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1. INTRODUCTION

.M=

Let 4, = {(py, p2---Ps):pi20fori=1,..,n
the set of all n-ary probability distributions.

Let f: [0, 1] - R (Reals) be measurable (or continuous at one point or bounded
in a small interval) and satisfies the functional equation

(L) 3 Tfw) =% TAS)+ T TAIE), a4 fi 6B >0

m=23; n=23,

=1} for n 2 1 denote

i 1

where X € 4,,, Ye 4,.

Let F: [0, 1] x [0, 1] - R(Reals) be measurable in each variable and satisfies the
functional equation

m n m n
(12) i_Zl JZ_:IF(X:Y;’ uv;) =iz'1 J.Z‘lx uiF(y;, v)) +‘Z JZ Yiv5 F(x;, u;)
ap,rd>0,(a—r)6—p)<0,
where X, U€ 4, Y,Ved,,m=2,3;n=23and F(l, 0) = 0.
The object of this paper is to find the measurable (or continuous at one point, or
bounded in a small interval) solutions of (1.1) and (1.2). So far functional equation
(1.1) was solved under contmulty while (1 2) under contlnulty for

Zx—l—z,v‘, Zu‘=1 and Z‘b: ,
i=1 j=1

by SHARMA and TANEJA [5] Thelr treatment is not clear at several places because
the domains of the parameters are not properly defined.

2. THE SOLUTION OF (l1.1)

In order to derive the measurable solutions of (1.1), we prove some lemmas in
what follows.

Lemma 2.1.

J©) =10) =0,
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Proof. Let (x,, x;) = (0,1), (y1» ¥2, ¥3) = (0,1,0) in (1.1). Then
(2.1) 250) = (1.

Substituting (xy, x2) = (0, 1), (y1, V25 ¥3) = (31 = »,0) for ye(0,1) in (1.1)
yields,

30 = + (1 = »V]1.[3700)], ye(@ 1), B+1.
Hence, f(0) = 0 and therefore from (2.1), we have
(22) f)=f(0)=o.
Lemma 2.2. For Xed,, n =2,3

._Zlf(xi) = CZI[X? -], aB>0, a+p,
where C is an arbitrary constant.

Proof. For n = 2 or 3, since

5 55, S

=17
from (1.1), we have ’

(39 (SA0) + (54 (16 =
= (D (E10D) + (£ (350

j=1

Thus

1) 2 (x)
=1 = "'=1 =(C, for xi,ij(O, 1)‘
05—y L)

Note that since « #+ f, the denominator will not vanish. Thus,
(23) Yf(x)=CY[xi—xf], x;€(0,1).
i=1 i=1
Which together with the fact that f(1) = f(0) = 0 makes (2.3) true for all x; € [0, 1]

j=

with ) x; = 1.
i=1
Remark. Lemma 2.2 is proved above without any regularity condition. When
« = 1and f(3) = 4, Lemma 2.2 gives
- 8

1 - xf

B =5

which is the non-additive entropy of order B. See another functional equation in [4]
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The same result as a theorem on p. 213 was proved by Sharma and Taneja [5]
assuming continuity.

Lemma 2.3. For fixed x € [0, 1], if

(2.4) A1) = f(xt) + f(1 — x)t) — [x* + (1 = x1]f(1) —
—*[f(x) + f(1 = x)], te[0,1]

Afu +v) = Afu) + A(v), u,vel0,1].

Proof. Let (x;, x;) = (x, 1= x), (yy» ¥2,¥3) = (u,v,1 —u —v) in (1,1) for
x,u,v,u + ve[0, 1], then
(2.5)  f(xu) + f(1 = x)u) + f(xv) + f(1 — x)0) + f(x(1 —u —v)) +

+1((1 = x)(1 = u = v) = [x* + (1 — x)].

L)+ f0) + (0 —u—v)] + [P+ + (1 —u—0f]. [f(x) + (1 -x)].

Let (xg, x3) = (x, 1 — x), (yy» ¥2o ¥3) = (u + v, 1 — u — v,0) in (1.1), for x, u, v
as above, then
(2.6) f(x(u +v)) + (1 = x)(u + v)) + f(x(1 —u —v) +

+ (1 -x)(1 —u—0) =[x+ (L = x].[f(u +v) + f(1 —u—20v)] +
+ [+ 0 + (1~ u—0)f]. [f(x) +f(1 = x)].

Substracting (2.5) from (2.6) and using (2.4), we have, for fixed x € [0, 1].

