Czechoslovak Mathematical Journal

Ján Jakubík

On value selectors and torsion classes of lattice ordered groups

Czechoslovak Mathematical Journal, Vol. 31 (1981), No. 2, 306-313

Persistent URL: http://dml.cz/dmlcz/101745

Terms of use:

© Institute of Mathematics AS CR, 1981

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON VALUE SELECTORS AND TORSION CLASSES OF LATTICE ORDERED GROUPS

Ján Jakubík, Košice

(Received November 7, 1979)

In this note we will investigate a problem proposed by J. Martinez [7] on the relation between value selectors and torsion classes of lattice ordered groups.

1. PRELIMINARIES

We shall use the standard notation for lattice ordered groups (cf. Conrad [1] and Fuchs [2]). The group operation will be written additively.

The system of all convex l-subgroups of a lattice ordered group G will be denoted by $c(G)$; this system is partially ordered by inclusion. Then $c(G)$ is a complete lattice; the lattice operations in $c(G)$ are denoted by \wedge, \vee.

In what follows we shall consider objects belonging to some type of the following hierarchy:

1) lattice ordered groups and their elements;
2) classes of lattice ordered groups;
3) classes of classes of lattice ordered groups.

Let \mathscr{G} be the class of all lattice ordered groups. Let A be a nonempty subclass of \mathscr{G}. Consider the following conditions for A :
(a) If $G \in \mathscr{G}$ and if $\left\{H_{i}\right\}_{i \in I} \subseteq A \cap c(G)$, then $\bigvee_{i \in I} H_{i} \in A$.
(b) If $G \in A$ and $H \in c(G)$, then $H \in A$.
(c) A is closed with respect to homomorphisms.

The class A is said to be a torsion class, if it satisfies (a), (b) and (c) (cf. Martinez [5], [6], [7]; a different terminology (using the term 'hereditary torsion class') has been applied in [4], [8]). Each variety of lattice ordered groups is a torsion class (Holland [3]).

Let T be the class of all torsion classes; T is partially ordered by inclusion. Then T is a complete lattice [5]. Several properties of the lattice T were established in [5], [9].

2. VALUE SELECTORS

The notion of a values selector was introduced in [7]. Let us recall some definitions and results concerning this notion.

Let $G \in \mathscr{G}, x \in G$. A convex l-subgroup of G maximal with respect to the property of noncontaining x is called a value of x. A convex l-subgroup of G is said to be a value if it is a value of an element of G. Let $M_{0}(G)$ be the set of all values of G.

A value selector is a function M assigning to each lattice ordered group G a subset $M(G)$ of $M_{0}(G)$ such that the following conditions are fulfilled:
(1) If $H \in c(G)$, then $M(H)=\{C \cap H: C \in M(G)$ and $C \notin H\}$.
(2) If K is an l-ideal of G, then $M(G / K) \supseteq\{C / K: C \in M(G)$ and $C \supseteq K\}$.
(Of course, we also assume that the mapping M is defined intrinsically, i.e., if φ is an isomorphism of a lattice ordered group G_{1} onto a lattice ordered group G_{2}, then $\left.M\left(G_{2}\right)=\left\{\varphi(C): C \in M\left(G_{1}\right)\right\}.\right)$

Let M_{1} and M_{2} be value selectors. We put $M_{1} \leqq M_{2}$ if $M_{1}(G) \subseteq M_{2}(G)$ for each lattice ordered group G. Let $\left\{M_{i}\right\}_{i \in I}$ be a family of value selectors; we define $M_{1}(G)=$ $=\bigcap_{i \in I} M_{i}(G)$ and $M_{2}(G)=\bigcup_{i \in I} M_{i}(G)$ for each $G \in \mathscr{G}$. Then M_{1} and M_{2} are value selectors, and $M_{1}=\bigwedge_{i \in I} M_{i}, M_{2}=\bigvee_{i \in I} M_{i}$.

Let M be a value selector. We denote by $T(M)$ the class of all latice ordered groups G such that $M(G)=M_{0}(G)$. For each torsion class A and each $G \in \mathscr{G}$ we put

$$
A^{\wedge}(G)=\left\{H \in M_{0}(G): A(G) \nsubseteq H\right\}
$$

where $A(G)$ is the join of all convex l-subgroups of G belonging to A.
Then we have (cf. [7]; Lemmas 1.1-1.3):
2.1. Lemma. For each value selector $M, T(M)$ is a torsion class.
2.2. Lemma. For each torsion class A, A^{\wedge} is a value selector; moreover, for $G \in \mathscr{G}$ we have $G \in A$ if and only if $A^{\wedge}(G)=M_{0}(G)$.
2.3. Lemma. If A is a torsion class and M is a value selectcr, then $T(M)^{\wedge} \leqq M$ and $T\left(A^{\wedge}\right)=A$.

