Czechoslovak Mathematical Journal

Karel Svoboda
Several new characterizations of the 2-dimensional sphere in E^{4}

Czechoslovak Mathematical Journal, Vol. 29 (1979), No. 4, 573-583

Persistent URL: http://dml.cz/dmlcz/101639

Terms of use:

© Institute of Mathematics AS CR, 1979

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SEVERAL NEW CHARACTERIZATIONS OF THE 2-DIMENSIONAL SPHERE IN E^{4}

Solving the problem of the global characterization of the 2-dimensional sphere among surfaces in E^{4}, we have used, in [1], the property of the mean curvature vector field of the surface M being pseudoparallel. In the present paper, we give some new results concerning the global characterization of the sphere in E^{4} and based again on the pseudoparallelness of the mean curvature vector field of M.

1. Let M be a surface in the 4-dimensional Euclidean space E^{4} and ∂M its boundary. Let M be covered by open domains U_{α} in such a way that in each U_{α} there is a field of orthonormal frames $\left\{M ; v_{1}, v_{2}, v_{3}, v_{4}\right\}, v_{1}, v_{2} \in T(M), v_{3}, v_{4} \in N(M)$, $T(M), N(M)$ being the tangent and the normal bundles of M, respectively. Then

$$
\begin{align*}
\mathrm{d} M & =\omega^{1} v_{1}+\omega^{2} v_{2}, \tag{1}\\
\mathrm{~d} v_{1} & =\omega_{1}^{2} v_{2}+\omega_{1}^{3} v_{3}+\omega_{1}^{4} v_{4}, \\
\mathrm{~d} v_{2} & =-\omega_{1}^{2} v_{1}+\omega_{2}^{3} v_{3}+\omega_{2}^{4} v_{4}, \\
\mathrm{~d} v_{3} & =-\omega_{1}^{3} v_{1}-\omega_{2}^{3} v_{2}+\omega_{3}^{4} v_{4}, \\
\mathrm{~d} v_{4} & =-\omega_{1}^{4} v_{1}-\omega_{2}^{4} v_{2}-\omega_{3}^{4} v_{3} ;
\end{align*}
$$

$$
\begin{equation*}
\mathrm{d} \omega^{i}=\omega^{k} \wedge \omega_{k}^{i}, \quad \mathrm{~d} \omega_{i}^{j}=\omega_{i}^{k} \wedge \omega_{k}^{j}, \quad \omega_{i}^{j}+\omega_{j}^{i}=0 \quad(i, j, k=1,2,3,4), \tag{2}
\end{equation*}
$$

$$
\omega^{3}=\omega^{4}=0
$$

Differentiating the last equations of (2) and using Cartan's lemma, we get the existence of real-valued functions $a_{i}, b_{i}, c_{i} ; \alpha_{i}, \beta_{i}, \ldots, \delta_{i} ; A_{i}, B_{i}, \ldots, E_{i}(i=1,2)$ on each U_{α} such that

$$
\begin{array}{ll}
\omega_{1}^{3}=a_{1} \omega^{1}+b_{1} \omega^{2}, & \omega_{2}^{3}=b_{1} \omega^{1}+c_{1} \omega^{2}, \tag{3}\\
\omega_{1}^{4}=a_{2} \omega^{1}+b_{2} \omega^{2}, & \omega_{2}^{4}=b_{2} \omega^{1}+c_{2} \omega^{2} ;
\end{array}
$$

$$
\begin{align*}
& \mathrm{d} a_{1}-2 b_{1} \omega_{1}^{2}-a_{2} \omega_{3}^{4}=\alpha_{1} \omega^{1}+\beta_{1} \omega^{2}, \tag{4}\\
& \mathrm{~d} b_{1}+\left(a_{1}-c_{1}\right) \omega_{1}^{2}-b_{2} \omega_{3}^{4}=\beta_{1} \omega^{1}+\gamma_{1} \omega^{2}, \\
& \mathrm{~d} c_{1}+2 b_{1} \omega_{1}^{2}-c_{2} \omega_{3}^{4}=\gamma_{1} \omega^{1}+\delta_{1} \omega^{2}, \\
& \mathrm{~d} a_{2}-2 b_{2} \omega_{1}^{2}+a_{1} \omega_{3}^{4}=\alpha_{2} \omega^{1}+\beta_{2} \omega^{2}, \\
& \mathrm{~d} b_{2}+\left(a_{2}-c_{2}\right) \omega_{1}^{2}+b_{1} \omega_{3}^{4}=\beta_{2} \omega^{1}+\gamma_{2} \omega^{2}, \\
& \mathrm{~d} c_{2}+2 b_{2} \omega_{1}^{2}+c_{1} \omega_{3}^{4}=\gamma_{2} \omega^{1}+\delta_{2} \omega^{2} ;
\end{align*}
$$

$$
\begin{equation*}
\mathrm{d} \alpha_{1}-3 \beta_{1} \omega_{1}^{2}-\alpha_{2} \omega_{3}^{4}=A_{1} \omega^{1}+\left(B_{1}-b_{1} K-\frac{1}{2} a_{2} k\right) \omega^{2} \tag{5}
\end{equation*}
$$

$$
\mathrm{d} \beta_{1}+\left(\alpha_{1}-2 \gamma_{1}\right) \omega_{1}^{2}-\beta_{2} \omega_{3}^{4}=\left(B_{1}+b_{1} K+\frac{1}{2} a_{2} k\right) \omega^{1}+
$$

$$
+\left(C_{1}+a_{1} K-\frac{1}{2} b_{2} k\right) \omega^{2},
$$

$$
\mathrm{d} \gamma_{1}+\left(2 \beta_{1}-\delta_{1}\right) \omega_{1}^{2}-\gamma_{2} \omega_{3}^{4}=\left(C_{1}+c_{1} K+\frac{1}{2} b_{2} k\right) \omega^{1}+
$$

