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COMPLETE DISTRIBUTIVITY AND a-CONVERGENCE 

ROBERT L . MADELL, New York 

(Received August 14, 1978) 

1. Introduction. A totally ordered group (notation: o-group) is well-known to be 
a HausdorfF topological group and topological lattice (and thus a topological 
o-group) in its interval topology. The interval topology is compatible with the order: 
i.e., if Л \^j\ — ^ for each cofinal subset J of the directed index set /, then the net 

(^i)ie/ converges to e where e denotes the identity. Furthermore, if G is any topological 
o-group then sets of the form {x e G | a < x < b} for a, Ь e G are open so that the 
topology in G Hes between the interval and the discrete. As ELLIS [4] has remarked, 
various authors have attempted to generalize these results to lattice-ordered groups 
(notation: l-groups) and these attempts have been largely unsuccessful. For example, 
JAKUBIK has shown that the interval topology of a representable /-group is HausdorfF 
group topological if and only if the group is an o-group [8]. On the other hand, order 
convergence (which in the totally ordered case derives from the interval topology) 
does not in general derive from a topology and in fact is topological only in rather 
special cases [5, 6, 7]. We shall here generalize results of PAPANGELOU [11, 12] and 
ElHs [4] to show that in an arbitrary completely distributive /-group G (and only 
in a completely distributive /-group) the topology from which a-convergence 
derives makes G into a HausdorfF topological group and topological lattice (so that 
G is called a topological l-group or r/-group and the topology a tl-topology) 
which reduces to the interval topology in the totally ordered case (Theorem 
2, 3). This topology for G has fewer open sets than any other ^/-topology for 
G (Theorem 4). The ^/-topology from which a-convergence in G derives is (1) 
compatible with the order (Theorem 5) and (2) is such that G can be con
tinuously embedded by a one-to-one lattice homomorphism ж in the Cartesian 
product of topological chains of the form GJN where each iV is a topologically closed 
prime convex /-subgroup of G and GjN is the collection of right cosets. In fact, the 
closed prime convex /-subgroups N may be chosen so that each GjN has precisely 
the interval topology and тс : G -> GTI is a homeomorphism (Theorem 2). Conversely, 
if an arbitrary /-group G has a ^/-topology with properties (1) and (2), then G is 
completely distributive and the given topology is precisely the topology from which 
a-convergence derives (Corollary 8). For basic terminology see [1, 7, 9]. 
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2. Preliminaries. A net {x^i^j in a lattice Lis said to a-converge to x G L(notation: 
a — hm Xi = x) if X is the only element of L which satisfies 

X = V (^i A x) = A (Xf V x) 
i ^ »0 t è io 

for every ÎQ E L We say that a-convergence derives from the topology T on L (and 
thus that a-convergence is topological) if a net (xf)igj in Lconverges to x if and only 
if a — lim x̂  = x. The lattice Lis said to be completely distributive if 

iel 

Л(У^.,) = У(Лх,я.)) 
кеК JeJ feF кеК 

holds whenever {x^j \ к e K, j e J} is я doubly-indexed subset of L for which all the 
indicated joins and meets exist and F = J^. It is well-known and easy to see that if L 
is totally ordered then L is completely distributive and a-convergence on L derives 
from the interval topology. 

A convex /-subgroup M of an /-group G is called L-closed if whenever {̂ ^ | i e /} £ 
с M and V 9i exists then У gieM. In that case, the natural map тг : G -• GjM 

iel iel 

preserves all suprema and infema [2] and is said to be regular. The distributive 
radical D(G) is the intersection of the L-closures of the minimal prime convex 
/-subgroups of G. It was shown in [3] that G is completely distributive if and only if 
D(G) = {e} where e denotes the identity of G. It was shown in [10] that if G is a tU 
group and M is L-closed then M is (topologically) closed. Thus, if T^{G) denotes 
the intersection of the closures of the minimal prime convex /-subgroups of G then 
T,{G) £ D{G). 

For completeness we shall present a somewhat different proof of one direction 
of a fundamental result of EUis. We shall use the following result of [12]. 

Theorem 1 (Papangelou). Let G be an l-group. If a — lim x̂  = e then for each 
iel 

cofinal subset J of I, Л | ^ j | — e. If G is completely distributive the converse also 
jeJ 

holds. 

