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INTEGRABILITY FOR THE DOBRAKOV INTEGRAL
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(Received January 29, 1979)

In [7], I. DoBrAKOV has constructed a very versatile and general method for in-
tegrating vector-valued functions with respect to vector-valued measures which
generalizes the integral of BARTLE ([1]). As is the case for the Pettis integral and the
integration of scalar functions with respect to vector measures, it is difficult to give
criteria for the integrability of a given function. Such criteria have, however, recently
been established for both the Pettis integral and the integral of scalar functions with
respect to vector measures ([4], [13]). In this paper we give analogous such criteria
for the Dobrakov integral. The methods employed show that the integral of Do-
brakov is a “weak type” integral in the spirit of the Pettis integral or the integral
of Lewis for scalar functions and vector measures ([11]).

Throughout X will denote a g-algebra of subsets of a set S, X and Y will denote
B-spaces and L(X, Y) will denote the space of bounded linear operators from X
into Y. Also p: 2 — L(X, Y) will denote a set function which is countably additive
with respect to the strong operator topology of L(X, Y) and it is assumed that p

has finite semi-variation 2 (A(E) = sup | Y. u(E;) x| where the supremum is taken
i=1

over all measurable partitions {E;} of E and all |x,| <1 ([7])). Theugh not as

general, this set-up is simpler than the é-ring formulation of [7] and makes the situa-

tion being analyized more transparent. If " € Y’, y'u will denote the vector measure

E - y' u(E). Each y'u has bounded variation, |y'u|, and A(E) = Slﬁp |y'u| (E)
yist

([6] Lemma 1). The measure p is said to be strongly bounded (or ji continuous),

if there is a finite positive measure A on Z, called a control measure for p, such that
lim A(E) = 0([6] Lemma 2).

ME)=0

Throughout the paper, we use the integral of Dobrakov ([7], [8]) and refer the

reader to his papers for the terminology and results.

We first define a weak type integral for X-valued functions with respect to the mea-
sure u much in the spirit of the Pettis integral ([5]) and the integral of LEwis ([11]).
We then show that the integral of Dobrakov is just this weak integral.
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Definition 1. A strongly measurable function f: S — X is scalarly p-integrable
if for each y' e Y’ f is y'u integrable. (Our terminology differs somewhat from
Dobrakov ([7]) he calls such functions weakly integrable, but we reserve this term
for later use.) '

If f is scalarly p-integrable, for each E€ X, y' — jEfdy'u defines an element
of the algebraic dual of Y’. In the following Proposition we show that this actually
determines an element of Y”. We denote this element somewhat ambiguously as
f£f du and refer to the set function E — [ f du as the indefinite integral of f with
respect to u; it will be clear from the context as to what type of integral we are
referring.

Proposition 2. If f is scalarly p-integrable, [ fdueY” for each E€X and
[ fdu is countably additive with respect to the weak * topology of Y.

Proof. Let {f,} be a sequence of simple functions which converge pointwise to f
with | £,(+)] = [f(+)|. Each £, is p-integrable so [ f, du € Y. But by the Dominated
Convergence Theorem for the measure y'u ([8] Th. 10, 17), <), [gf, du) —
— [gfdy'uso that [ fdue Y. The last statement follows from applying Theorem 3
of [7] to each y'n.

Definition 3. A scalarly y-integrable function f is weakly p-integrableif [z fdueY
for each E € Z. (Here we are using the natural inbedding of Y in Y".)

The definition of weak integrability is very analogous to the notion of Pettis in-
tegrability for vector functions and scalar measures ([5]) or the integral of scalar
functions with respect to vector measures as treated in [10] or [11]. In Theorem 4
we show that Dobrakov s integral ([7]) is actually a weak-type integral in the sense
of Definition 3.

Theorem 4. Let f : S — X be scalarly u-integrable. The following are equivalent

(i) f is weakly p-integrable. '
(ii) the indefinite integral of f with respect to p is countably additive with
respect to the norm.

(iii) f is Dobrakov-integrable with respect to p.

Proof. For (i) implies (ii) note from Proposition 2 that [ f du is weak* countably
additive. Since [ fdue Y for each E e Z, [ f du is actually countably additive with
respect to the weak topology of Yand by the Orlicz-Pettis Theorem is norm countably
additive ([9] 1V.10.1).

For (ii) implies (iii) from Theorem 10 of [7] there exists an increasing sequence
of measurable sets {F;} such that f is integrable over each F, and [g.yfdu =0
for each E € X, where N = S\ JF,. Set f, = Cp, f, where Cg denotes the characteristic
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function of the set E. By Theorem 16 of [7] it suffices to show {j' S d,u} converges
forEeX. Letv(E) = [, fdu. ForEe Tand m > n, wehave ||| f, du — [5f, du| =
= |V(E n (F., itivi

That (iii) implies (i) has been noted by Dobrakov ([ 7], p. 533).

Remark 5. Compare (ii) with [5], II. 3.6 and [11], 2.6.

Since weak integrability and Dobrakov integrability are equivalent, henceforth
we simply use the term integrable.