$$
+\left(D_{1}+b_{1} K-\frac{1}{2} c_{2} k\right) \omega^{2}
$$

$$
\mathrm{d} \delta_{1}+3 \gamma_{1} \omega_{1}^{2}-\delta_{2} \omega_{3}^{4}=\left(D_{1}-b_{1} K+\frac{1}{2} c_{2} k\right) \omega^{1}+E_{1} \omega^{2}
$$

$$
\mathrm{d} \alpha_{2}-3 \beta_{2} \omega_{1}^{2}+\alpha_{1} \omega_{3}^{4}=A_{2} \omega^{1}+\left(B_{2}-b_{2} K+\frac{1}{2} a_{1} k\right) \omega^{2}
$$

$$
\mathrm{d} \beta_{2}+\left(\alpha_{2}-2 \gamma_{2}\right) \omega_{1}^{2}+\beta_{1} \omega_{3}^{4}=\left(B_{2}+b_{2} K-\frac{1}{2} a_{1} k\right) \omega^{1}+
$$

$$
+\left(C_{2}+a_{2} K+\frac{1}{2} b_{1} k\right) \omega^{2}
$$

$$
\mathrm{d} \gamma_{2}+\left(2 \beta_{2}-\delta_{2}\right) \omega_{1}^{2}+\gamma_{1} \omega_{3}^{4}=\left(C_{2}+c_{2} K-\frac{1}{2} b_{1} k\right) \omega^{1}+
$$

$$
+\left(D_{2}+b_{2} K+\frac{1}{2} c_{1} k\right) \omega^{2}
$$

$$
\mathrm{d} \delta_{2}+3 \gamma_{2} \omega_{1}^{2}+\delta_{1} \omega_{3}^{4}=\left(D_{2}-b_{2} K-\frac{1}{2} c_{1} k\right) \omega^{1}+E_{2} \omega^{2}
$$

where

$$
\begin{equation*}
K=a_{1} c_{1}-b_{1}^{2}+a_{2} c_{2}-b_{2}^{2}, \quad k=\left(a_{1}-c_{1}\right) b_{2}-\left(a_{2}-c_{2}\right) b_{1}, \tag{6}
\end{equation*}
$$

K being the Gauss curvature of M. Denote further by

$$
\begin{equation*}
\xi=\left(a_{1}+c_{1}\right) v_{3}+\left(a_{2}+c_{2}\right) v_{4} \tag{7}
\end{equation*}
$$

the mean curvature vector field and by

$$
\begin{equation*}
H=|\xi|^{2}=\left(a_{1}+c_{1}\right)^{2}+\left(a_{2}+c_{2}\right)^{2} \tag{8}
\end{equation*}
$$

the mean curvature of M.
Let $\xi \neq 0$ on M. Denote by $P_{m}(M)$ the union of $T_{m}(M)$ and ξ_{m} for each $m \in M$ and by $P(M)$ the corresponding vector bundle over M. The vector field ξ is said to be pseudoparallel in $P(M)$, if $t \xi \in P(M)$ for each vector field $t \in T(M)$.

As mentioned in [1], ξ is pseudoparallel in $P(M)$ if and only if, according to (7),

$$
\begin{align*}
& \left(a_{1}+c_{1}\right)\left(\alpha_{2}+\gamma_{2}\right)-\left(a_{2}+c_{2}\right)\left(\alpha_{1}+\gamma_{1}\right)=0 \tag{9}\\
& \left(a_{1}+c_{1}\right)\left(\beta_{2}+\delta_{2}\right)-\left(a_{2}+c_{2}\right)\left(\beta_{1}+\delta_{1}\right)=0
\end{align*}
$$

Further, ξ being pseudoparallel in $P(M)$, we have

$$
\begin{equation*}
\left(\alpha_{1}+\gamma_{1}\right)\left(\beta_{2}+\delta_{2}\right)-\left(\beta_{1}+\delta_{1}\right)\left(\alpha_{2}+\gamma_{2}\right)=0 \tag{10}
\end{equation*}
$$

and, by differentiation of (9), when using (4), (5), (10), we obtain $k=0$ on M and

$$
\begin{align*}
& \left(a_{1}+c_{1}\right)\left(A_{2}+C_{2}+c_{2} K\right)-\left(a_{2}+c_{2}\right)\left(A_{1}+C_{1}+c_{1} K\right)=0, \tag{11}\\
& \left(a_{1}+c_{1}\right)\left(B_{2}+D_{2}\right)-\left(a_{2}+c_{2}\right)\left(B_{1}+D_{1}\right)=0, \\
& \left(a_{1}+c_{1}\right)\left(C_{2}+E_{2}+a_{2} K\right)-\left(a_{2}+c_{2}\right)\left(C_{1}+E_{1}+a_{1} K\right)=0 .
\end{align*}
$$

2. Consider a real-valued function F on M. We define its covariant derivatives $F_{i}, F_{i j}=F_{j i}(i, j=1,2)$ with respect to the given field of orthonormal frames over U_{α} by means of the formulas

$$
\begin{equation*}
\mathrm{d} F=F_{1} \omega^{1}+F_{2} \omega^{2}, \tag{12}
\end{equation*}
$$

$$
\mathrm{d} F_{1}-F_{2} \omega_{1}^{2}=F_{11} \omega^{1}+F_{12} \omega^{2}, \quad \mathrm{~d} F_{2}+F_{1} \omega_{1}^{2}=F_{12} \omega^{1}+F_{22} \omega^{2} .
$$

