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A CHARACTERIZATION OF POLARITIES WHOSE LATTICE 
OF POLARS IS BOOLEAN 

FRANTISEK §IK, Brno 

(Received June 15, 1979) 

By a polarity in a set X we shall mean a symmetric binary relation ô in X. Sets 
closed under the polarity, the so called polars, are topics of particular interest. The 
set of polars Г^{Х) is a complete lattice in which infima are set meets [ l ] IV § 5. In 
some particular cases the lattice Г^[Х) is a Boolean algebra; let us recall — as an 
example for many others — a polarity (disjointness) in an /-group defined as follows: 
X <5 у = jx| л I j | = 0. In the paper [3] properties of a polarity ô are described, 
which are sufficient for Г^(Х) to be a Boolean algebra (see below properties (Da) to 
(Dd)). 

In the present note we shall prove that the above mentioned conditions are neces
sary as well (cf. Theorem 4 below). An alternative proof of Theorem 4 could be estab
lished by using Theorem 2.3 of Bondarev's paper [2], which also deals with the prob
lem of characterizing a polarity ô possessing the property that the lattice of its polars 
Г s is a Boolean algebra. Note that Theorems 2.1 and 2.2 [2] are essentially known 
(see Theorem 3 below). 

Throughout this paper X denotes a nonempty set. 

Definition 1. A symmetric binary relation in a set X is called a polarity in X. 

Definition 2. ([2] Definition 1.0.) Let ^ be a polarity in a set X. Let -< be a binary 
relation in X defined as follows (x, y,ueX): 

X ^ y o{u д y => и ô x) , 

We say that -< is induced (in X) by д. Obviously, -< is a quasi-order in X, i.e. a reflex
ive and transitive binary relation. 

Definition 3. (Cf. [2] Definition 1.1, [3] 1.3, [4] Sec. C, p. 85, [5] § 1.) Let д be 
a polarity in a set Z and let -< be induced by д. Denote (x, y,eX): 
(Da) antireflexivity of è (i.e., x <5 x => x (5 >' for every y e X), 
(Dß) X 5 y => there exists z eX such that zoz^z^x^z-Ky-
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A couple (X, ô) fulfilling (Da) is called a D-set. If it fulfils both (Da) and (Dß) it is 
called a D'^-set (an n. v. D-set in [2]). 

Lemma 1. Let ô be a polarity in a set X. Then 

[X, ô) is a D-set о [x e X: x ô x} = [x e X: x ô y for every y e X}. 

Proof is evident. 

Remark 1. In Bondarev's definition of a D-set the following identity is supposed: 
{x EX: X Ô X] = {X EX: X Ô y for every y EX} = a singleton or = 0 ([2] p. 16). 

Lemma 2. Let (X, ô) be a D-set. If ô ^ ^ then the set N of all least elements of X 
with respect to the quasi-order -< induced by ô is equal to Л = [x E X: x Ö x}. If 
(5 = 0 then Л = 0 and N = X. 

Proof. If ^ = 0 then obviously Л = 0 and N = X. Let (5 Ф 0. The inclusion 
A ^ N holds by (Da). To prove A ^ N их ПЕМ. There exist x, у EX with x ô y. 
Now, X ô y, n -К У implies x ô n and this together with n ^ x gives n ô n, hence 
n E A. Thus Л = A4s proved. 

Definition 4. (Cf. [4] Sec. С, p. 85, [3] 1,3.) Let <i be a quasi-order in a set X, 
N the set of all least elements of X with respect to <i and let (5 be a polarity in X 
such that the following implications are satisfied (x, y EX): 
(Da) X ô X => X ô y for every y E X (antirefiexivity of ô), 
(Db) X ô y, X <a y => X E N, 
(Dc) X ô y, z ^=i y => X ô z, 
(Dd) X ô y => there exists z EX such that zËN, z -<i x, z ^ y. 
Then the triple (X, <з, ^) is called a P-set. 

