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GENERALIZATIONS OF THE RIEMANN-LEBESGUE 
AND CANTOR-LEBESGUE LEMMAS 

CHARLES KAHANE, Nashville 

(Received April 14, 1978) 

I. Introduction. The purpose of this paper is to consider the problem of evaluating 
limits of the type 

(0.1) lim {f{t)ß{h) dt 

under various assumptions regarding the functions / and ß and the interval /. Perhaps 
the most famihar example of such a limit occurs in the Riemann-Lebesgue lemma 
v^hich asserts that 

(0.2) lim f{t) sin (Яг) dt = 0 

provided that / is an integrable function over the interval I; and so our results may 
be viev êd as a generalization of that well-known lemma. These results, for / infinité 
and finite, will be stated and proved in Sections I and 2, respectively. We will then 
apply them in Section 3 to establish a generalization of the Cantor-Lebesgue lemma. 
In the final section of the paper we will briefly consider the evaluation of (0.1) in the 
higher dimensional case. 

1. Infinite Intervals. We begin with the following 

Theorem 1. Let ß e L^[0, oo), then the necessary and sufficient condition for 

(1.1) lim 
Я->- + оо 

fit)ßiXt)dt 

to exist for every function f e Li[0, oo) is that ß have a mean value M{ß) in the 
sense that 

(1.2) M{ß)= lim l^Cß{t)dt 
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exist. This being the case, the limit (l.l) is then given by the formula 

(1.3) lim rf{t) ß{h) dt = ( ffit) dt] M{ß). 
A- + 00J0 Vjo / 

Corollary 1. Let ß e L^(—co, + 00), then the necessary and sufficient condition for 

(1.4) lim f ^f{t)ß{lt)dt 
-̂* + °° J-00 

to exist for every function f in Li(—00, +00) is that the functions 

ß+{t) = ß{t) for t ^ 0 , ß.{t) = ß{-t) for t^O, 

which belong to L^[0, +00), have mean values 

(1.5) M{ß^)= lim i f i ß ^ O d f -
Г-̂  + оо TJo 

When these mean values exist, the limit (1.4) is given by 
/•+00 / /»+00 \ / r ^ ' \ 

(1.6) lim f{t) ß{kt) dt = [\ f{t) dt] M{ß^) + { f{t) dt] M{ß,) . 
^"^ + « > J - o o V J o / \ J - o o / 

Remarks. Clearly Theorem 1 and Corollary 1 contain the usual statement for 
the evaluation of the limit (0.2) in the Riemann-Lebesgue lemma. We mention some 
other well-known limits which are obviously subsumed under the Theorem or 
Corollary 

lim Г/(г) |sin Ц dt = -[ f{t) dt 

due to FEJÉR [3]; more generally, along the same lines, assuming/ and ß to be pe
riodic functions of period In with / integrable and ß bounded 

which appears in ZYGMUND [7, p. 49]. A further example is 

lim re-^'f{t) dr = 0 
A-* + O O J Q 

which is famiHar from Laplace transform theory; this generahzes as 

/»00 

lim a{Xt)f{i)dt = ^ 
A-̂  + oo J o 
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provided that a(f)-> 0 as t-^ +co. Some additional examples can be found in 
POLYA-SZEGÖ [5]. 

P r o o f of T h e o r e m 1. According to the principle of uniform boundedness, for 
the limit ( l . l ) to exist for every / G Li[0, oo) it is first of all necessary that J J f(t) . 
. ß{Xi) dt, regarded as a collection of linear functionals on Li[0, oo), be uniformly 
bounded for A > 0. But this is certainly the case since the estimate 

J: f{t)ß{h)dt\ uWflWßU ( ^ > o ) . 

where Ц \\i and || Ц̂^ denote the Li[0, oo) and L^^O, oo) norms, respectively, clearly 
holds. Accordingly, the necessary and sufficient condition for the hmit (1.1) to exist 
for all fe Lx[0, oo), now is that it exists on a dense set of functions in Li[0, oo). 
Since the span of the set of characteristic functions Х[о,ь] of intervals [0, b], with 
arbitrary Ь > 0, is dense in Li[0, oo), we need only verify the existence of the limit 
( l . l ) f o r /=X[o ,b ] , ( b > 0 ) : 