Thus, for the mean curvature H and the Gauss curvature K of M introduced by (6), (8), respectively, we have, according to (12) and using (4), (5),

$$
\begin{align*}
\frac{1}{2} H_{11} & =\left(a_{1}+c_{1}\right)\left(A_{1}+C_{1}+c_{1} K+\frac{1}{2} b_{2} k\right)+ \tag{14}\\
& +\left(a_{2}+c_{2}\right)\left(A_{2}+C_{2}+c_{2} K-\frac{1}{2} b_{1} k\right)+\left(\alpha_{1}+\gamma_{1}\right)^{2}+\left(\alpha_{2}+\gamma_{2}\right)^{2}, \\
\frac{1}{2} H_{12}= & \left(a_{1}+c_{1}\right)\left(B_{1}+D_{1}\right)+\left(a_{2}+c_{2}\right)\left(B_{2}+D_{2}\right)+ \\
& +\left(\alpha_{1}+\gamma_{1}\right)\left(\beta_{1}+\delta_{1}\right)+\left(\alpha_{2}+\gamma_{2}\right)\left(\beta_{2}+\delta_{2}\right), \\
\frac{1}{2} H_{22} & =\left(a_{1}+c_{1}\right)\left(C_{1}+E_{1}+a_{1} K-\frac{1}{2} b_{2} k\right)+ \\
& +\left(a_{2}+c_{2}\right)\left(C_{2}+E_{2}+a_{2} K+\frac{1}{2} b_{1} k\right)+\left(\beta_{1}+\delta_{1}\right)^{2}+\left(\beta_{2}+\delta_{2}\right)^{2} ; \\
K_{1} & =\left(c_{1} \alpha_{1}-2 b_{1} \beta_{1}+a_{1} \gamma_{1}\right)+\left(c_{2} \alpha_{2}-2 b_{2} \beta_{2}+a_{2} \gamma_{2}\right), \tag{15}\\
K_{2} & =\left(c_{1} \beta_{1}-2 b_{1} \gamma_{1}+a_{1} \delta_{1}\right)+\left(c_{2} \beta_{2}-2 b_{2} \gamma_{2}+a_{2} \delta_{2}\right) ; \\
K_{11} & =\left(c_{1} A_{1}-2 b_{1} B_{1}+a_{1} C_{1}\right)+\left(c_{2} A_{2}-2 b_{2} B_{2}+a_{2} C_{2}\right)+ \tag{16}\\
& +2\left(\alpha_{1} \gamma_{1}-\beta_{1}^{2}\right)+2\left(\alpha_{2} \gamma_{2}-\beta_{2}^{2}\right)+\frac{3}{2}\left(a_{1} b_{2}-b_{1} a_{2}\right) k+ \\
& +\left[\left(a_{1} c_{1}-2 b_{1}^{2}\right)+\left(a_{2} c_{2}-2 b_{2}^{2}\right)\right] K, \\
K_{12} & =\left(c_{1} B_{1}-2 b_{1} C_{1}+a_{1} D_{1}\right)+\left(c_{2} B_{2}-2 b_{2} C_{2}+a_{2} D_{2}\right)+ \\
& +\left(\alpha_{1} \delta_{1}-\beta_{1} \gamma_{1}\right)+\left(\alpha_{2} \delta_{2}-\beta_{2} \gamma_{2}\right)- \\
& -\left[\left(a_{1}+c_{1}\right) b_{1}+\left(a_{2}+c_{2}\right) b_{2}\right] K,
\end{align*}
$$

$$
\begin{aligned}
K_{22} & =\left(c_{1} C_{1}-2 b_{1} D_{1}+a_{1} E_{1}\right)+\left(c_{2} C_{2}-2 b_{2} D_{2}+a_{2} E_{2}\right)+ \\
& +2\left(\beta_{1} \delta_{1}-\gamma_{1}^{2}\right)+2\left(\beta_{2} \delta_{2}-\gamma_{2}^{2}\right)+\frac{3}{2}\left(b_{1} c_{2}-c_{1} b_{2}\right) k+ \\
& +\left[\left(a_{1} c_{1}-2 b_{1}^{2}\right)+\left(a_{2} c_{2}-2 b_{2}^{2}\right)\right] K .
\end{aligned}
$$

To abbreviate the following formulas, let us introduce the functions

$$
\begin{gather*}
\mathscr{H}_{11}=H H_{11}-\frac{1}{2} H_{1}^{2}, \quad \mathscr{H}_{12}=H H_{12}-\frac{1}{2} H_{1} H_{2}, \tag{17}\\
\mathscr{H}_{22}=H H_{22}-\frac{1}{2} H_{2}^{2}
\end{gather*}
$$

and

$$
\begin{gather*}
\mathscr{A}=a_{1}\left(a_{1}+c_{1}\right)+a_{2}\left(a_{2}+c_{2}\right), \quad \mathscr{B}=b_{1}\left(a_{1}+c_{1}\right)+b_{2}\left(a_{2}+c_{2}\right), \tag{18}\\
\mathscr{C}=c_{1}\left(a_{1}+c_{1}\right)+c_{2}\left(a_{2}+c_{2}\right) .
\end{gather*}
$$

It is clear that, under this notation,

$$
\begin{equation*}
H=\mathscr{A}+\mathscr{C} . \tag{19}
\end{equation*}
$$

In what follows, we are going to prove

Lemma 1. The functions

$$
\begin{equation*}
I=(\mathscr{A}-\mathscr{C})\left(\mathscr{H}_{11}-\mathscr{H}_{22}\right)+4 \mathscr{B}_{12}, \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
J=\mathscr{C} \mathscr{H}_{11}-2 \mathscr{B} \mathscr{H}_{12}+\mathscr{A} \mathscr{H}_{22}-2 H^{2}\left(K_{11}+K_{22}\right) \tag{21}
\end{equation*}
$$

are invariant on M.
Proof. Consider another field $\left\{M ; \bar{v}_{1}, \bar{v}_{2}, \bar{v}_{3}, \bar{v}_{4}\right\}$ of tangent frames, and denote all expressions related to these frames by a bar. Let

$$
\begin{gather*}
v_{1}=\varepsilon_{1} \cos \varrho \cdot \bar{v}_{1}-\sin \varrho \cdot \bar{v}_{2}, \quad v_{3}=\varepsilon_{2} \cos \sigma \cdot \bar{v}_{3}-\sin \sigma \cdot \bar{v}_{4}, \tag{22}\\
v_{2}=\varepsilon_{1} \sin \varrho \cdot \bar{v}_{1}+\cos \varrho \cdot \bar{v}_{2}, \quad v_{4}=\varepsilon_{2} \sin \sigma \cdot \bar{v}_{3}+\cos \sigma \cdot \bar{v}_{4}, \\
\varepsilon_{1}^{2}=\varepsilon_{2}^{2}=1 .
\end{gather*}
$$