The following problem has been proposed in [7]:
'The function $M \rightarrow T(M)$ preserves arbitrary intersections. But it is unknown whether it also preserves joins. It would be of interest to know it, for it would shed light on the following question: If A is a torsion class, is there a largest value selector M such that $T(M)=A$? There is always a smallest, namely A^{\wedge}. In view of the inequality in 1.3 , the author doubts that it preserve joins.'

Let $G \in \mathscr{G}$ and $X \subseteq G$. We denote $X^{\delta}=\{g \in G:|g| \wedge|x|=0$ for each $x \in X\}$. If we consider several lattice ordered groups then we sometimes write $X^{\delta(G)}$ rather than X^{δ}. It is well-known that X^{δ} is a convex l-subgroup of G.

The following lemma is easy to verify.
3.1. Lemma. Let $0<x \in G$ and suppose that the interval $[0, x]$ is a chain. Then $\{x\}^{\delta \delta}$ is a linearly ordered group.
3.2. Lemma. Let $0<x \in G$ and suppose that the interval $[0, x]$ is a chain. Then x possesses a unique value $B+\{x\}^{\delta}$, where B is the value of x in $\{x\}^{\delta \delta}$.

Proof. Put $\{x\}^{\delta \delta}=A$ and let $\left\{A_{i}\right\}_{i \in I}$ be the set of all convex l-subgroups of A such that $x \notin A_{i}$. Denote $B=\bigvee_{i \in I} A_{i}$. The fact that the system of all convex l subgroups of a linearly ordered group is linearly ordered and 3.1 imply that B is the unique value of x in A.

We set $\{x\}^{\delta}=C, B+C=D$. Clearly $C=A^{\delta}$. Hence we obtain by a routine calculation that D is a convex l-subgroup of G. Moreover, D is a direct sum of its l-subgroups B and C, and $B \vee C=D$ is valid in the lattice $c(G)$. We also have $x \notin D$.

Let D_{1} be a convex l-subgroup of G with $x \notin D_{1}$. Let $0 \leqq d_{1} \in D_{1}$. Then $x \nsubseteq d_{1}$. Denote $x \wedge d_{1}=y,-y+d_{1}=z,-y+x=y_{1}$. We have $z \geqq 0,0<y_{1} \leqq x$ and $y_{1} \wedge z=0$. This and the fact that A is linearly ordered yields $a \wedge z=0$ for each $0 \leqq a \in A$. Thus $z \in A^{\delta}$ and hence $d_{1} \in D$. Therefore $D_{1} \subseteq D$, which completes the proof.

If I is a linearly ordered set and if G_{i} is a linearly ordered group for each $i \in I$, then $\Gamma_{i \in I} G_{i}$ denotes the lexicographic product of the system $\left\{G_{i}\right\}(i \in I)$ (cf., e.g., Fuchs [2]).

Let N be the set of all positive integers and let $P=\left\{p_{n}\right\}(n \in N)$ be the set of all primes. Further, let R_{0} be the set of all rational numbers (with the natural linear order).

Let f be a one-to-one mapping of the set R_{0} onto N and let R_{1}, R_{2} be infinite subsets of R_{0} such that (i) $R_{1} \cap R_{2}=\emptyset, R_{1} \cup R_{2}=R_{0}$, and (ii) both R_{1} and R_{2} are dense subsets of R_{0}. For each $x \in R_{0}$ let K_{x} be the set of all rational numbers of the form $l p_{n}^{-m}$, where $n=f(x), m \in N$ and l is any integer. We consider K_{x} as an additive group with the natural linear order. If $x, y \in R_{0}$ are distinct, then the linearly ordered groups K_{x} and K_{y} fail to be isomorphic. We denote by H_{0} the class of all lattice ordered groups H that can be expressed as

$$
\begin{equation*}
H=\Gamma_{i \in I} H_{i}, \tag{3}
\end{equation*}
$$

where
(i) I is a convex subset of R_{0};
(ii) for each $i \in I, H_{i}$ is isomorphic with K_{i}.