Theorem 2 (Ellis [4]). / / a-convergence in an l-group G is topological then G is 
completely distributive. Conversely, let G be a completely distributive Ugroup 
and let [Nß \ ß e В] be any collection of L-closed prime convex Usubgroups of G 
with ONß =^ [e]. For ß e В let GJNß denote the chain of right cosets of Nß and give 

ßeB 

GjNß the interval topology. Let the full product Yli^l^ß) ^^ ordered component-
ßeB 

wise and be given the Cartesian topology T. Then a-convergence derives from the 
topology that G inherits from T via the natural one-to-one lattice homomorphism 
71 : G-> J][ (G/iV^). Thus, G is a topological lattice and if representable even 

ßeB 

a topological group. 
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Proof. If {gi)i^j is a net in G with a -\imgi = e then for each cofinal subset J 
iel 

of/ and for each L-closed Nß, ß e В, /s, Nß\gj\ = Nß. То show by way of contradic-

tion that the net {g^)i^i convergences to e in the topology G inherits from Г suppose 
there exists jß e Б and an interval U = [NßZ \ Nßy < NßZ < Nß/} about Nß in GiNß 
such that it is not true that {Nßg^^^i is eventually in U. Then there exists a cofinal 
subset J of / with say Nßg^ S Nßy, j e J. Since for j e J, Nßy < Nß ^ NßygJ^ we 
have 

Nßygj < Nßgj ^ Nßy < NßygJ^ 

so that Nßy = Nßy{A\9j\) = ANßy\gj\ = ANßygJ^ ^ Nß > Nßy for the desired 
jeJ jeJ jeJ 

contradiction. Since a — Umgr̂  = 0̂  is equivalent to a — lim^^ö^"^ = e, it follows 
iel iel 

immediately that a — \imgi = g impHes that the net [g^i^j converges to g in the 
iel 

topology G inherits from Г. If on the other hand {g^tei is eventually in each T-neigh-
borhood of g so for ß e B, a - lim Nßgi = Nßg, the fact that each Uß : G -^ GjNß is 

iel 

regular guarantees that a — lim gt = д. 
iel 

3. A compatible group topology. We now present a proof that every completely 
distributive Z-group is a t/-group in the topology from which a-convergence derives. 

Ф' 

Theorem 3. An l-group G is completely distributive if and only if a-convergence 
derives from a topology with which G is a tUgroup, 

Proof. By Theorem 2, if a-convergence is topological then G is completely dis
tributive. Now suppose G is completely distributive. By Theorem 2, G is a topological 
lattice in the topology which derives from a-convergence. Since it follows from the 
definitions that a -• lim x̂  = x, a — lim xj^ = x~^, a — lim x^c = xc and a — 

iel iel iel 
— lim cx^ = ex are equivalent for {x^^^i an arbitrary net in G and x.ceG, it only 

iel 
remains to show that if {x^f:i and (jj)jej are nets in G with a — Hm x̂  = a — 

iel 
— lim j j = e then a — lim x^y^ = e where I x J is ordered component-wise. 

JeJ (ij)elxj 
The results from [12] used below carry over to the non-Abelian case. 

Since a — lim Xi = e and a — lim yj = e we have a — lim ]х |̂ = e and a — 
iel jeJ iel 

— lim \yj\ = e [12, Corollary 3.5]. By [12, Proposition 3.3], a - Цщ |xJ . 

. \yj\ \xk\ = e SO by [12, Proposition 3.1], a - lim |х^| \yj\ [х̂ ] = е. We show 
( i , j ) 6 j x j 

that this implies a — lim jxfjjl = ^ so by [12, Proposition 3.6], a — Цщ ^ v = 

= e as desired. 
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According to [12, Proposition 3.2], if (z;,),,̂ .̂ is a net in G with z^^e for every к 
then a - lim Zfc = ^ if and only if for each z > e there exist к^еК and U^EG such 
that "̂̂  

^ > Wo = f̂e A Z 

for all к ^ /CQ. NOW a - lim |х^| \yj\ |xj.| = e so if z > e there exist /Q G /, jo G J, 
{ij)elxj 

UQG G such that 
z > Uo ^ |xi| |з;̂ .| |x,.| л z 

for all (/,J) ^ {ioJo}' But |xij^.| ^ |х^| \yj\ |х,-| so 

z > WQ ^ |-^i)^;| ^ ^ 

so we do in fact have a — lim |-Х/у |̂ = е. 
ii,j)eI^J 

Theorems 4 and 5 make it still more clear that the topology of a-convergence is 
a suitable generahzation to completely distributive /-groups of the interval topology 
in o-groups. 