For the cases of integrating vector functions with respect to scalar measures and
of integrating scalar functions with respect to vector measures, there are known and
useful representations of the integrals as series ([1], [2], [5], [12]). In the next two
theorems we present analogues results for the Dobrakov integral.

A function g : S — X is said to be elementary if g = Y Cp,x,, where x, € X and

k=1
the {E,} <= X are disjoint. Recall that a series ) x,, in a B-space X is weakly un-
conditionally Cauchy (w.u.c.) if Z |<x x,,,)l < oo for x’ € X’; the series determines

an element of X", denoted by me, via x' - Z {x', x,» and the series is weak*
n=1 n=1
@

unconditionally covergent to Y. x,,.
n=1
Theorem 6. Let f: S — X be scalarly p-integrable.
(i) Then f has a decomposition

(1) f=h+g,
where h is bounded, strongly measurable and g is elementary. If g =Y Cgx;

with {E,} < X disjoint, the series Z H(E 0 E) x; is w.u.c. for each E € E and

@) f fdu = J hdu +,§1"(E A E) x.

(ii) If f is p-integrable, f has a decomposition as in (1) which holds except in
a set N with [p.n fdu = 0 for E € X with h bounded, p-integrable and g elementary,
p-integrable. If g = ) Cg,x,, then the series in (2) is unconditionally convergent
in norm. In both (i) and (ii) above the bounded function h may be chosen to have
arbitrarily small uniform norm.

Proof. For (i) pick g elementary, g = Y Cg,x,, such that |f(t) — g(#)| < 1 for
all te S ([5] IL.3). Set h = f — g so (1) holds. Note g is scalarly p-integrable since
the bounded function h is scalarly p-integrable ([7], Th. 5). Then (2) follows by ap-
plying the Dominated Convergence Theorem to y’u.
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For (ii), if f is p-integrable, there is a sequence of simple functions {f.} converging
p-a.e. to f such that lim [ f, du = [ f dp uniformly for E € £. By Theorem 1 of (71,
there exist a set N € £ and a disjoint sequence {4,} from X such that U4, = S\ N,
feanfdp =0 for E€ X and {f.} converges uniformly to f on each 4. For each k
there is an n, such that [ f(f) — f,.(t)] < 1 for t € A4, and

(3) Hj (f = fu)du ” <1/2* for EeZX,
EnAx

where we may assume m;4 1 > . Set g(t) = f,,(t) for t € 4, and g(f) = 0 for te N.

Then g is an elementary function, andif h : S » X is defined by h = f — gon S\ N

and h = 0 on N; then h is bounded and (1) holds. Note that h is actually p-integrable
k

since if we set hy(t) = f(t) — Y. f,(t) for te S\N and h, =0 on N, then {h}
i=1 k

converges to h on S\N and the sequence {[gh,du} = {3 [zna, (f — f,,) du}
i=1

converges by (3) ([7], Th. 16). Thus, the elementary function g (= f — h on S\ N)
is p-integrable and the representation in (2) with the series being norm unconditionally
convergent follows from (i) and Theorem 4.

The last statement in the Theorem is clear from the proof above.

Remark 7. The converse to (i) and (ii) in Theorem 6 obviously hold. It is also worth-
while recalling that unless the measure p is strongly bounded, a bounded measurable
function need not be p-integrable ([7] Example 7). This is the reason for the con-
struction in (ii).

Using parts (i) and (ii) it is easy to drive Theorem 17 of [7].

Corollary 8. (Dobrakov). Let Y contain no copy of co. Then every scalarly p-
integrable function is u-integrable.

Proof. Recall p is strongly bounded ([7]* — Theorem) so every bounded
measurable function is integrable ([7] Th. 5) and every w.u.c. series in Y is norm
unconditionally convergent ([5] I. 4.5).

We next give a series representation for bounded functions which can be used in
the representations (1) of Theorem 6.
Theorem 9. Let h:S — X be bounded and strongly measurable. Then there

exist {E;} < X and {x,} = X such that h = Y x,Cy,, the series Y x,Cy, being
absolutely convergent, with Y “xkn |y'u| (E) < oo for y' € Yand

4) ~[hdu:Zy(Ekr\E)xk for EeX,
E
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the series converging unconditionally in the weak* topology of Y". If h is u-in-
tegrable, the {x.}, {E,} may be chosen so the series in (4) is unconditionally con-
vergent in the norm topology of Y.

Proof. Set g, = 0and use Theorem 6 () to choose for each na scalarly u-integrable

elementary function g, such that Hg,,( ) — h(: )*‘ < 1/2". Then h = }_:(g,,Jrl )
and if h is bounded by M, then for each k

I e = 0] = Lol + % l6es = 0 =
=M+ 1/2+c§1/2"‘1 =M+ 5/2.
Applying the Bounded Convergence Theorem to y'u gives
(5) j hy d'p = i j (Guss — 9n) dy'pe.
E n=0Jg
Ifg,s; — Z auCa, With {4} = X dlS_]OlIlt and a,, € X, then Z Z a4, Ca,.

n=0k=1

1s absolutely convergent and [phdypnu = Z Zyu(A,,k) a, from (5). Also

Z Zh ol 8] (4u) < o0 since . fs [lgass oyl = T (4ue) [an] =
= js Z “g,,ﬂ — Gn dly ,u| =M + 5/2) |y u| (S). This establishes the first part of

the Theorem.