By easy calculations, see [1], we obtain

$$
\begin{gather*}
\bar{\omega}^{1}=\varepsilon_{1}\left(\cos \varrho \cdot \omega^{1}+\sin \varrho \cdot \omega^{2}\right), \quad \bar{\omega}^{2}=-\sin \varrho \cdot \omega^{1}+\cos \varrho \cdot \omega^{2} ; \tag{23}\\
\bar{\omega}_{1}^{2}=\varepsilon_{1}\left(\mathrm{~d} \varrho+\omega_{1}^{2}\right) \tag{24}
\end{gather*}
$$

and further

$$
\begin{align*}
& \bar{a}_{1}=\varepsilon_{2}\left(R_{1} \cos \sigma+R_{2} \sin \sigma\right) \tag{25}\\
& \bar{b}_{1}=-\varepsilon_{1} \varepsilon_{2}\left(S_{1} \cos \sigma+S_{2} \sin \sigma\right)
\end{align*}
$$

$$
\begin{aligned}
& \bar{c}_{1}=\varepsilon_{2}\left(T_{1} \cos \sigma+T_{2} \sin \sigma\right), \\
& \bar{a}_{2}=-\left(R_{1} \sin \sigma-R_{2} \cos \sigma\right), \\
& \bar{b}_{2}=\varepsilon_{1}\left(S_{1} \sin \sigma-S_{2} \cos \sigma\right), \\
& \bar{c}_{2}=-\left(T_{1} \sin \sigma-T_{2} \cos \sigma\right)
\end{aligned}
$$

where

$$
\begin{align*}
& R_{i}=a_{i} \cos ^{2} \varrho+2 b_{i} \sin \varrho \cos \varrho+c_{i} \sin ^{2} \varrho, \tag{26}\\
& S_{i}=a_{i} \sin \varrho \cos \varrho+b_{i}\left(\sin ^{2} \varrho-\cos ^{2} \varrho\right)-c_{i} \sin \varrho \cos \varrho, \\
& T_{i}=a_{i} \sin ^{2} \varrho-2 b_{i} \sin \varrho \cos \varrho+c_{i} \cos ^{2} \varrho \quad(i=1,2) .
\end{align*}
$$

Because of (12) and (23), we get from $\bar{H}=H$

$$
\begin{align*}
& \bar{H}_{1}=\varepsilon_{1}\left(H_{1} \cos \varrho+H_{2} \sin \varrho\right), \tag{27}\\
& \bar{H}_{2}=-H_{1} \sin \varrho+H_{2} \cos \varrho .
\end{align*}
$$

Differentiating these equations and using (24), (27) and the relations of the form (12) corresponding to H, \bar{H}, we obtain

$$
\begin{align*}
& \bar{H}_{11}=H_{11} \cos ^{2} \varrho+2 H_{12} \sin \varrho \cos \varrho+H_{22} \sin ^{2} \varrho, \tag{28}\\
& \bar{H}_{12}=-\varepsilon_{1}\left(H_{11}-H_{22}\right) \sin \varrho \cos \varrho+\varepsilon_{1} H_{12}\left(\cos ^{2} \varrho-\sin ^{2} \varrho\right), \\
& \bar{H}_{22}=H_{11} \sin ^{2} \varrho-2 H_{12} \sin \varrho \cos \varrho+H_{22} \cos ^{2} \varrho .
\end{align*}
$$

In the same way we get

$$
\begin{align*}
& \bar{K}_{11}=K_{11} \cos ^{2} \varrho+2 K_{12} \sin \varrho \cos \varrho+K_{22} \sin ^{2} \varrho, \tag{29}\\
& \bar{K}_{12}=-\varepsilon_{1}\left(K_{11}-K_{22}\right) \sin \varrho \cos \varrho+\varepsilon_{1} K_{12}\left(\cos ^{2} \varrho-\sin ^{2} \varrho\right), \\
& \bar{K}_{22}=K_{11} \sin ^{2} \varrho-2 K_{12} \sin \varrho \cos \varrho+K_{22} \cos ^{2} \varrho .
\end{align*}
$$

Further, from $\bar{H}=H,(27)$ and (28) it follows that

$$
\begin{align*}
& \overline{\mathscr{H}}_{11}=\mathscr{H}_{11} \cos ^{2} \varrho+2 \mathscr{H}_{12} \sin \varrho \cos \varrho+\mathscr{H}_{22} \sin ^{2} \varrho \tag{30}\\
& \overline{\mathscr{H}}_{12}=-\varepsilon_{1}\left(\mathscr{H}_{11}-\mathscr{H}_{22}\right) \sin \varrho \cos \varrho+\varepsilon_{1} \mathscr{H}_{12}\left(\cos ^{2} \varrho-\sin ^{2} \varrho\right), \\
& \overline{\mathscr{H}}_{22}=\mathscr{H}_{11} \sin ^{2} \varrho-2 \mathscr{H}_{12} \sin \varrho \cos \varrho+\mathscr{H}_{22} \cos ^{2} \varrho
\end{align*}
$$