Remark 2. In [3] and [4], N is supposed to be non empty. Also, the name of 
a "P-set" is not used there. 

We shall prove that, if ^ Ф 0, the notions of a D*-set and a P-set are equivalent 
in the sense that the structure of one type can be transferred in a uniquely defined 
way onto the structure of the other type. A more detailed account is given in the 
following Theorems 1 and 2. 

Theorem 1. Let (X, ô) be a D^set and (5 ф 0. Then the relation •< induced by ô 
is a quasiorder and (X, -<, ô) is a P-set. 

Proof. Denote by N the set of all least elements in X with respect to -< and Л = 
= {XEX:XÔ X}. By Lemma 2, Л = iV. We shall prove that (Da) to (Dd) hold. 
(Da) = (Da). 
(Db): Suppose x ô y, x -< y. The second relation means that и ô y => и ö x. Since 
X ô у, then X (5 X, hence x E A = N. 
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(De): Suppose x ô y, z ^ y. The second relation tneans that и ö y => и ô z. Since 
X ô y, then X ô z. 

(Dd) and (Dß) are identical conditions because Л. — N. 

Theorem 2. Let {X,^,ô) be a P-set. Then {X, ô) is a D^^set. 

Proof. (Da) = (Da), hence (X, ô) is a D-set. 
(Dß): Denote by N the set of all least elements of X with respect to -<i. Suppose 
x^ y, и ô y. Then и Ö X by (Dc). So we have x <a j ; => x -< y, where -< means the 
relation induced by S. Next, by (Db), Л ^ N because xôx, X^X=>XEN. NOW 
evidently (Dd) impHes (Dß). 

Definition 5. Let (5 be a polarity in a set Z , (0 ç ) Л ç X. If there exists (0 ç ) Б ç Z 
such that Ä = B^, where B^ = {x eX: x ô b for every b e B], then Ä is called a polar. 
The set of all polars in (X, (5) will be denoted by Г^(Х) (or briefly by Г{Х) or Г). 

Several names have been used for the notion of a polar: komponenta in Df. 1.2 
[2], (5-Komponente in [4], p. 85, or Komponente in 1,4,1 [3]. Below, we shall use 
the term of a polar which is currently used at present, e.g. in the theory of /-groups. 

The following Theorem 3 is known. 

Theorem 3. A) Let Ô be a polarity in a set X. Then Г^[Х) is a complete lattice, 
infima in Г are set meets, X and {x eX: x ô y for every y e X} are the greatest and 
least elements of Г, respectively, and the map Ä e Г -> A^ is an involution, i.e. 
A'' = A, {УА^У = AAl, (Л^а) ' = V^a for all A, A, e Г. 

B ) Let (X, ô) be a D-set. Then the lattice Г^[Х) is complemented and A^ is a com
plement of Ae r^(X). 

C) Let [X, ö) be a D^-set. Then Г^[Х) is a complete Boolean algebra. 
For A) and B) see Corollary to Theorem 9 [1] IV § 5 (see also [4] Sec. A and B, 

p. 85 or 1,3,3 [3]). The statement C) is clear if (3 = 0. If ^ Ф 0, then C) is an immediate 
consequence of Theorem 1 and [3] Hauptsatz 1,4,4, which states that T^ÇX) is a com
plete Boolean algebra if (Z, -<, ô) is a P-set. 

The converse of Theorem 3 is also true. We have the following result. 

Theorem 4. A) Let ^ be a complete lattice of subsets of a set У (ф 0), let infima 
in ® be set meets and let A -^ A' be a map of Ъ into Ъ fulfilling A" = A, {УА^У = 
= /\A'^for all A, A^ e Ъ. Denote by X the greatest element of 33, Then there exists 
a polarity ô in X such that Г^[Х) — ©. 

в) Let ® be as in A) and in addition, let A' be a complement of A for any A 
in 33. Then (X, ô) is a D-set. 