For the last statement note that from Theorem 6 (ii)if his p-integrable the elemen-
tary functions g, can be chosen to be p-integrable and then (5) along with the Orlicz-
Pettis Theorem gives the desired conclusion.

Theorems 6 and 9 can be combined to give a series representation for the integral
of either a scalarly u-integrable function or a p-integrable function. Such representa-
tions are possible for the Pettis and Bochner integrals ([5] p. 55, [1], [2]) and the
integral of D. Lewis ([12]). We leave it to the reader to formulate the appropriate
statements.

If the measure p is assumed to be strongly bounded, conditions for 1ntegrab111ty
analogous to these [4] and [13] can also be derived for the Dobrakov integral.
Henceforth, we assume that u is strongly bounded and 1 is a control measure for p,
ie, lim A(E) = 0.

A(E)~0

Suppose that f: S — X is clearly u-integrable. Then f induces a linear map F
from Y’ into ca(Z), the space of all finite countably additive measures on X ([9] 1V.
2.16), via F(y') = fdy'u, where fdy'u is the measure E — [z fdyu. (Compare
with [4] Prop. 1 and [13].) It is easily checked that F has a closed graph and is,
therefore, continuous.

For the principle theorem we require
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Lemma 10. Let {y;} be a bounded net in Y' which is weak* convergent to 0.
Let g : S — X be strongly measurable with |g(t)| < M for teS. Then [sg dy,u —
- 0. ‘

Proof. Suppose |y;| < 1. Note since <y, #(E)x) — 0 for each E€X xeX,
the conclusion holds for g a simple function. Let ¢ > 0. Pick é > 0 such that
ME) < § implies A(E) < . Let {g,} be a sequence of simple functions such that {g,}
converges to g pointwise with || g,,(t)” < M. By Egoroff’s Theorem there exist N and
E € X such that “gN(t) — g(t)” < ¢for te SNE and A(E) < 6. Then

Jgdy;u‘é jgndy;u‘+ ‘+
S S

J‘gNdy;u + ¢ i(S) + 2 Me
S

and the first term in the right hand side of this inequality goes to 0 since gy is simple.

In Theorem 11 we use the bounded Y topology of Y’, b(Y’) ([9], V. 5.3); recall
that b(Y’) is the strongest topology on Y’ which coincides with the weak* topology
on balls about the origin. Also if the vector spaces E and F are in duality, we denote
the weak topology on E from F by ¢(E, F). For 4 eca(Z), let ca(Z, A) denote the
subspace of ca(Z) consisting of all measures which are absolutely continuous with
respect to A.

j (9 — gn)dyn
S\E

f(g — gy) dyau
S

Theorem 11. The following are equivalent.
(i) f is p-integrable
(ii) F is weakly compact
(iii) hm jEfdy p = 0 uniformly for |y'| <
(E)~
(iv) F is b(Y) — o(ca(Z, 1), L™(A)) continuous.

Proof. (i) implies (ii): It is enough to show that F(B) is conditionally weakly com-
pact in ca(Z, ), where B is the unit ball of Y’. Let { y;} be a net in B. There is a subnet,
which we still denote by { y",}, which converges weak* to some y' € B. For E€ X,
s Sefduy = Ky, [ef dpu,i.e., Fy;(E) > Fy'(E). Since F is bounded, this implies
that Fy; — Fy' weakly in ca(Z, 1) ([9] IV. 9.5) and, therefore, weakly in ca(Z).

Conditions (ii) and (iii) are equivalent by the familiar criteria for weak compactness
in ca(Z, 1) ([9] IV. 9.2).

For (ii) implies (iv) let {y;} be a net in B which converges weak* to 0. Since F is
weakly compact, there is a subnet, which we still denote by {y;}, and a v e ca(Z, A)
such that F(y;) — v weakly. In particular [ f dyju — v(E) for each E e Z. It suffices
to show that v = 0. Let 4, = {te S : |f()| < n}. By Lemma 10 lim [ fdysu =
= 0 = y(E) for each E€ X, E < A,. Since 4, = S, this gives v = 0.
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To show (iv) implies (i), it suffices to show [z fdu e Y for E € £. Now F has range
in ca(Z, ) so consider F as a map from Y’ into ca(Z, 1) and look at the adjoint, F’,
of F when Y’ and ca(Z, A) have the topologies in (iv). Recalling that the dual of Y’
with b(Y’)is Y, F' is continuous from L*(4) into Y when L*(4) had o(L*(4), ca(Z, 1))
and Y has o(Y, Y'). But F'¢[s¢f du for ¢ € L*(2) so in particular if ¢ = C, then
F'Cp = [zfdue.

Remark 12. The proof of (iv) implies (i) also gives an alternate proof of Theorem 4

of [7]. Theorem 11 should be compared with Proposition 1 of [4] and Corollary 3
of [13].
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