/»00 i*b л Г*ХЪ 

lim Х[о ,ь ] (0Wdf = lim \ß{Xt)at=\im - ß{i)at; 

and the existence of these limits is tantamount to the existence of the limit (1.2) 
defining M{ß). In fact 

(1.7) lim r\o,b](OiS(^Od( = bM(iS). 
Я-» + оо J o 

Thus, when the mean value M(ß) exists, the formula (1.3) for the limit (1.1) holds 
in the case whe re / = Х[о,ь]- ßy linearity, it will then hold f o r / any element in the 
span of the functions Х[о,ь] (^ < b); and since these are dense in Li[0, oo), it follows, 
by an obvious approximation argument, that (1.3) holds, as well, f o r / an arbitrary 
function in Li[0, oo). 

2. Finite Intervals. We now want to consider the hmit problem (O.l) under the 
assumption that / is a finite interval lying in [0, oo), i.e. we wish to consider 

ль 
(2.1) lim f{t) ß{Xt) àt (О ^ a < Ь < oo). 

•̂̂  + «' Ja 

By so doing we will be able to deal with ß's that are not necessarily bounded. Speci
fically, we will assume jß to be a function on [0, oo) which is locally in L^, i.e. whose 
restrictions to any finite subinterval of [0, oo) are in L .̂ Using the notation L^ '̂̂ [0, oo) 
to denote this class of locally ^-integrable functions, we will establish the following 
result. 

Theorem 2. Let ß E L}q%0, oo), q > 1. Then, in order that the limit (2.1) exist for 
every f e Lp\_a, Ъ\, with p the Holder conjugate of q, it is necessary and sufficient 
that 
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(i) the averages 

'T[ '̂ '̂̂ '' ̂ ' 
be bounded as Г-> +oo; and that 
(ii) ß have a mean value 

M{ß)= lim ^'ß{t)dt. 

These conditions (i) and (ii) holding, the limit (2.1) is then given by 

(2.2) lim Çf{t) ß{h) dr = f Г /(О dA М(̂ 5). 

Remark. In case j5 is a periodic function in L^, the conditions (i) and (ii) are 
automatically fulfilled. 

For the proof of Theorem 2 will need the following. 

Lemma 1. Suppose g{i) e L'°*^[0, OO) and that в e (0, 1). We consider the averages 

A{T) = i £ g{t) at, A,{T) = ^Л^^|%(0 àt. 

Then the boundedness of either set of averages as T-> +oo implies the same for 
the other set of averages. Similarly, the convergence of either set of averages as 
T-> + 00 implies the convergence of the other set of averages, and to the same limit: 

Um A{T) = hm Ае{Т). 

Proof of the Lemma. In one direction the lemma is easy to estabhsh. Namely, 
the identity 

allows us to conclude that ÄQ(T) is bounded as Г-> +oo, if Ä(T) is bounded as 
T-> +00. Furthermore, the convergence of Ä(T) as T - > +OO imphes the conver
gence of ^ ^ ( T ) as T - > +00 and to the same limit: 

Hm Ae{T) = — ^ Um Ä{T) — lim А{Т) = Um А{Т). 
Т-^ + оо 1 — в Т-^ + оо 1 — в Т-^ + оо Г-»-+ 00 

In the other direction our proof will be based on showing that the boundedness 
of AQ{T) from above as T -^ + oo impUes the like property for A(T). More precisely, 

HI 



we will show that from 

(2.3) Äe{T)uL for Г > To, 

it follows that 

(2.4) A(T)^L+^^\L\To+r\g{t)\dt) for T>To. 

A similar result can be established with respect to boundedness from below; hence, 
the boundedness of ÄQ(T) as T -> + OO will imply the same for A{T). 

Next, since (2.3) holds with L = Iim Ав{Т) + г, e an arbitrary positive number, 
T-^ + oo 

we may apply (2.4) with L equal to this value, to conclude that lîm Ä{T) й 

S lïm ÄQ(T) + e; and hence that 

Пй Ä{T) g Im Ае{Т) . 

Similarly, we can show that 
lim Ae{T) ^ lim А(Т). 

г - » + 00 Г-> + оо 

Consequently, if AQ{T) converges as Г~> +oo, so also will A(T) converge as Г-+ 
-^ +00, and to the same limit: lim А(Т) = Hm AQ(T). 