From the definition of H_{0} it follows that if K is a homomorphic image of a lattice ordered group H belonging to H_{0} then either K belongs to H_{0} or $K=\{0\}$. The same is valid for each convex l-subgroup of H.

Let $H \in H_{0}$ be as in (3) and let $0<g \in H$. Let us denote by i_{0} the least $i \in I$ with $g(i) \neq 0$. If $i_{0} \in R_{i}(i \in\{1,2\})$, then the element g will be said to be of type R_{i}. Let $R_{i}(H)$ be the set of all elements of H which are of type $R_{i}(i=1,2)$. We have $R_{1}(H) \cap R_{2}(H)=\emptyset$. If φ is an isomorphism of H onto a linearly ordered group $H^{\prime} \in H_{0}$, then $\varphi\left(R_{i}(H)\right)=R_{i}\left(H^{\prime}\right)(i=1,2)$.

An isomorphism φ of a lattice ordered group G_{1} into a lattice ordered group G_{2} is said to be convex if $\varphi\left(G_{1}\right)$ is a convex l-subgroup of G_{2}. Let G be a lattice ordered group and $0<x \in G$. The element x will be called of type R_{1} if there exist $H \in H_{0}$ and a convex isomorphism φ of H into G such that $x \in \varphi(H)$ and $\varphi^{-1}(x) \in R_{1}(H)$. Let $R_{1}(G)$ be the set of all elements of G which are of type R_{1}. The set $R_{2}(G)$ is defined analogously. Then $R_{1}(G) \cap R_{2}(G)=\emptyset$ is valid. Moreover, 3.2 implies that each element $x \in R_{1}(G) \cup R_{2}(G)$ possesses a unique value $v_{G}(x)$ in G. We put

$$
s_{1}(G)=\left\{v_{G}(x): x \in R_{1}(G)\right\}, \quad s_{2}(G)=\left\{v_{G}(x): x \in R_{2}(G)\right\} .
$$

3.3. Lemma. The mappings s_{1} and s_{2} fulfil the condition (1).

Proof. Let G be a lattice ordered group and let G_{1} be a convex l-subgroup of G. We have to verify that $s_{1}\left(G_{1}\right)=\left\{C \cap G_{1}: C \in s_{1}(G)\right.$ and $\left.C \neq G_{1}\right\}$.

Let $C_{1} \in s_{1}\left(G_{1}\right)$. There is $x \in R_{1}\left(G_{1}\right)$ such that $C_{1}=v_{G_{1}}(x)$. Let B be the convex l-subgroup of $\{x\}^{\delta\left(G_{1}\right) \delta\left(G_{1}\right)}$ that is maximal with respect to the property of noncontaining x; i.e., B is the value of x in $\{x\}^{\delta\left(G_{1}\right) \delta\left(G_{1}\right)}$. Then B is also the value of x $\{x\}^{\delta \delta}$. From 3.2 it follows that

$$
C_{1}=v_{G_{1}}(x)=B+\{x\}^{\delta\left(G_{1}\right)} .
$$

Further, we have $x \in R_{1}(G)$. Thus x has a unique value in G; let us denote this value by $C=v_{G}(x)$. Then $C \in s_{1}(G), C \neq G_{1}$ and by using 3.2 again we obtain

$$
C=B+\{x\}^{\delta} .
$$

Since $\{x\}^{\delta\left(G_{1}\right)}=\{x\}^{\delta} \cap G_{1}$, we get $C_{1}=C \cap G_{1}$. Thus $s_{1}\left(G_{1}\right) \subseteq\left\{C \cap G_{1}: C \in\right.$ $\in s_{1}(G)$ and $\left.C \neq G_{1}\right\}$.

Now let $C \in s_{1}(G)$ such that $C \neq G_{1}$. There is $x \in R_{1}(G)$ with $C=v_{G}(x)$. Let B be the value of x in $\{x\}^{\delta \delta}$; then $C=B+\{x\}^{\delta}$. We shall show that $x \in G_{1}$.

By way of contradiction, assume that x does not belong to G_{1}. From $C \notin G_{1}$ it follows that there exists $0<g_{1} \in G_{1}$ such that $g_{1} \notin C$. If $g_{1} \geqq x$, then $x \in G_{1}$, which is a contradiction. If $0<z \in G$ and $z \leqq x$, then the structure of lattice ordered groups belonging to H_{0} yields that either $z \in B$ or the value of z in $\{x\}^{\delta \delta}$ coincides with B. If $g_{1}<x$, then $g_{1} \notin B$ (because $g_{1} \notin C$) and thus the value of g_{1} in $\{x\}^{\delta \delta}$ coincides with B; but in this case there is a positive integer n with $n g_{1}>x$, implying $x \in G_{1}$.

