
Czechoslovak Mathematical Journal

Hiroyuki Ishibashi
Decomposition of isometries of isotropic Un(V ) over finite fields into simple
isometries

Czechoslovak Mathematical Journal, Vol. 31 (1981), No. 2, 301–305

Persistent URL: http://dml.cz/dmlcz/101744

Terms of use:
© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/101744
http://dml.cz


Czechoslovak Mathematical Journal, 31 (106) 1981, Praha 

DECOMPOSITION OF ISOMETRIES OF U^V) 
OVER FINITE FIELDS INTO SIMPLE ISOMETRIES 

HiROYUKi IsHiBASHi, Sakado 

(Received November 7, 1979) 

1. INTRODUCTION 

Let К be a finite field with an involution *. We assume char X ф 2. Let V be an 
n-dimensional right vector space over К with a Я-hermitian form f : V x V -^ K. 
Thus Я is a fixed element of К with ЯЯ* = 1 and / is a sesquilinear form satisfying 
f{y, x) = Я*/(х, yY for all X, у in V. We assume / is non-singular, that is, the 
mapping V-^ Hom^^ (F, K) given by x ь->/(', x) is an isomorphism. We shall write 
in this paper xy for / (x, y). For a vector м in Vif u^ = 0, then и is called isotropic. 
A vector space having an isotropic vector is also said isotropic. We as sume/ (F )^ 
^ 1. Namely we can fix an orthogonal splitting V = H A. L with H = uK + 
-^ vK a hyperboHc plane with uv = 1 and u^ = v^ = 0. The unitary group U^{V), 
or simply U(V), is the set of isometrics cp, i.e., cp in Aut^(F) with cpxcpy = xy for all 
X, y in V. An isometry which fixes a hyperplane of Fis called a quasi symmetry or 
unitary transvection according as the hyperplane is nonsingular or not (resp.). 

If * = 1 and / 1 = 1 , then the unitary group is called an orthogonal group and 
denoted by 0„(V) or 0{V). If * = 1 and Я = — 1, then we say it a symplectic group 
and denote it by Sp„(F) or Sp(F). 

By Ishibashi [3] we know 0„(F) is generated by n symmetries either К is isotropic 
or not but with char X Ф 2. In [4] I have shown Sp„(F) is generated by n symplectic 
transvections and one isometry A^ without the assumption char X ф 2. 

In the present paper we consider the analogous problem for U„{V). Our purpose 
is to prove the following theorem. 

Theorem. Let V be an n dimensional nonsingular l-hermitian space over a finite 
field of characteristic not 2. Suppose V can be splitted a hyperbolic plane H. 
S denotes the set of quasi symmetries and unitary transvections: 

(i) U2{H) is generated by 2 or 3 elements of S, 
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(ii) U„{V) is generated by U2(H) and n — 2 elements of S. 
(iii) 0 „ ( K ) is generated by n symmetries (this is true either V is isotropic or not 

by Ishibashi [3]). 
(iv) Sp„(F) is generated by n + 1 symplectic transvections. 

2. GENERATORS AND RELATIONS 

We introduce the isometrics used in the generation of U{V). We put С = {c e 
е К | с + Яс* = 0}. 

A is defined by и -^ v, v -^ uÀ and zl = 1 on L. 

Ф(а) is defined for a ф 0 in X by w -> ua, v -> y(a*)~ ^ and Ф[а) = 1 on L. 
T(W, C) is defined for any с in С by T(u, c) z = z + и . с . uz, z e V. 
E[u, x) is defined for any x in L by E{u, x) z = z-i-u.xz~x.À.uz — u,^. 

. À . X^ , UZ, Z E V, 

T{u, C) = {T(w, c)\ceC} and E{u, Y) = {E{u, y)\yeY} for any subset Y of L. 

Similarly we define T(v, c) and E{v, x). Let x, y be vectors in V with xy ф 0. 
Then we have V = y^ @ xK where y^ = {z e V\ yz = 0}. So, if x'^ = (x + уУ, 
then a linear map т on F which defined by т = 1 on y-^ and тх = x + у is an isometry 
on F We write т^^ for т. т is called a quasi symmetry if y^ ф 0, and a unitary 
transvection if y^ = 0. Therefore T(u, c) above is a unitary transvection. 