and from (25), (26) we obtain

$$
\begin{align*}
& \overline{\mathscr{A}}=\mathscr{A} \cos ^{2} \varrho+2 \mathscr{B} \sin \varrho \cos \varrho+\mathscr{C} \sin ^{2} \varrho, \tag{31}\\
& \overline{\mathscr{B}}=-\varepsilon_{1}(\mathscr{A}-\mathscr{C}) \sin \varrho \cos \varrho+\varepsilon_{1} \mathscr{B}\left(\cos ^{2} \varrho-\sin ^{2} \varrho\right), \\
& \overline{\mathscr{C}}=\mathscr{A} \sin ^{2} \varrho-2 \mathscr{B} \sin \varrho \cos \varrho+\mathscr{C} \cos ^{2} \varrho .
\end{align*}
$$

According to (20), (21), the relations (29), (30) and (31) yield the assertion.

Remark. By direct calculations we get, ξ being pseudoparallel,

$$
\begin{gather*}
J=4 H^{2}\left[\gamma_{1}\left(\gamma_{1}-\alpha_{1}\right)+\gamma_{2}\left(\gamma_{2}-\alpha_{2}\right)+\beta_{1}\left(\beta_{1}-\delta_{1}\right)+\beta_{2}\left(\beta_{2}-\delta_{2}\right)\right]+ \tag{32}\\
+2 H^{2}\left[\left(a_{1}-c_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}+4\left(b_{1}^{2}+b_{2}^{2}\right)\right] K
\end{gather*}
$$

so that J does not depend on $A_{i}, \ldots, E_{i}(i=1,2)$. In fact, it is possible to show that, up to a multiplicative factor, J is the unique function with this property which can be obtained by the elimination of $A_{i}, \ldots, E_{i}(i=1,2)$ from the equations (11), (14), (16).
3. In this section we are going to give some characterizations of the sphere in E^{4}. They will be proved by means of the maximum principle used in this form:

Let M be a surface in $E^{4}, \partial M$ its boundary. Let F be a real-valued function on M and $F_{i}, F_{i j}(i, j=1,2)$ its covariant derivatives defined by (12). Let (1) $F \geqq 0$ on M, (2) $F=0$ on ∂M, (3) on M, let F satisfy the equation

$$
a_{11} F_{11}+2 a_{12} F_{12}+a_{22} F_{22}+a_{1} F_{1}+a_{2} F_{2}+a_{0} F=a
$$

where $a_{0} \leqq 0, a \geqq 0$ and the quadratic form $a_{i j} x^{i} x^{j}$ is positive definite. Then $F=0$ on M.

In what follows, we use the function

$$
\begin{equation*}
f=H-4 K=\left(a_{1}-c_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}+4 b_{1}^{2}+4 b_{2}^{2} \tag{33}
\end{equation*}
$$

which satisfies obviously $f \geqq 0$ on M and $f=0$ at the umbilical points $\left(a_{1}-c_{1}=0\right.$, $a_{2}-c_{2}=0, b_{1}=0, b_{2}=0$) of M.

Using (4), (5) and (12), we easily see that

$$
\begin{aligned}
& f_{1}=2\left(a_{1}-c_{1}\right)\left(\alpha_{1}-\gamma_{1}\right)+2\left(a_{2}-c_{2}\right)\left(\alpha_{2}-\gamma_{2}\right)+8\left(b_{1} \beta_{1}+b_{2} \beta_{2}\right), \\
& f_{2}=2\left(a_{1}-c_{1}\right)\left(\beta_{1}-\delta_{1}\right)+2\left(a_{2}-c_{2}\right)\left(\beta_{2}-\delta_{2}\right)+8\left(b_{1} \gamma_{1}+b_{2} \gamma_{2}\right)
\end{aligned}
$$

and

$$
\begin{align*}
f_{11} & =2\left(a_{1}-c_{1}\right)\left(A_{1}-C_{1}\right)+2\left(a_{2}-c_{2}\right)\left(A_{2}-C_{2}\right)+8\left(b_{1} B_{1}+b_{2} B_{2}\right)+ \tag{34}\\
& +2\left(\alpha_{1}-\gamma_{1}\right)^{2}+2\left(\alpha_{2}-\gamma_{2}\right)^{2}+8\left(\beta_{1}^{2}+\beta_{2}^{2}\right)-\left[k+4\left(a_{1} b_{2}-b_{1} a_{2}\right)\right] k- \\
& -2\left[\left(a_{1}-c_{1}\right) c_{1}+\left(a_{2}-c_{2}\right) c_{2}-4\left(b_{1}^{2}+b_{2}^{2}\right)\right] K, \\
f_{12} & =2\left(a_{1}-c_{1}\right)\left(B_{1}-D_{1}\right)+2\left(a_{2}-c_{2}\right)\left(B_{2}-D_{2}\right)+8\left(b_{1} C_{1}+b_{2} C_{2}\right)+ \\
& +2\left(\alpha_{1}-\gamma_{1}\right)\left(\beta_{1}-\delta_{1}\right)+2\left(\alpha_{2}-\gamma_{2}\right)\left(\beta_{2}-\delta_{2}\right)+8\left(\beta_{1} \gamma_{1}+\beta_{2} \gamma_{2}\right)+ \\
& +4\left[\left(a_{1}+c_{1}\right) b_{1}+\left(a_{2}+c_{2}\right) b_{2}\right] K, \\
f_{22} & =2\left(a_{1}-c_{1}\right)\left(C_{1}-E_{1}\right)+2\left(a_{2}-c_{2}\right)\left(C_{2}-E_{2}\right)+8\left(b_{1} D_{1}+b_{2} D_{2}\right)+ \\
& +2\left(\beta_{1}-\delta_{1}\right)^{2}+2\left(\beta_{2}-\delta_{2}\right)^{2}+8\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)-\left[k+4\left(b_{1} c_{2}-c_{1} b_{2}\right)\right] k+ \\
& +2\left[\left(a_{1}-c_{1}\right) a_{1}+\left(a_{2}-c_{2}\right) a_{2}+4\left(b_{1}^{2}+b_{2}^{2}\right)\right] K .
\end{align*}
$$