C) Let Ъ be a complete Boolean algebra of subsets of a set Y, let infima in 33 
be set meets. Denote by X the greatest element of Ъ. Then there exists a polarity ô 
in X such that Гз{Х) = Ф. Furthermore, (X, ô) is a D'^-set. 
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Proof. A) First, 23 is ordered by set inclusion, because ofÄ^BoB = AA 
АВ = АПВОА^В. Next, for x e X put x = П { ^ ^ ^̂ * •̂ ' ^ A]. Obviously, 

3c G 23. Further, define for any x, y e X 

X Ô y = y G x ' . 

(5 is a polarity in X. In fact, Л, Б G Ф, A ^ В => В' = {A n В)' = A' v В' => 
=> В' ^ A' and so у e x' => у ^ x' => y' ^ 3c" = x э x. 

It follows that x' = х^еГ^{Х) for every xeX. Let Ae^ with A' Ф 0. Then 
A' = V{3c: X G A'} and therefore A = A' = C]{x': x e A'} = C\{x^: x e A'} e ГО{Х% 
thus A G Г5(Х). If A' = 0 then X = Л, since Х ^ Л = > Х ' ^ Л ' = : 0 = > Х ' = 0=> 
=>X = X''= ф' = A'= A. Thus X - V{3c: X G X } =>0 = X' = n{-^': :^eX}G 
G Г5(Х), hence Л = Z = 0̂  e ГО{Х). Conversely for С e Г^{Х), С Ф 0, we have 
C^ - Vr{^ ' ' : ^ e C^}, hence by Theorem 3(A) С = C^^ = f){x^: x e C'} = 
= C]{x: xEC^}e^ (since x̂ -̂ ^ = x^). If C^ = 0 then X = С as above and С = 
= X G 23. We have proved that both 23 and F^iX) are identical as sets and also as 
lattices, since their orders are the same. 

B) X^ = (x G X: X ^ j ; for j ; G X} is the least element of ГДХ), since by Theorem 
3, ô is an involution and X the greatest element of Ф. Now evidently A = [x eX: 
X ô x] ^ X^. To show Ç suppose x ô x. Then 

(a) X 6 x̂ ^ n x^ = X n 3c' = X*^, 

so A я X. (The assertions of (a) can be proved as follows: 1. x GX^^ by Def. 5, 
2. x^ = x' by (A), 3. 3c = n { ^ e 33: x e A] = f]{A e ®: x̂ ^ с A} = x^\ since 23 = 
= r ^ X ) and for Л G © we have x G Л = x̂ ^ ^ {A^^ = ) ç Л, 4. 3c n x' = X\ since ' 
is the symbol of a complement in Ф.) Hence {x G X : X ^ X} = Л = X^ = {X G X: 
X ^ j ; for every y eX]. By Lemma 1, (X, ô) is a i)-set. 

C) Suppose (by way of contradiction) that x, y eX exist not fulfilling (Dß), i.e. 
xd y and (z -< X, z -< J => z ^ z), where -< is induced by d. Since z G x̂ ^ о (x ^ Ь => 
=> z (5 6) <=> z -< X, we obtain x̂ *̂  n j ^ ' ^ ^ {z G X : Z Ö Z] ~ A = the least element 
of Г5(Х) (by (B)), thus x̂ ^ n y^^ = Л. Because x^ is a complement of x̂ ^ in ГО{Х) = Ъ 
(by the proof of (B)), then y^^ ^ x^, hence x ô y, a contradiction. This comleptes 
the proof. 

R e m a r k 3. Theorem 4 implies Bondarev's Theorem 2.3 [2]. Theorem 2.3 [2]: 
If Ф is a complete Boolean algebra and (X, ô) (defined in (C)) a D-set (in the stronger 
sense given in Remark 1), then (X, ô) is a D*-set. 

Corollary. Let Ф and ô be as in Theorem 4(C), let •< be induced by ô and ^ Ф 0. 
Then (X, -<, (5) is a P-set. 

Note that ^ = 0 <^ 23 = {X, 0}. 
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