The following identities can be easily verified: 

(1) T{u, a) T{u, b) = T(M, a + b) , 

(2) Ф{а) T{u, c) Ф{а)-^ = T{u, аса''). 

(3) E(u, хУ =E{u,xr), reZ. 

(4) Ф{а) E{u, x) Ф{а" ^) = E{u, x«*) . 

(5) [£(w, X 2- / ) , E{u, УУ\-^ E{U, X) £(W, y) = £(м, x + >^). 

3. PRELIMINARY LEMMAS 

We have a splitting F = Я 1 L. С (̂Я) denotes the subgroup of U{V) which 
consists of all isometrics cp with <p = 1 on L. Let X = {x^, ..., x„_2} be a fixed 
base for L. 

Lemma 3.1. U(V) = <U{H), E{u, L)> (see James [5], Theorem 2.2.). 

Proof. We wirte G = {U{H), E{u, L)> and show U{V) = G. Note E{v, L) a G, 
since for A in U(H) we have AE(u, L) A~^ = E(v, L). 

302 



Take any cp in IJ{V). We have a base X = {x^, ..., х^-г] for L. Assume (p fixes 
Xj, ..., Xf_i and not Xj, i ^ n — 2. Define D == {cr e G\a fixes x^, ..., x^-i}. We 
shall show there exists cr in D with acpxi = x .̂ The proof will proceed step by step. 
First, to simpHfy the notations we write x for x,- and express cpx = ua + vb + z, 
a, b e К and z e L. 

Step i). For some (т^ in D we have a^cpx = uc + vd -\- z, c, d e К and с ф 0. 
Because, if a Ф 0 then Ы a^ = 1. If a = 0 and Ь Ф 0 then let a^ = A. Assume 

a = b = 0, i.e., cpx = z. Then, considering a dual base of (pX = {xj, ..., x,_i, 
z, . . . } , we may choose w in L with wx^ = ... = wx;_i = 0 and wz = 1. Then 
E(U, W) Z = Z + W, SO let (Ji — E{U, W). 

Step ii). For some 0-2 in D we have G2(Ji(px = uc -\- ve + x, ееK. 
Because, put t = z — x. Then teL and for 7 = 1, ..., f — 1 we have XyX = 

= (ai(pxj)(a^(px) = XjZ = XjX + Xjt. Hence x^r = 0 for 7 = 1, ..., i — 1. There
fore СГ2 = E(V, tc~^) is the desired one. 

Step iii). For some (J3 in D we have (T^a2^i^^^ ^^ + ^• 
Because, by x^• = (uc + ve + x)^, we have {uc + veY = 0. Let 0-3 = '^u,-vc-U' 

Step iv). For some a^ in D we have о^G2,02^i4>^ ~ ^• 
Because, we have у in L with yx^ = ... = yxi^^ = 0 and yx = 1. So, let (T4 = 

= E{u, -yc"^). 

Thus if we take a = (т^а^(Т2(^1, then (тсрх̂  = x̂ - for 7 = 1, . . . , i. Now by induction 
on /, we have ^ in G with Qcp = 1 on L, i.e., Qcp is in U{H) and so ф is in G. Q.E.D. 

Lemma 3.2. U{V) = (U{H), E{u,X)y. 

Proof. By the previous lemma it suffices to show E(u, L) с <Ф(а), £(w, X)>. 
This inclusion is given by the identities in § 2. By (4) we have £(w, x^K) с <Ф(а), 
E(U, XJ)> and by (3), (5) we have £(w, x + 3;) c: <£(м, x), E{u, y)} for any x, у 
in L. Thus we have the lemma. Q.E.D. 

Lemma 3.3. U{H) = <Ф(а), A, T{u, C)>. 

Proof. We note AT{u, C) J - ^ = T{v, C). Take any cp in (7(Я). Put cpu = ua + 
+ fb, a, b e K. We may assume a Ф 0. Because, if a = 0, then b ф 0, consider Acp 
for Ç). Since a generates К -• {0}, we may write a = a' for some i. Then Ф~*(а) . 
. T{v, ~Àba~^)(p is in T{u, C). Q.E.D. 