Now, we formulate

Theorem 1. Let M be a surface in E^{4} and ∂M its boundary. Let
(i) $K>0$ on M;
(ii) ξ be pseudoparallel in $P(M)$;
(iii) $(\mathscr{A}-\mathscr{C})\left(\mathscr{H}_{11}-\mathscr{H}_{22}\right)+4 \mathscr{B}_{12} \geqq 0$ on M;
(iv) ∂M consist of umbilical points.

Then M is part of a 2-dimensional sphere in E^{4}.
Proof. The condition (ii) is expressed by (9) and implies $k=0$ on M. Consider the equations (9) and (13). As $H \neq 0$, there exists a unique solution of the system

$$
\begin{array}{ll}
\alpha_{1}+\gamma_{1}=\frac{1}{2}\left(a_{1}+c_{1}\right) H^{-1} H_{1}, & \beta_{1}+\delta_{1}=\frac{1}{2}\left(a_{1}+c_{1}\right) H^{-1} H_{2}, \\
\alpha_{2}+\gamma_{2}=\frac{1}{2}\left(a_{2}+c_{2}\right) H^{-1} H_{1}, & \beta_{2}+\delta_{2}=\frac{1}{2}\left(a_{2}+c_{2}\right) H^{-1} H_{2} .
\end{array}
$$

Hence

$$
\begin{align*}
\frac{1}{4} H^{-1} H_{1}^{2} & =\left(\alpha_{1}+\gamma_{1}\right)^{2}+\left(\alpha_{2}+\gamma_{2}\right)^{2}, \tag{35}\\
\frac{1}{4} H^{-1} H_{1} H_{2} & =\left(\alpha_{1}+\gamma_{1}\right)\left(\beta_{1}+\delta_{1}\right)+\left(\alpha_{2}+\gamma_{2}\right)\left(\beta_{2}+\delta_{2}\right), \\
\frac{1}{4} H^{-1} H_{2}^{2} & =\left(\beta_{1}+\delta_{1}\right)^{2}+\left(\beta_{2}+\delta_{2}\right)^{2}
\end{align*}
$$

and using these relations and $k=0$, the equations (14) have the form, according to (17),

$$
\begin{align*}
& \left(a_{1}+c_{1}\right)\left(A_{1}+C_{1}+c_{1} K\right)+\left(a_{2}+c_{2}\right)\left(A_{2}+C_{2}+c_{2} K\right)=\frac{1}{2} H^{-1} \mathscr{H}_{11}, \tag{36}\\
& \left(a_{1}+c_{1}\right)\left(B_{1}+D_{1}\right)+\left(a_{2}+c_{2}\right)\left(B_{2}+D_{2}\right)=\frac{1}{2} H^{-1} \mathscr{H}_{12}, \\
& \left(a_{1}+c_{1}\right)\left(C_{1}+E_{1}+a_{1} K\right)+\left(a_{2}+c_{2}\right)\left(C_{2}+E_{2}+a_{2} K\right)=\frac{1}{2} H^{-1} \mathscr{H}_{22} .
\end{align*}
$$

The system of equations (11) and (36) has, because of $H \neq 0$ and (35), the only solution

$$
\begin{align*}
& A_{1}+C_{1}=\frac{1}{2}\left(a_{1}+c_{1}\right) H^{-2} \mathscr{H}_{11}-c_{1} K, \tag{37}\\
& B_{1}+D_{1}=\frac{1}{2}\left(a_{1}+c_{1}\right) H^{-2} \mathscr{H}_{12}, \\
& C_{1}+E_{1}=\frac{1}{2}\left(a_{1}+c_{1}\right) H^{-2} \mathscr{H}_{22}-a_{1} K, \\
& A_{2}+C_{2}=\frac{1}{2}\left(a_{2}+c_{2}\right) H^{-2} \mathscr{H}_{11}-c_{2} K, \\
& B_{2}+D_{2}=\frac{1}{2}\left(a_{2}+c_{2}\right) H^{-2} \mathscr{H}_{12}, \\
& C_{2}+E_{2}=\frac{1}{2}\left(a_{2}+c_{2}\right) H^{-2} \mathscr{H}_{22}-a_{2} K .
\end{align*}
$$

Thus we have

$$
\begin{align*}
& A_{1}-E_{1}=\frac{1}{2}\left(a_{1}+c_{1}\right) H^{-2}\left(\mathscr{H}_{11}-\mathscr{H}_{22}\right)+\left(a_{1}-c_{1}\right) K \tag{38}\\
& B_{1}+D_{1}=\frac{1}{2}\left(a_{1}+c_{1}\right) H^{-2} \mathscr{H}_{12} \\
& A_{2}-E_{2}=\frac{1}{2}\left(a_{2}+c_{2}\right) H^{-2}\left(\mathscr{H}_{11}-\mathscr{H}_{22}\right)+\left(a_{2}-c_{2}\right) K \\
& B_{2}+D_{2}=\frac{1}{2}\left(a_{2}+c_{2}\right) H^{-2} \mathscr{H}_{12} .
\end{align*}
$$