(2.7) Au +v) = A(u) + A[v), for u,v,u + ve[0,1].

This implies that A(t) is additive in .
Now, we can prove the following theorem.

then

Theorem 2.1. If f:[0,1] - R (Reals) satisfies the functional equation (1.1)
and f has any of the following properties:

(a) f is continuous at a point,

(b) f is bounded in a small interval,

(c) fis measurable,
then, f(x) = C[x* — x*], «, B > 0, o + B, where C is an arbitrary constant.

Proof. As A,(t) defined in (2.4) is measurable (or continuous at a point, or bounded
in a small interval), we conclude by [2] that

(2.8) A() = 4,(1) .t

from the fact that f(1) = 0, we see that A,(1) = 0, hence from (2.4) and Lemma 2.2,
we get

(29) f(xu) + f(1 = x)u) = [x* + (1 — x)] f(u) + &’[f(x) + f(1 — x)] =
=[x+ (1= x] f(u) + w’[x* — x" + (1 — x)* = (1 = x)'] . C.
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From Lemma 2.2, we know that
(2.10) FOU—u) + fOxu) + f(1 — x)u =
=C[(1 —u)f — (1 —u)ff + (xu)* — (xu)f + ((1 — x)u)* — ((1 = x)u)].
Substracting (2.9) from (2.10), and then substituting x = 4, it is easy to see that
@11)  f(1—u)= [2.(%)1 - 2.<§>ﬂ +(1—up—(1—uf].C—

=217 f(u) — w2 = 2'7F] . C.
But from (2.3),

(2.12) fy+fQ—w)=[uw—uv+ (1 —up—-(1-uf].C
combining (2.11) and (2.12), we get

(2.13) fw)=Clu*—u"], a%1, uel0,1].
For a = 1, the Lemma 2.2 gives

(2.14) Zf(x) =C[1 - ]
Hence (1.1) and (2.14) yields

(219) 5 St = $50) + o E - T -

=S 10) + Ol - €3 Tl
Let
(2.16) h(t) = f(t) + ct

then using f(0) = 0 = £(1), we get h(0) = 0, k(1) = C. Hence (2.15) becomes

m

=Z 2 ;) zéh(y")’ m=23.

But since

||M§

é h(x:y;) =j§l ii h(yx:)

it is clear that
m m
Z h(y;) =Y h(x)=C, X,Yed,, where m=23.
J=1 i=1

Since h(o) = 0’ we get
(2.17)

M=

h(x;)=C for m=2,3.

I

i=1
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For fixed x € [0, 1], if we take
(2.18) A1) = h(xt) + h((1 = x)1), te[0,1]
and use the method employed in Lemma 2.3, we obtain,
Afu + v) = A u) + A(v), for u,v,u +vel0,1].

Again by [2]
Afu) = 4,(1).u.
Since A,(1) = C, we have

h(xu) + (1 — x)u) = Cu, uel0,1], xe[0,1].
For x = 1, h(u) = Cu. Thus
(2.19) f(u) = C[u — v*], ue[0,1].
Thus (2.13) and (2.19) prove theorem 2.1.

3. THE SOLUTION OF (1.2)

Let (xg, x;) = (0, 1) = (uy, u3), (1, ¥2, ¥3) = (0, 1, 0) = (vy, v, v3) in (1.2) then
we have
(3.1) 2 F(0,0) = F(1,1).

Let (xl’ xz) = (O> 1) = (ul’ uZ)’ (yla y27 y3) = (y5 1 - ,V, 0) and (vl’ UZ’ U3) =
= (v,1 — v,0) for y,ve [0, 1] in (1.2), then

(3-2) 3 F(0,0) = [F(0.0) + F(1,1)] . [y + (1 — yy (1 = v)°].
Combining (3.1) and (3.2), we get
(3.3) F(0,0) = F(1,1) = 0.

The following lemmas can be proved by the method employed for proving Lemma
2.2 and 2.3.

Lemma 3.1. For x,ue4,, m = 2,3
(34) Y F(x;u)=CY (xjul —xu}), «,8,96>0 (¢—7)(6.—p)<0.
i=1 i=1

Lemma 3.2. For fixed x, u € [0, 1] if

(3.5) A.(p, 9) = F(xp,uq) + F((1 — x) p,(1 — u)q) — F(p, q) .
x4+ (1= x)* (1 — uw)f] = p@’[F(x,u) + F1 — x,1 — u)],
p,q€[0,1]
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then

(3.6)

Ay + @, 0 + 1) = Ay, v) + Agfw, 1), y, 00,1,y + o, v + 1e[0,1].