Definition. KQ = {a e К \ a* = a}. 

KQ is a subfield of K. Let jo = a"" be a generator of the multiplicative cyclic group 
KQ - {0}. We note /? ф 1. Because, if j5 = 1, then Xo = {O, 1} which implies 
char К = 2, 3, contradiction. 
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Suppose с ф О exists in С. Take any Ь in С. By с + Xc"^ = О and b + Я6* = 0, 
we have bc~^ = — ЯЬ*( —Яс*)~^ = (Ьс~^)*. This means Ъс"^ is in KQ- Thus we see 
С с CKQ, The converse CKQ CI С is clear. Therefore, for any с Ф 0 in C, we have 
С = cKo and cKo - {0} = {cß' \ i = 1, 2, .,.} = {ca'"' | i = 1, 2, . . . } . 

Lemma 3.4. For some even numbers r and s, it holds ß*" + ß^ = ß or ß'' •- ß^ = ß. 

Proof. Since Д ф 1, we have j5 — 1 ф 0. Write ß — I = ß\ If s is even, then the 
lemma is clear (put r = 0). If 5 is odd, then ß^ — ß = ß""^^ gives the lemma. 

Q.E.D. 

Lemma 3.5. U{H) = <Ф(а), Л, Т{и, c)> for any с in С - {0}. 

Proof. By Lemma 3.3 it suffices to show T{u, C) — <Ф(а), Г(м, c)>. We know 
С = {cß' I ï = 1, 2, . . . } . Hence Т{и, С) = [T(w, cß') \i = 1, 2, . . . } . Since ß = оГ 
and i5 eiCo. ^ r any i we have Ф(а)'"'' T(w, c) Ф(а)"'"' = T(u, cj^^^- ^У Lemma 3.4, 
for some even r and 5 we can express ß = ß^ ± ß\ From this we have Ф(а)'"' . 
. T{u, cß') T{u, cß'Y' Ф(а)-"'^' = Т(к, ciS2' + ^). Q.E.D. 

4. PROOF OF THE THEOREM 

(a) P roo f of (i). 

Define Ti = Ty,„_t; and T2 = т„̂ з̂̂ _„. Therefore, т^ : v -> u, и -^ u(l ~ A*) + Î;2* 
and T2 : w -> Ш, i? -> wAa*~^ + v{i — Яаа*~^). 

First let С = {0}. It is easy to see that аЯ — a* is in С for any a in K. Hence it 
must be Я = 1 and * = 1. Namely U(H) == 0(H) and т^ = A, Z^T2 == Ф{о1). Thus 
by Lemma 3.5 we have U{H) = (т^, Т2>. 

Next let С ф {0}. For above i^ and T2 we write т = TIT2. Take any 0 Ф с in C. 
We note TU == u(x = Ф(а) и. Hence by the same way as the proof of Lemma 3.5, 
we have T(w, C) c: <т, T{u, c)>. Further, since A"'^ = T(u, 1 - Я) т^ and Ф(а) = 
= ^~^Т(г;, аЯ - a*) T2, we have U{H) = (TJ , T2, T(w, c)>. 

(b) Proof of (ii). 

Let X be any nonzero vector of L. Take у in L with xy = 1. Then F = x^ © уК. 
By an direct computation we see т~^+„ Ф(2"'^) т̂^̂^̂с+ы ^(^? ^) is in 1/(Я), because it 
is the identity map on L. Thus E{u, x) is in <(7(Я), т^^+„>. Now, running x in the 
base X = (xj , ..., x„_2} for L, we can choose {т^, ..., т„_2} in S such that £(w, x )̂ e 
G <1/(Я), т^>. Thus, Lemma 3.2 gives U{V) = <17(Я), TJ, ..., т„_2>. 

(c) Proof of (iii) and (iv). 

If U{V) = 0 ( F ) , then С = {0}. Hence 0(Я) is generated by 2 symmetries by the 
case (a) above. So, we have (iii). If U{V) = Sp(F), then С = K. Hence Sp(Я) is 
generated by 3 symplectic transvections by (a). This implies (iv). Thus we have 
completed the proof of the theorem. 
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