Now, consider the function f defined by (33). According to (34), we have

$$
\begin{equation*}
f_{11}+f_{22}-2\left[f+4\left(b_{1}^{2}+b_{2}^{2}\right)\right] K=2 V+2 \Phi \tag{39}
\end{equation*}
$$

where

$$
\begin{align*}
V= & \left(\alpha_{1}-\gamma_{1}\right)^{2}+\left(\beta_{1}-\delta_{1}\right)^{2}+\left(\alpha_{2}-\gamma_{2}\right)^{2}+\left(\beta_{2}-\delta_{2}\right)^{2}+ \tag{40}\\
& +4\left(\beta_{1}^{2}+\gamma_{1}^{2}+\beta_{2}^{2}+\gamma_{2}^{2}\right)
\end{align*}
$$

$$
\begin{align*}
\Phi= & \left(a_{1}-c_{1}\right)\left(A_{1}-E_{1}\right)+\left(a_{2}-c_{2}\right)\left(A_{2}-E_{2}\right)+ \tag{41}\\
& +4 b_{1}\left(B_{1}+D_{1}\right)+4 b_{2}\left(B_{2}+D_{2}\right)
\end{align*}
$$

Inserting (38) into (41) we get

$$
\Phi=\frac{1}{2} H^{-2}(\mathscr{A}-\mathscr{C})\left(\mathscr{H}_{11}-\mathscr{H}_{22}\right)+2 H^{-2} \mathscr{B}_{12}+\left[\left(a_{1}-c_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}\right] K
$$

and thus, according to (20),

$$
\Phi=\frac{1}{2} H^{-2} I+\left[\left(a_{1}-c_{1}\right)^{2}+\left(a_{2}-c_{2}\right)^{2}\right] K
$$

so that the equation (39) is of the form

$$
\begin{equation*}
f_{11}+f_{22}-4 K f=2 V+H^{-2} I \tag{42}
\end{equation*}
$$

It is $a_{0}=-4 K<0$ because of (i), $a=2 V+H^{-2} I \geqq 0$ according to (40) and (ii), and the quadratic form corresponding to $f_{11}+f_{22}$ is positive definite. Thus, the assumptions of the maximum principle are satisfied, and we have $f=0$ on M, i.e. each point of M is umbilical.

Remark. Let $V_{1}, V_{2} \in T(M)$ be orthonormal vector fields. Choose orthonormal frames on each U_{α} in such a way that $v_{1}=V_{1}, v_{2}=V_{2}$. Define normal vector fields V_{11}, V_{12}, V_{22} by the relations

$$
V_{11}=\left(V_{1} V_{1}\right)^{N}, \quad V_{12}=\left(V_{1} V_{2}\right)^{N}, \quad V_{22}=\left(V_{2} V_{2}\right)^{N}
$$

$(X)^{N}$ denoting the normal component of the vector field X. Then it is easy to see that

$$
\begin{equation*}
V_{11}=a_{1} v_{3}+a_{2} v_{4}, \quad V_{12}=b_{1} v_{3}+b_{2} v_{4}, \quad V_{22}=c_{1} v_{3}+c_{2} v_{4} \tag{43}
\end{equation*}
$$

Thus, the condition (iii) of Theorem 1 can be written, using (18) and (43), in the form

$$
\begin{align*}
& \left(\mathscr{H}_{11}-\mathscr{H}_{22}\right)\left\langle V_{11}-V_{22}, V_{11}+V_{22}\right\rangle+ \tag{iii'}\\
& +4 \mathscr{H}_{12}\left\langle V_{12}, V_{11}+V_{22}\right\rangle \geqq 0 \quad \text { on } \quad M .
\end{align*}
$$

The following theorem is a generalization of the preceding result. To establish it, we use the already mentioned property of the invariant J that this function does not contain $A_{i}, \ldots, E_{i}(i=1,2)$.

Theorem 2. Let M be a surface in $E^{4}, \partial M$ its boundary. Let
(i) $K>0$ on M;
(ii) ξ be pseudoparallel in $P(M)$;
(iii) $(2-\lambda)\left[(\mathscr{A}-\mathscr{C})\left(\mathscr{H}_{11}-\mathscr{H}_{22}\right)+4 \mathscr{B}_{12}\right]+\lambda H\left[\left(\mathscr{H}_{11}+\mathscr{H}_{22}\right)-\right.$ $\left.-4 H\left(K_{11}+K_{22}\right)\right] \geqq 0$ on $M, \lambda: M \rightarrow \boldsymbol{R}$ being a function with $|\lambda| \leqq 2$;
(iv) ∂M consist of umbilical points.

Then M is part of a 2-dimensional sphere in E^{4}.
Proof. Following the proof of Theorem 1 we have the equation (42). From (32) we obtain, using (33),

$$
2 K f=H^{-2} J-4\left[\gamma_{1}\left(\gamma_{1}-\alpha_{1}\right)+\beta_{1}\left(\beta_{1}-\delta_{1}\right)+\gamma_{2}\left(\gamma_{2}-\alpha_{2}\right)+\beta_{2}\left(\beta_{2}-\delta_{2}\right)\right] .
$$

Multiplying this equation by a function λ and adding it to (42), we get

$$
\begin{equation*}
f_{11}+f_{22}-2(2-\lambda) K f=H^{-2}(I+\lambda J)+2 W(\lambda) \tag{44}
\end{equation*}
$$

where

$$
W(\lambda)=V-2 \lambda\left[\gamma_{1}\left(\gamma_{1}-\alpha_{1}\right)+\beta_{1}\left(\beta_{1}-\delta_{1}\right)+\gamma_{2}\left(\gamma_{2}-\alpha_{2}\right)+\beta_{2}\left(\beta_{2}-\delta_{2}\right)\right]
$$

and further, according to (40),

$$
\begin{aligned}
W(\lambda) & =\left[\alpha_{1}^{2}-2(1-\lambda) \alpha_{1} \gamma_{1}\right]+\left[\delta_{1}^{2}-2(1-\lambda) \beta_{1} \delta_{1}\right]+(5-2 \lambda)\left(\beta_{1}^{2}+\gamma_{1}^{2}\right)+ \\
& +\left[\alpha_{2}^{2}-2(1-\lambda) \alpha_{2} \gamma_{2}\right]+\left[\delta_{2}^{2}-2(1-\lambda) \beta_{2} \delta_{2}\right]+(5-2 \lambda)\left(\beta_{2}^{2}+\gamma_{2}^{2}\right) .
\end{aligned}
$$

