function defined in E". Let x € Sk( f). Since dim L, < k there
exists a permutation 7 of the numbers 1, ..., n such that L, N Lin (eyg41)s -+ €x(n) =
= {0} where e; is the j-th unit coordinate vector. If we use Lemma 2 for K, =
= Lin (x4 1y -+ > €new)> Hx = Lin (€y(1)s - --» €xy) and for all possible permutations
7 we obtain the assertion (A). :

The proof of the assertion (B) is essentially the same as the proof of Proposition 3.

Note 2. If we write in the definition of the (¢ — c)-surface of dimension k (De-
finition 1) “convex continuous functions fy+ 1 gk+1> -+ fu g4~ instead of “convex
Lipschitz functions fyi1, gxs1> -+ Su 9u » Theorem 1 also holds. It follows im-
mediately from Lemma 1.

We shall now prove that for any 0 < k < n there exists a countably k rectifiable
set (for definition see [6]), which cannot be covered by a countable union of (¢ — c)-
surfaces of dimension k. Thus Theorem 1 improves the results of [1] and [3].
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Example 1. Let 0 < k < n. Let g be a Lipschitz function defined on <0, 1)
which is not differentiable at any point of a perfect set P = <0, 1). It is well known
that such a function g exists. For example, the function f from [10], p. 136, Re-
marque 3 is such a function. Define f : 0, 1)* — E"~* by the equation f(x,, ..., X;) =
= (g(x,), 0, ..., 0). Clearly f is Lipschitz. Put M = Graph f = <0, 1)* x E"™* < E".
The set M is clearly countably k rectifiable. We shall prove that M cannot bz covered

by a countable union of (¢ — c)-surfaces of dimension k. Suppose that M = | 4,,

s=1
where A4, is a (¢ — ¢)-surface of dimension k for any integer s. Since M is a complete
subspace of E" and any set M n A, is closed in M there exists an open ball B in E"
and an index s, such that M n B = A, n B. Let D be the set of all xe M n B for
which Tan (M, x) ([6], p. 233) is a linear space (in other words: there exists a linear
tangent manifold of M at x). From the definition of M it follows easily that D is not
of o-finite (k — 1)-dimensional Hausdorff measure. But Theorem 1 easily implies
that D is of o-finite (k — 1)-dimensional measure and this is a contradiction.

Note 3. Let M < E", 0 < k < n and let there exist 2n — 2k convex functions
Ji+1s Gr+15 - f 9 defined on the whole space E* and such a system of orthonormal
coordinates y,, ..., y, that M is the set of all points of E" for which

Vi=five o) — gy y) for j=k+1,..,n.

From the proof of Proposition 3 it is easily seen that M is the set S,(f) for aconvex
function f in E". Therefore M can be covered by countably many (¢ — c)-surfaces
of dimension k.

5. SINGULAR BOUNDARY POINTS OF CONVEX BODIES IN E"

Theorem 3. Suppose C is a convex body in E"*! and for each boundary point x
of C, let H, be the intersection of all hyperplanes which support C at x. For0 < k <
< nletB, = {x:xeBd(C)anddim H, < k}. Then B, can be covered by countably
many (¢ — c)-surfaces of dimension k.

Proof. Near to a boundary point x, the surface of the body can be represented
by means of a convex function defined on a hyperplane supporting the body at x.
Note 3 implies that it is sufficient to prove that for any convex function f in E" the set
{[x. y] : xe Si(f), ¥ = f(x)} can be covered by countably many (¢ — c)-surfaces
of dimension k in E"*', We shall show that the last proposition follows from the
proof of Lemma 2. For this it is sufficient to prove from (1) and (2) that y = C(h) —
— C*(h) where C, C* are Lipschitz convex functions defined on H. But this im-
mediately follows from the equation y = my(k) + C{(h) since my(k) is a fixed
linear combination of x,(a), ..., x,(a).
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