Hence we can suppose that g_{1} is incomparable with x. Put $y=x \wedge g_{1}, z=-y+$ $+g_{1}$. Then $y \in B$ and $z \in\{x\}^{\delta}$, hence $g_{1} \in C$, which is a contradiction. Therefore $x \in G_{1}$ and so $B \subseteq G_{1}$.

The relation $x \in R_{1}(G) \cap G_{1}$ implies $x \in R_{1}\left(G_{1}\right)$. Thus

$$
\begin{aligned}
& C \cap G_{1}=\left(B+\{x\}^{\delta}\right) \cap G_{1}=\left(B \vee\{x\}^{\delta}\right) \wedge G_{1}= \\
& =\left(B \wedge G_{1}\right) \vee\left(\{x\}^{\delta} \wedge G_{1}\right)=B \vee\left(\{x\}^{\delta} \wedge G_{1}\right)= \\
& =B \vee\{x\}^{\delta\left(G_{1}\right)}=B+\{x\}^{\delta\left(G_{1}\right)}=v_{G_{1}}(x) \in s_{1}(G) .
\end{aligned}
$$

We have proved that s_{1} fulfils (1). The same proof can be applied to s_{2}.
3.4. Lemma. The mappings s_{1} and s_{2} fulfil the condition (2).

Proof. Let K be an l-ideal of a lattice ordered group G and let $C \in s_{1}(G), C \supseteq K$. We have to verify that C / K belongs to $s_{1}(G / K)$.

According to the assumption there exists $x \in R_{1}(G)$ such that $C=v_{G}(x)$. As above, put $A=\{x\}^{\delta \delta}, B=v_{A}(x)$. For each $y \in G, Y \subseteq G$ put $\bar{y}=y+K, \bar{Y}=$ $=\{y+K\}_{y \in Y}$. The structure of A yields that the lattice ordered group \bar{A} belongs to H_{0} (the case $\bar{A}=\{0\}$ is impossible because $\bar{x} \in \bar{A}$ and $\bar{x} \neq K$); moreover $\bar{x} \in R_{1}(\bar{A})$ and $\bar{B}=v_{\bar{A}}(\bar{x})$. Thus $\left.\bar{x} \in \bar{G}\right)$.

Put $D=\{x\}^{\delta}$. From 3.2 it follows that $\bar{C}=\bar{B}+\bar{D}$. Hence in order to prove that $\bar{C}=v_{\bar{G}}(\bar{x})$ it suffices to verify that

$$
\bar{D}=\{\bar{g} \in \bar{G}:|\bar{g}| \wedge \bar{x}=\overline{0}\},
$$

the symbol $\overline{0}$ denoting the zero element in \bar{G}.
If $\bar{g} \in \bar{D}$, then there is $g_{1} \in \bar{g} \cap D$, hence $|\bar{g}| \wedge \bar{x}=\left|\bar{g}_{1}\right| \wedge \bar{x}=\overline{g_{1} \mid \wedge x}=\overline{0}$. Conversely, suppose that $\bar{g} \in \bar{G}$ and that $|\bar{g}| \wedge \bar{x}=\overline{0}$ is valid. There exists $0 \leqq$ $\leqq g_{2} \in|\bar{g}|=\bar{g} \mid$. We have $\bar{g}_{2} \wedge \bar{x}=\overline{0}$, hence $0 \leqq z=g_{2} \wedge x \in K$. Put $g_{3}=-z+$ $+g_{2}, x_{1}=-z+x$. Clearly $x \notin K$, thus $0<x_{1} \leqq x$. Moreover, we have $g_{3} \wedge x_{1}=$ $=0$. This and the fact that $[0, x]$ is a chain imply $g_{3} \wedge x=0$. Hence $g_{3} \in D$ and therefore $|\bar{g}|=\bar{g}_{3} \in \bar{D}$. Thus $\bar{g} \in \bar{D}$, which completes the proof for s_{1}. The proof for s_{2} is analogous.

From 3.3 and 3.4 we obtain:
3.5. Lemma. s_{1} and s_{2} are value selectors.