Г-* + оо Г-> + оо 

It remains only to show that (2.4) follows from (2.3). For this purpose set 
г 

dt. /(T)=J^^(0 
Then, since l{T) - 1{вТ) = (T ~ ST) Ae{T), (2.3) gives 

1{Т)-1{вТ)йЬ{Т- вТ), (Т>То). 

Replacing Tby 9^Tin this inequality we have 

(2.5) /(Ö'̂ T) - /(ö*+ ̂ T) ^ L{9^T - 0̂ + ̂ T) 

provided that Ö*T > TQ. For given T > TQ. let n now be the unique integer for which 
0"T > To ^ 0""*'̂ T. Adding the inequalities (2.5) for fc = 0, 1,..., n we obtain 

(2.6) /(T) - /(Ö"+^T) S LT- Ьв^'-^Т. 

Since/(Ö«-^^T) g j r " ' ' 1̂ (01 d̂  й Я° \g{t)\ du and -Ьв^^'Тй Щ ff^^'TS Щ TQ, 
(2.6) yields 

/ ( T ) é L T + | L | T o + f )git)\dt 

for T > To. Dividing this through by T we obtain the desired estimate (2.4) for 
A{T) = I{T)IT 
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Proo f of T h e o r e m 2. The proof proceeds exactly as in the case of Theorem 1. 
We need, first of all, to assure that the integrals 1^/(0 ß{Xt) dt regarded as a collection 
of linear functional on Lp\^a, b] are uniformly bounded as Я -^ + oo. Since the norms 
of these functional is given by 

/ лЬ \l/q / 1 r̂ ^ \ l / g 

(jj«|.d,) =(»-)"'(jj^Jj*)N,) = 

= <''-»)-{?:Ь-г£|«*^')"' 
where T = lb and в = ajb, the desired boundedness is assured by condition (i) 
together with Lemma 1. 

Next, we need to check that the limit (2.1) exists for a dense set of functions in 
Lp\a, fo]; and as this dense set of functions we take the span of the characteristic 
functions Xia,c^ of intervals [a, c\ with a < с ^ b. It will, therefore, be enough to 
ascertain the convergence of (2.1) f o r / = Xia,c^ (a < с g b). A formal calculation 
yields: 

lim f' fe,c](0 ß{^ dr = lim [ß{Xt) dr = (с ~ a) f lim — i — Г ß{i)eh = 
A-̂  + ooJ^ A-> + ooJ^ \я->+ 00 AC - Яа J дя / 

where T = cX and 9 = ajc here. Thus, by Lemma 1, the existence of the limit (2.1) 
f o r / = Xia,c^ is seen to be equivalent to the condition (ii), the existence of the mean 
value M{p) = Hm (l/Г) J J ß{t) dt. Moreover, when the mean value exists we obtain 

(2.7) hm 
Я-> + оо 

XiaAt) ßi^t) dt^{c~ a) M{ß) = ({ XuAt) A M{ß) .. 

which is formula (2.2) for / = Xia,cy ̂ У the same kind of approximation argument 
mentioned in the proof of Theorem 1, we will then be able to extract formula (2.2) 
in the general case, for a n y / e Lj[a, b] , out of the particular case (2.7). 

3. An Application. As an appHcation of the preceding material we will establish 
a generalization of the Cantor-Lebesgue lemma. The classical version of this lemma 
asserts that if 

Hm [fl„ cos (nt) + b„ sin {ntj] = 0 
и->оо 

at each point t of a set of positive measure, then a„ and b„ -> 0 as n -> oo. The 
generalization we have in mind is the following: 

Theorem 3. Let Фl{t), .-., ф^^) be linearly independent periodic functions of 
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period т in L, witk r > 1. Suppose that as n runs through the positive integers 

(3.1) lim t»n'ФJЩ = 0 

Л - » 00 J = 1 

at all points t of a set of positive measure, then 

(3.2) limai.^> = 0 (7 = 1,. . . , / i) . 
7|-*00 

For the proof we require the following. 