Theorem 4. Let G be a completely distributive tUgroup. Then the topology for G 
lies between the discrete and the topology from which a-convergence derives. 

Proof. Let {Nß \ßeB] Ы 2i collection of L-closed and so topologically closed 
prime convex /-subgroups of G with f)Nß = [e]. If each GjNß is given the projec-

ßeB 

tion topology and f | i^l^ß) the Cartesian topology, the natural map n : G -^ 
ßeB 

-> Yl i^l^ß) is continuous. Since each GjNß has at least the open sets of the interval 
ßeB 

topology the result follows from Theorem 2. 

Theorem 5. Lei G be a completely distributive l-group. Then any topology (поГ 
necessarily a tUtopology) for G whose convergence is implied by a-convergence 
is compatible with the order on G. In particular, the topology from which a-con
vergence derives is compatible. 

Proof. Suppose A\9j\ = e for each cofinal subset J of the directed index set / . 

By Theorem 1, a — hm 6̂^ = e so by hypothesis {g 1)1^1 converges to e. 
iel 

The next result provides a converse for an arbitrary /-group leaving open the 
question of the necessity of complete distributivity in Theorem 5. 

Theorem 6. Let G be a compatible tl-group. U{Gi)iei is a net in G with a - lim g^ = 
= g then the net converges to g. 

Proof. Since a - lim^f^"^ = e, /\ {gjg'^l = ^ for every cofinal subset / of/ . 
iel jeJ 

By compatibility {gig~^)iei converges to e so {gi)iei converges to g. 

299 



Theorems 4 and 6 together show that every completely distributive compatible 
f/-group has precisely the topology from which a-convergence derives. The following 
lemma allows us to strengthen that result. 

Lemma 7. In a compatible tUgroup each closed l-subgroup is L-closed. 

Proof. Let iV be a closed /-subgroup and let ^̂  = V di with 5 = {̂ ^ | f e /} a set 

of elements in N. Let the set of all elements which can be written in the form hg~^ 
where each h is the supremum of finitely many elements of S be indexed by itself 
and thus be considered to be a net in N. By compatibihty this net converges to e so 
the net of elements h converges to g forcing g eN. 

Corollary 8. Let G be a compatible tl-group. Then T^{G) = D{G). Thus if T^{G) = 
= {e}, then G is completely distributive and cc-convergence derives from the topology 
on G, 

4. Additional Remarks. Let G be an /-group and define a set X to be closed in G 
if Z contains with every a-convergent net the a-hmit. If we call the resulting topology 
the a-topology, then in general, every a-convergent net converges in the a-topology 
and in particular, if G is completely distributive then a-convergence derives from the 
a-topology. It is natural to enquire about the a-topology in the case where G is not 
completely distributive. Unfortunately, an example of FLOYD [6] shows that we 
cannot in general expect the a-topology to be a ^/-topology, for his /-group has no 
a-compatible ?/-topology and the a-topology is easily seen to satisfy this weaker form 
of compatibihty. 

One may also try to topologize non-completely distributive /-groups by observing 
that every /-group may be embedded in a completely distributive /-group and thus 
inherits a f/-topology. But in addition to the hmitations of Corollary 8 the following 
example shows that the resulting topology depends upon the embedding. It also 
shows that a completely distributive /-subgroup of a completely distributive /-group 
need not be a regular sublattice, thus answering a question raised in [4]. 

Let G be the /-group of all those integer valued functions/ on the set {1, 2, ...} 
which have the property that for some integer c, f{n) = с for all but finitely many n. 
These functions are to be added and ordered component-wise. Then G is completely 
distributive and so inherits from itself the a-topology. But if Ni = {f\ f{i) = 0} 
i = 1, 2, ... and NQ = {f\f{n) = 0 except for finitely many n] then G may be 

00 

embedded in the completely distributive /-group J][ {GJN^ = H. But the a-topology 
i = 0 

on я does not cut down to the a-topology on G and if the functions/,- e G are defined 
00 

by fi{j) = dip where d^j is the Kronecker delta then V / i in G is not the same as 
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