Lemma 3.3. For x,ue[0,1],if A,,(+, *) is measurable (or continuous at one point,

or bounded in a small interval) in each of its variables and satisfies (3.6), then

(3.7) Au(p.q) = A,(1,0).p + A4,(0,1).q.
Proof. Putting v = 0 = ¢ in (3.6), we have
Ay + 0,0) = A (»,0) + 4,( ©,0), y, 0,y + wel0,1].

As before,
Ay, 0) = 4,(1,0). y.
Similarly,
A0,1) = A, (0,1) . 1.
Hence,
AP, a) = AP, 0) + A.(0, 9) = A.(1,0) . p + 4,(0,1) . q.

Lemma 3.4. For all pe[0, 1], we have
(3.8) (a) F(p, 0) = pF(1,0), F(0, p) = pF(0, 1),
(b) F(1,0) = F(0,1) = F(p,0) = F(0, p) = 0.
Proof. The equation (3.7) for ¢ = 0 yields

Axu(p, 0) = Axu(l, 0) .p
which on using (3.5) gives

(39)  F(xp,0) + F(1 — x) p,0) — F(p,0) . [xu* + (1 — x)*(1 — u)f] =

= p{F(x,0) + F(1 — x,0) — F(1,0). [x%* + (1 — x)*(1 — u)’]} .

In (3.9), let x = 1. Then

(3.10) F(p,0) = pF(1,0), pe[0,1].
Similarly, we can get
(3.11) F(0, p) = pF(0,1), pe[0,1].

Let (xq, x;) = (1,0), (uy, uy) = (0,1), (¥4, 2, ¥3) = (1,0,0) and (v, v;,v3) =

= (0, 1, 0) in (1.2). Then, with the help of (3.3) we have
F(1,0) + F(0,1) = 0.
Since F(1,0) = 0, we have
F(0,1) =0 and F(p,0)=F(0,p)=0, pe[0,1].
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Theorem 3.1. If F : [0, 1] x [0, 1] — R (Reals) satisfies the functional equation
(1.2) with F(1,0) = 0, and F is measurable (or continuous at a point, or bounded
in a small interval) in each of its variables. Then
(3.12)

F(p,q) = C[p*q" — p'q’], where a,B,r,6 >0 (x—r)(d—p)<0
where C is an arbitrary constant.

Proof. From Lemma 3.4, it is clear that

A.(1,0) = 0 = 4,(0,1).

Hence from (3.7), we have

A,.(p,q) =0
which when combined with (3.5) gives
(3.13) F(xp,uq) + F((1 — x) p, (1 — u)q) =

= F(p, q). [xu" + (1 — x)* (1 — u)f’] + p"¢°[F(x,u) + F(1 — x, 1 — u)].
But we know from Lemma 3.1 that
(3.14) F(1 — p,1—q) + F(xp,uq) + F(1 — x)p,(1 — u) q) =
=C[(t —py(1 —af = (1 = py (1 = q)° + (xp) (ug)’ — (xp) (uq)’ +
+((1=x)p (1 =uwa)f = (1 =x)py (1 —u)a)].
Now, substracting (3.13) from (3.14) and then using (3.4) and substituting x =
= u = %, we have
(3.15) F(1 —p, 1 —q)=2""""*Cpq" — Cp'q’ — F(p, q)] +
+C.[(1=pr(1—qf —(1-py(-aX].
From (3.15) and (3.4), we get
(3.16) F(p.q) = C[p’q" — p'q°] for a+B+1, pqel0,1].
When o + f = 1, Lemma 3.1 gives

(3.17) Y F(xpu)=CY (xXju; ™ — xul), n=2,3.
i=1 i=1

Forx;=u,i=1,...myy;=v;,j=1,...,nand « + = 1 the equation (1.2)
reduces to the equation (1.1). Hence using theorem 2.1, we have

(3.18) F(x,x)=C[x —x""°] r+d=+1.
Without loss of generality, suppose p < g, then (3.17) yields,
(3.19) F(p,q) + F(1 —gq,1 —q) + F(g — p,0) =

=Cre' - Pt + (1-q) - (1 -a)™].
The equation (3.19) on using (3.18) and (3.8) gives
(3.20) F(p,q) = C[p’q* *—p'¢’], r+d6+1, pqgel01].
Thus (3.16) and (3.20) prove theorem 3.5.
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