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SEMI-CONTINUITY AND WEAK-CONTINUITY 

TAKASHI NOIRI, Yatsushiro 

(Received November 16, 1979) 

INTRODUCTION 

In 1961, N. Le vine [8] defined a function/ of a topological space X into a topo­
logical space Y to be weakly-continuous if for each x e X and each open neigh­
borhood Voff(x) there exists an open neighborhood U of x such that/((7) c: C1(F), 
where C1(F) denotes the closure of F. A subset 5 of a topological space X is said to 
be semi-open if there exists an open set U of X such that U с S a C\{U). The 
family of all semi-open sets in X is denoted by SO(X). In 1963, N. Levine also defined 
a function/ : X -^ Yto be semi-continuous [9] if/~ ^(F) e SO(X) for every open set F 
of Y. It has been known that the semi-continuity is equivalent to the quasi-conti-
nuity [10, Theorem 1.1]. In 1969, N. Biswas [2] defined a function/ : X -> У to be 
semi-open if f(U)e 80(У) for every open set U of X. In 1972, S. G. Crossley and 
S. K. Hildebrand [5] defined a func t ion / :X -> Yto be irresolute (resp. pre-semi-
open) if for each Ve 80(У) (resp. U e SO(X)), f \V) e SO(X) (resp. f{U)eSO{Y)). 
The purpose of the present paper is to investigate the interrelation among the weak-
continuity, the semi-continuity and some weak forms of open functions. Themain 
results of this paper, which contain two improvements of the results due to T. 
Neubrunn [11], are the following: (l) A semi-continuous function is irresolute if 
it is either weakly-open injective or almost-open in the sense of Singal. (2) A semi-
open function is pre-semi-open if it is either weakly-continuous or almost-con­
tinuous in the sense of Husain. (3) A semi-continuous function is weakly-continuous 
if the domain is extremally disconnected. 

1. IRRESOLUTE FUNCTIONS 

Definition 1Л. A function / : X -> У is said to be weakly-open [17] if /((7) cz 
с Int (/(C1(1L/))) for every open set U of X, 

Definition 1.2. Д function/ : X -> У is said to be almost-open in the sense of Singal 
(simply a.o.S.) [ l8] of for every regular open set U of XJ{U) is open in У 

314 



Definition 1.3. A function f : X -> 7 is said to be almost-open in the sense of 
Wilansky (simply a.o.W.) [20] if/-^(C1(F)) с Cl(/^i(K)) for every open set V 
of 7, where/ is not always injective. 

We shall begin by investigating the relationships between semi-openness and the 
weak forms of openness defined above. 

Lemma 1.4. / / / : X -> Y is an a.O.S. function, then it is weakly-open. 

Proof. Let и be an open set of X. Since / is a.o.S., /(lnt(Cl((7))) is open in 7 
and hence f{U) cz /(lnt(Cl(L/))) с Int (/(C1(L/))). 

The converse to Lemma L4 is not necessarily true as the following example shows. 

Example 1.5. Let X = {a, b, c, d] and G = {Z, {a, b, d}, {a, b}, {d}, 0}. Let 7 = 
= {x, y, z] and T - {7, {x, y], {y, z}, {y], {z}, 0}. L e t / : (Z, a) -> (7, т) be a func­
tion defined as follows: f{a) = x, f{b) = z and /(c) = / ( J ) = y. Then / is weakly-
open but it is not a.o.S. 

Example 1.6. Let X = {a, b, c, d} and (т = [X, {a, b, c}, [a, c, d}, [a, b}, {a, c}, 
{a}, {c}, 0}. Let 7 = {x, y, z] and т = {7, {x, y}, {z}, 0}. Consider a function/ : 
: (Z, cr) -> (7, T) defined as follows:/(a) = /(c) = y,f{b) = x and/((i) = z. T h e n / 
is a.o.W. but it is neither a.o.S. nor weakly-open. 

Example 1.7. Let Z be the real numbers with the cocountable topology a, 7 = 
= [a, b} with the topology т = {7, {a}, 0} a n d / : (Z, cr) -> (7, т) a function defined 
as follows: / (x) = a if x is rational; / (x ) = Ь if x is irrational. Then / is a.o.S. but 
it is not a.o.W. 

Example 1.8. Let Z = {a, b, c, d] and a = {Z, [a, 6, c}, {a, c, d}, {a, b}, {a, c}, 
{c, d}, [a], {c}, 0}. Let 7 = {x, y, z] and т = {7, {x, y], {z}, 0}. Define a function 
/ : (Z, a) -> (7, T) as follows: / ( a ) = x, f{b) = у and / (c) = / ( ^ ) = z. Then / is 
continuous, a.o.S. and a.o.W. but it is not semi-open. 

Example 1.9. Let Z = 7 = {a, b, c}, a = {X, {b, c}, {a}, 0} and т = {7, {a, b}, 
{a}, {b}, 0}. Let / : (Z, a) -> (7, т) be the identity function. Then / is semi-open 
(in fact, pre-semi-open) but it is neither a.o.W. nor weakly-open. 

By Lemma L4 and the previous five examples, we obtain the following diagram, 
where Л -+-> J5 means that Ä does not necessarily imply B. 

a . о O . W . 

weakly-opei^ 
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In 1967, D. R. Anderson and J. A. Jensen [1] showed that every open and con­
tinuous function is irresolute. In 1977, T. Neubrunn proved that every open and some­
what continuous injection is irresolute [11, Theorem 3]. We shall show that the 
condition "open" in this result can be replaced by "weakly-open". 

Definition 1.10. A function f : X -^ У is said to be somewhat continuous [6] if, 
for each open set Fof У with/"^(K) ф 0, there exists an open set U of X such that 
0 Ф и czf-'{V). 