4. THE MAPPINGS s_{1}^{\prime} AND s_{2}^{\prime}

In this paragraph we shall use the same notation as in § 3. Let R_{01}^{\prime} be the class of all lattice ordered groups H such that H is isomorphic to some $K_{t}, t \in R_{1}$. The class R_{02}^{\prime} is defined analogously. We put $R_{0}^{\prime}=R_{01}^{\prime} \cup R_{02}^{\prime}$.

Let $G \in \mathscr{G}, 0<x \in G$. If there exists a convex l-subgroup H of G with $x \in H$ such that H belongs to R_{01}^{\prime}, then the element x is said to be of type R_{01}. The elements of type R_{02} or R_{0}, respectively, are defined analogously. Let $R_{01}(G)$ be the set of all elements of G which are of type R_{01}. Similarly we define the sets $R_{02}(G)$ and $R_{0}(G)$. According to 3.2, each element $x \in R_{0}(G)=R_{01}(G) \cup R_{02}(G)$ possesses a unique value $v_{G}(x)$ in G. Put

$$
s_{0 i}(G)=\left\{v_{G}(x): x \in R_{0 i}(G)\right\}(i=1,2), \quad s_{0}(G)=\left\{v_{G}(x): x \in R_{0}(G)\right\} .
$$

4.1. Lemma. s_{01}, s_{02} and s_{0} are value selectors.

The proof is analogous to that used in $\S 3$ for s_{1} and s_{2}, and therefore will be omitted.

Put $s_{i}^{\prime}=s_{i} \vee s_{0}$ for $i=1,2\left(\right.$ i.e., $s_{i}^{\prime}(G)=s_{i}(G) \cup s_{0}(G)$ for each $\left.G \in \mathscr{G}\right)$. From 3.5 and 4.1 we obtain
4.2. Lemma. s_{1}^{\prime} and s_{2}^{\prime} are value selectors.

Let us denote by A_{0} the class of all lattice ordered groups G such that either $G=$ $=\{0\}$ or G is a direct sum ($=$ discrete direct product) of lattice ordered groups belonging to R_{0}^{\prime}. Similarly we define the classes A_{1} and A_{2}. It is easy to verify that all these classes are torsion classes (this follows also immediately from [9], Thm. 2.6).

Put $B_{1}=T\left(s_{1}^{\prime}\right)$. For each $K_{1} \in R_{0}^{\prime}$ we have $s_{0}\left(K_{t}\right)=\{\{0\}\}=M_{0}\left(K_{t}\right)$, whence $K_{t} \in T\left(s_{0}\right) \subseteq T\left(s_{1}^{\prime}\right)$. Because each lattice ordered group $G \in A_{0}$ is a join of lattice ordered groups belonging to R_{0}^{\prime} and since $T\left(s_{1}^{\prime}\right)$ is a torsion class (cf. 2.1) we infer that

$$
\begin{equation*}
A_{0} \subseteq T\left(s_{1}^{\prime}\right) \tag{4}
\end{equation*}
$$

is valid.
For each $G \in \mathscr{G}$ we denote by $A_{0}(G)$ the join of all convex l-subgroups of G which belong to A_{0}. Then $A_{0}(G)$ belongs to A_{0} as well.
4.3. Lemma. $s_{1}(G) \cap s_{2}(G)=\emptyset$.

Proof. By way of contradiction, assume that $C \in s_{1}(G) \cap s_{2}(G)$. According to 3.2 there exists $0<x \in R_{1}(G), 0<y \in R_{2}(G), B_{1} \in c(G), B_{2} \in c(G)$ such that

$$
C=B_{1}+\{x\}^{\delta}, \quad C=B_{2}+\{y\}^{\delta},
$$

where B_{1} is the value of x in $\{x\}^{\delta \delta}$ and B_{2} is the value of y in $\{y\}^{\delta \delta}$. Since $R_{1}(G) \cap$ $\cap R_{2}(G)=\emptyset$ we have $x \neq y$. If $x<y$, then $x \in B_{2} \subseteq C$, which is impossible; similarly, $y \nless x$. Hence x is incomparable with y; because $[0, x]$ and $[0, y]$ are chains, it follows that $x \wedge y=0$, and thus $y \in\{x\}^{\delta} \subseteq C$, which is a contradiction.
4.4. Lemma. Let $y \in R_{2}(G), y \notin R_{02}(G)$. Then $v_{G}(y) \notin s_{0}(G)$.

Proof. Clearly $s_{01} \leqq s_{1}$, hence 4.3 implies $s_{01}(G) \cap s_{2}(G)=\emptyset$. Because of $v_{G}(y) \in$ $\in s_{2}(G)$ we have to verify that $v_{G}(y) \notin s_{02}(G)$.