Lemma 2. Given fi linearly independent functions ф^,...,ф^ in L^\a,b\, 1 ^ 
^ Q < oo, there exist fi functions ф^, ---^Фц in L^\a, Ъ\ <т the Holder conjugate 
of Q, SO that 

/ Г rb 
à^i(\{\j{t)U^à?[ ^ФО, 

Proof. Let [cj,k]j,k=i be any /г x /i matrix with non-zero determinant. Define 
hnear functionals F̂ ,̂ /c = 1, ...,/г, on Sp((^i,..., ф Д the span of ф^, ..., ф^, by 
setting 

(3.3) Ffc(^y) = Суд for j , /c = 1, ..., /X, 

and then using the linearity to define Fj^ on the rest of the span, i.e. by putting ^;,(ф) = 

= X '̂ i ^к{Ф]) i^ ф = YJ ^]Фр ^^ ^^^w of the linear independence of the ^y's, F^ is 

well-defined by this procedure. 
Now, since Sp(0i, ..., ф^ can be regarded as a subspace of L^[a, b], we may 

apply the Hahn-Banach theorem to extend each Fj^ as a bounded linear functional 
to all of L^[a, b]. By the Riesz representation theorem, there then exist uniquely 
determined functions Ф1, e L^\ß, Ь], ^ == 1, ..., /x which generate these functionals F^ 
according to the formula 

for all Ф G L^[a, Ъ\. Hence, on account of (З.З), 

Г 
and this proves the Lemma, since the Cy '̂s were chosen so that their determinant is 
non-vanishing. 

P r o o f of T h e o r e m 3. We begin by applying Lemma 2 to the t̂r linearly in
dependent periodic functions ф^, ..., ф̂^ in Ц. Regarding their restrictions to [0, т] 
as elements in Li[0, т], the Lemma then assures us of the existence of pi functions 
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ф^, ..., «Ад in Loo[0, т] satisfying the condition 

(3.4) det( 'rr</.^(0'/ '*(OdfT ] ф О ; 

and which we then immediately extend periodically to [0, oo) as functions of period т. 
Next, we may clearly suppose that (3.1) holds at all points of a set E of positive 

measure lying in [0, т]. By Egoroff's theorem, we can, therefore, find a subset F 
ß 

of E with positive measure on which ^ al;/^ 0y(^O "^ ^ uniformly as n -^ oo. Setting 

(3.5) e ^ ={[t a[^^ ф,{т))-\ ф,{п1) dt (/с = 1, ..., /i) 

it then follows immediately, bearing in mind the boundedness of фJ,, that 

(3.6) bi'̂ ^ -> 0 as П -> 00 . 

By introducing the matrix Г„ = [7n" '̂̂ ]̂j,k=i whose elements are 
/ 

(3.7) y'J^'' = f фJ{nt) ф,{т) dt ( j , ^ - 1 , . . . , /i) 

together with the column vectors o„ and b„ whose f^ components are â '̂  and b^'\ 
respectively, we may re-write (3.5) in vector-matrix notation as 

(3.8) b„ = r„a„. 

We are now going to show, by means of Theorem 2, that the matrix Г„ just introduced 
converges. This is accomplished by recognizing the integrals in (3.7) defining y '̂̂ ^ 
to be of the form J o / ( 0 i^('̂ 0 ^^ considered in Theorem 2, provided that we take 
/ ( 0 = ^ F ( 0 ^^^ ß{^) = ФА^) ^М)- We now note that as фу and ф^ are periodic 
functions in L^ and L^, respectively, their product фj . i/̂^̂  = jS is a periodic function 
in L,. Thus ß E Ll^%0, oo) with q = r > 1, while f{t) = Zf(0 ^ L«,[0, т] с L^,[0, т] 
with p = q\ the Holder conjugate of q, as required by the hypotheses of Theorem 2. 
Finally, the periodicity of j5 assures us that it satisfies conditions (i) and (ii) of Theorem 
2, with the mean value of jÖ being given by M{ß) = (l/т) Jo фj{t) фи{^) ^^. Applying 
the conclusion (2.2) of the Theorem, we, therefore find that 

lim 7У'̂ > = m{F) (- f V / O ф,{t) dt) = /^'^> 
n-^co \ T J O / 

where m(F) denotes the Lebesgue measure of F. This proves that the matrix Г„ 
converges to the matrix Г = [у^^'^Ц'] k=i' 

Next, it is clear from condition (3.4), that the determinant of the Hmiting matrix Г 
is non-zero. Hence Г is invertible; and since Г„ ^ Г as n -> oo, so also is Г„ in-
vertible for n sufficiently large; moreover 

(3.9) l i m r ; ^ = Г-' . 
n-^ 00 
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Inverting (3.8) we find that 

for n sufficiently large; from which it follows, by passing to the limit as n -^ oo, 
taking (3.6) and (3.9) into account, that 

lim <i„ = (lim r~^) lim b„ = r~^0 = 0, 
И - + 0 0 П-^СЮ n - ^ 0 0 

the desired conclusion. 