Hence

$$
\begin{align*}
W(\lambda) & =\left[\alpha_{1}-(1-\lambda) \gamma_{1}\right]^{2}+\left[\delta_{1}-(1-\lambda) \beta_{1}\right]^{2}+\left(4-\lambda^{2}\right)\left(\beta_{1}^{2}+\gamma_{1}^{2}\right)+ \tag{45}\\
& +\left[\alpha_{2}-(1-\lambda) \gamma_{2}\right]^{2}+\left[\delta_{2}-(1-\lambda) \beta_{2}\right]^{2}+\left(4-\lambda^{2}\right)\left(\beta_{2}^{2}+\gamma_{2}^{2}\right)
\end{align*}
$$

so that, λ being a function such that $|\lambda| \leqq 2$, we conclude $W(\lambda) \geqq 0$. As

$$
\begin{gather*}
(2-\lambda)\left[(\mathscr{A}-\mathscr{C})\left(\mathscr{H}_{11}-\mathscr{H}_{22}\right)+4 \mathscr{B}_{12}\right]+ \tag{46}\\
+\lambda H\left[\left(\mathscr{H}_{11}+\mathscr{H}_{22}\right)-4 H\left(K_{11}+K_{22}\right)\right]=2(I+\lambda J),
\end{gather*}
$$

the equation (44) satisfies all the assumptions of the condition (3) of the maximum principle. Thus, for $|\lambda| \leqq 2, f=0$ on M and the proof is complete.

Remark. It is easy to see that Theorem 2 contains as a special case, namely for $\lambda=0$, the assertion of Theorem 1.

Corollary 1. Let M be a surface in E^{4} and ∂M its boundary. Let the conditions (i), (ii) and (iv) of Theorem 2 be satisfied on M. Let
(iii) $\mathscr{A} \mathscr{H}_{11}+2 \mathscr{B} \mathscr{H}_{12}+\mathscr{C} \mathscr{H}_{22}-2 H^{2}\left(K_{11}+K_{22}\right) \geqq 0$ on M.

Then M is part of a 2-dimensional sphere in E^{4}.
Proof. The assertion follows from Theorem 2 when putting $\lambda=1$ and using (19).
Remark. When using the notation (43), we can write the condition (iii) of Corollary 1 in the form

$$
\begin{align*}
\mathscr{H}_{11}\left\langle V_{11}, V_{11}+V_{22}\right\rangle+2 \mathscr{H}_{12}\left\langle V_{12}, V_{11}+V_{22}\right\rangle+ \tag{iii'}\\
+\mathscr{H}_{22}\left\langle V_{22}, V_{11}+V_{22}\right\rangle-2 H^{2}\left(K_{11}+K_{22}\right) \geqq 0 \quad \text { on } \quad M .
\end{align*}
$$

Corollary 2. Let M be a surface in $E^{4}, \partial M$ its boundary, M having the properties (ii) and (iv) of Theorem 2. Let

$$
\begin{equation*}
\mathscr{H}_{11}+\mathscr{H}_{22}-4 H\left(K_{11}+K_{22}\right) \geqq 0 \quad \text { on } \quad M \tag{1}
\end{equation*}
$$

or
(iii ${ }_{2}$)

$$
H_{11}+H_{22}-4\left(K_{11}+K_{22}\right) \geqq 0 \quad \text { on } \quad M .
$$

Then M is part of a 2-dimensional sphere in E^{4}.
Proof. The corollary with the supposition (iii ${ }_{1}$) follows immediately from Theorem 2 for $\lambda=2$. Thus, we are going to prove it when considering that (iii ${ }_{2}$) is true.

Putting $\lambda=2$ into the assertion of Theorem 2, we get from (44)

$$
f_{11}+f_{22}=H^{-2}(I+2 J)+2 W(2)
$$

where, according to (45),

$$
W(2)=\left(\alpha_{1}+\gamma_{1}\right)^{2}+\left(\beta_{1}+\delta_{1}\right)^{2}+\left(\alpha_{2}+\gamma_{2}\right)^{2}+\left(\beta_{2}+\delta_{2}\right)^{2}
$$

and, because of (46),

$$
I+2 J=H\left[\left(\mathscr{H}_{11}+\mathscr{H}_{22}\right)-4 H\left(K_{11}+K_{22}\right)\right] .
$$

Further, using (35) implied by the condition (ii), we obtain

$$
W(2)=\frac{1}{4} H^{-1}\left(H_{1}^{2}+H_{2}^{2}\right)
$$

and hence, according to (17),

$$
H^{-2}(I+2 J)+2 W(2)=H_{11}+H_{22}-4\left(K_{11}+K_{22}\right) .
$$

This completes our proof.
Remark. In fact, a little more general theorem involving the condition (iii ${ }_{2}$) of Corollary 2 is valid. As proved in [2], we can omit the assumption of the pseudoparallelness of the mean curvature vector field ξ to get the same inequality on M.

References

[1] K. Svoboda: Characterizations of the sphere in E^{4} by means of the pseudoparallel mean curvature vector field. Čas. pěst. matem. 30 (1980).
[2] K. Svoboda: Remark on surfaces in E^{4} satisfying certain relations between covariant derivatives of the mean and Gauss curvatures. Comm. math. Univ. Car. 19, 4 (1978), p. 619-626.

Author's address: 60200 Brno, Gorkého 13, ČSSR (Katedra matematiky FS VUT).