By way of contradiction, assume that $v_{G}(y) \in s_{02}(G)$. Hence there exists $z \in R_{02}(G)$ such that $v_{G}(y)=v_{G}(z)$. From the structure of lattice ordered groups belonging to H_{0} we infer that we have neither $z=y$ nor $z>y$. The cases (i) $y>z$ and (ii) y is incomparable with z lead to a contradiction in a similar way as in the proof of 4.3.
4.5. Lemma. Let $G \in B_{1}, C \in M_{0}(C)$. Then there is $x \in R_{0}(G)$ such that $C=$ $=v_{G}(x)$.
Proof. By way of contradiction, assume that $C \neq v_{G}(x)$ for each $x \in R_{0}(G)$. Then there is $x \in R_{1}(G) \backslash R_{01}(G)$ such that $C=v_{G}(x)$. Now the definition of H_{0} implies that there is $y \in R_{2}(G) \backslash R_{02}(g)$ with $y<x$ (we use the density of R_{2} in R_{0}). From 4.3 and 4.4 we obtain $v_{G}(y) \notin s_{1}^{\prime}(G)$ implying $G \notin B_{1}$, which is a contradiction.
4.6. Lemma. Let G belong to B_{1}. Then $G=A_{0}(G)$.

Proof. Suppose that $G \neq A_{0}(G)$. Then there is $y \in G \backslash A_{0}(G)$. There exists a value C of y in G such that $A_{0}(G) \subseteq C$. In view of 4.5, there is $x \in R_{0}(G)$ with $C=v_{G}(x)$. The convex l-subgroup C_{1} of G generated by x belongs to A_{0}, hence $x \in C_{1} \subseteq A_{0}(G) \subseteq C$, which is a contradiction.

From (4) and 4.6 we conclude
4.7. Lemma. $T\left(s_{1}^{\prime}\right)=A_{0}$.

Analogously we obtain
4.8. Lemma. $T\left(s_{2}^{\prime}\right)=A_{0}$.
4.9. Lemma. Let H be as in (3) with $I=R_{0}$. Then $H \in T\left(s_{1}^{\prime} \vee s_{2}^{\prime}\right)$ and $H \notin A_{0}$.

Proof. If C is a value in H, then there is $0<x \in H$ such that C is a value of x. Since x belongs either to $R_{1}(H)$ or to $R_{2}(H), C$ belongs to $\left(s_{1}^{\prime} \vee s_{2}^{\prime}\right)(H)$. Hence $H \in T\left(s_{1}^{\prime} \vee s_{2}^{\prime}\right)$. Moreover, H is linearly ordered and thus H is directly indecomposable. Hence from $H \notin R_{0}^{\prime}$ it follows that H does not belong to A_{0}.
4.10. Corollary. There does not exist any largest value selector M with $T(M)=$ $=A_{0}$.

Hence the above questions quoted from [7] are answered by the following
Proposition. The function $M \rightarrow T^{\prime}(M)$ does not, in general, preserve joins. If A is a torsion class, then there need not exist a largest value selector M with $T(M)=$ $=A$; moreover, the class of all value selectors M_{1} with $T\left(M_{1}\right)=A$ need not be directed.

References

[1] P. Conrad: Lattice ordered groups. Tulane University, 1970.
[2] L. Fuchs: Partially ordered algebraic systems, Pergamon Press, Oxford-London-New York-Paris, 1963.
[3] Ch. Holland: Varieties of l-groups are torsion classes, Czechoslovak Math. J. 29 (104) (1979), 11-12.
[4] Ch. Holland, J. Martinez: Accessibility of torsion classes, Algebra universalis 9 (1979), 199-206.
[5] J. Martinez: Torsion theory for lattice ordered groups, Czechoslovak Math. J. 52 (100) (1975), 284-299.
[6] J. Martinez: Torsion theory for lattice ordered groups II, Czechoslovak Math. J., 26 (101) (1976), 93-100.
[7] J. Martinez: Is the lattice of torsion classes algebraic? Proc. Amer. Math. Soc. 63 (1977), 9-14.
[8] J. Martinez: Prime selectors in lattice ordered groups, Czechoslovak Math. J. (to appear).
[9] J. Jakubik: Torsion radicals of lattice ordered groups, Czechoslovak Math. J. (to appear).

Author's address: 04001 Košice, Švermova 5, ČSSR (Vysoké učení technické).