4. Higher Dimensions. As far as generalizations to higher dimensional situations 
are concerned, theie do not appear to be simple conditions which are both necessary 
and sufficient for the existence of 

(4.1) lim 
Я-> + оо 

f{t)ß{Xi)at 

for every/G Li(E") assuming ß e L^{EP). We can, however, give a sufficient condition 
on ß which will assure the existence of the limits (4.1). 

Tlieorem 4. Suppose that ß G L^{EP) has radial mean values in almost every 
direction, i,e. for almost all ^ with \^\ = 1 assume that the limit 

(4.2) M{ß) {^) = lim - Cßiri) dr 
R^ + oo jR J o 

exists. Then the limit (4.1) exist for all f e ^^(E") and is given by 

(4.3) lim f / ( 0 ß{Xt) dt = Г /(О M{ß) (Л dt. 

Proof. We will avail ourselves of the change to "polar coordinates" formula for 
the evaluation of integrals over £" (cf. [2, p. 1049]): 

(4.4) I F{t)dt= I f F(r(^)r"-^drd(T(^), 
J^" J 1̂1 = 1 Jo 

here t = r^ with r = |̂ | and ^ = tl\t\, while da{^) denotes the element of area on 
the unit sphere Щ = 1. 

Once again, it suffices to prove (4.1) for a dense set of functions /(^) G Li(£"). 
For this dense set we take the span of the set of functions of the form 

(4.5) /{1) = д{г)ф{^) with 

Г\д{г)\^-Ыг<сю and f \ф{е)\аа{^) 
Jo J\i\ = i 
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Making use of (4.4) for such functions we have 

J / ( / ) ß{Xt) dï = г (Гд{г) г"-1 ß{Xr^) dr\ ФИ) da(^) . 

Applying Theorem 1 to the one-dimensional inner integral on the right, we find, in 
view of our hypothesis (4.2), that 

hm Гд{г) r"- ^ ß{Xr^) dr = ( Г g{r) r"'' dr) M{ß) (^) 
^ - + o o J o V J o / 

holds for almost all ^ with И = 1. Hence, taking account of the estimate 

^(Гш\'-"''^^)щиш\' g{r)r"-' ß{M)drU{Ü 

the Lebesgue dominated convergence theorem allows us to conclude that 

lim f (Гg{r)r^^-'ß{Щ)dr\ф{^)da{^) = 

= [ ( Г 5(r) Г-' d r ) Miß) (i) ф{е) da{i) = I / ( ( ) Miß) ( i j ) dt 

(using (4.4) once more). This estabhshes (4.3) for functions of the form (4.5), and 

thereby completes the proof of the Theorem. 

References 

[1] G. Cantor: Über trigonometrische Reihe, Math. Ann. 4 (1871), 139—143. 
[2] N. Dunford and J. T. Schwartz: Linear Operators, Part II, Interscience, New York, 1963. 
[3] L. Fejér: Lebesguesche Konstanten und divergente Fourierreihen, J. Reine Angew. Math. 

7i5 (1910), 2 2 - 5 3 . 
[4] H. Lebesgue: Leçons Sur Les Series Trigonométriques, Gauthier-Villars, Paris, 1906. 
[5] G. Polya and G. Szegö: Problems and Theorems in Analysis, Volume 1, English Edition, 

Springer Verlag, Berlin, 1972. 
[6] B. Riemann: Gesammelte Mathematische Werke und Wissenschaftlicher Nachlass, B. G. 

Teubner, 1876. 
[7] A. Zygmund: Trigonometrical Series, Volume I, 2"** ed., Cambridge University Press, 

Cambridge, 1959. 

Authors address: Department of Mathematics, Vanderbilt University, Nashville, Tennessee 
37235 U.S.A. 

117 


		webmaster@dml.cz
	2020-07-03T02:11:43+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