Theorem 1.11. If f : X -^ Y is a weakly-open somewhat continuous injection, 
then it is irresolute. 

Proof. Let Fe 80(У) and x ef-'^{V). Fut у = / (л) and let U be any open neigh­
borhood of X. Since/is weakly-open, we have 

у ef{U) nVcz Int (/(Cl((7))) n Ve SO{Y). 

By Lemma 4 of [13], there exists an open set G such that 0 Ф G с Int (/(C1(U))) n 
n К Since / is somewhat continuous and /"^(G) Ф 0, there exists an open set W 
of X such that 0 Ф Wczf'^{G), Therefore, we obtain Wcz C\{U)nf-\V) and 
hence W с C\{U) n Int (/~^(F)) because / is injective. Thus, we have 0 Ф C\{U) n 
n Int (/"" ^(F)) and hence 0 Ф I/ n Int {f~\V)). This shows that x G Cl(Int {f~\V))) 
a n d / " ^ ( F ) e S O ( X ) . 

In 1976, the author showed that every a.o.W. semi-continuous function is irresolute 
[14, Theorem 1]. Although a.O.S. and a.o.W. are independent of each other, we have 

Theorem 1.12. / / a function f : X -^ Y is a.o.S. and semi-continuous, then it is 
irresolute. 

Proof. Let F e SO(y). Then there exists an open set G of У such that G cz F c: 
C1(G); hence f-\G) cz f-\V) czf-'{Cl{G)). Since / is semi-continuous, f~\G) e 
e SO(X) and hence/~^(G) cz Cl(Int {f~\G))). Now, put 

F= Y^f{X-Cl{lnt{f-\G)))). 

Then F is closed in У because/ is a.o.S. and Cl(Int (/"^(G))) is regular closed in X. 
By a straightforward calculation we obtain G a F and /~^(F) cz Cl(Int (/~^(G))). 
Therefore, we have /-^(C1(G)) с C\{f-\G)), Since / - ^ ( G ) e SO(X), we obtain 
f~\V) G SO{X) by Theorem 3 of [9]. 

In Example 1 of [11], it was shown that an open somewhat continuous function 
is not necessarily irresolute. Therefore, the condition "semi-continuous" in Theorem 
1.12 cannot be replaced by "somewhat continuous". On the other hand, it has been 
known that a semi-open and semi-continuous function is not necessarily irresolute 
[15, Example 11]. Thus, the condition "a.o.S." in Theorem 1.12 cannot be replaced 
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by "semi-open". However, every semi-open semi-continuous function is necessarily 
irresolute if the range is extremally disconnected. To prove this fact we recall some 
definitions. Let S be a subset of a topological space X. A subset S is said to be 
semi-closed [3] if X — 5 is semi-open in X. The intersection of all semi-closed sets 
containing S is called the semi-closure of S and denoted by S [3]. A topological 
space X is said to be extremally disconnected if the closure of every open set in X 
is open in X. 

Lemma 1.13. If a topological space X is extremally disconnected, then C\{U) = U_ 
for every U e SO(Z). 

Proof. In general, we have S^ с Cl(5) for every subset S of X. Thus, we shall 
show that £ ẑ  Cl{U) for each U e SO(J^). Let 0 Ф t/ e SO(Z) and хфи_, then there 
exists a F e SO(jr) such that x e F and VnU = 0; hence Int (F) n Int (U) = 0. 
Since X is extremally disconnected, we have Cl(Int (F)) n Cl(Int (I/)) = 0. Therefore, 
we have x ф Cl(Int ([/)) = Cl(l7) [13, Lemma 2]. 

Theorem 1.14. / / a topological space Y is extremally disconnected and a function 
f :X -^ Y is semi-open semi-continuous, then f is irresolute. 

Proof. Let F e SO(y). There exists an open set G of 7 such that G Œ V Œ C1(G); 
hence/"^(G) czf~^(y) с/~^(C1(G)). Since У is extremally disconnected, we have 
G = C1(G) by Lemma 1.13. Since/ is semi-open, it follows from Theorem 2 of [12] 
t h a t / - ^ ( G ) cz C1(/-^(G)). Therefore, we obtain/- i(Cl(G)) с C1(/-^(G)). S ince / 
is semi-continuous, f~\G) e SO(X) and hence / ~ ^(F) e SO(Z). 

It may be noted that a semi-open continuous function is not necessarily irresolute 
if the range is not extremally disconnected [15, Example 19]. 

2. PRE-SEMI-OPEN FUNCTIONS 

Definition 2.1. A function/ : X -> Yis said to be almost-continuous [7] if, for each 
xeX and each neighborhood F o f / ( x ) , Cl(/~^(F)) is a neighborhood of x, where 
the topological spaces X and У are not necessarily Hausdorff. 

Definition 2.2. A function/ : X -^ Yis said to be somewhat open [6] if, for each 
nonempty open set U of X, there exists an open set F of У such that ф Ф V cz f{U). 

By Example 1 of [17], D. A. Rose showed that the almost-continuity is independent 
of the weak-continuity. In [10], A. Neubrunnova showed that almost-continuity 
and semi-continuity are independent of each other. A. Prakash and P. Srivastava 
[16] stated in Theorem 4 of [16] that the somewhat continuity is independent of the 
weak-continuity. Although the result is true, the reason is false. It follows from 
Example 3 of [16] that the weak-continuity does not necessarily imply the somewhat 
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continuity. However, the function/ in Example 4 of [16] is not almost-continuous 
in the sense of Singal [18] but it is weakly-continuous. We recall Example 1.9 here 
and notice that the inverse function/"^ is irresolute but it is not weakly-continuous. 
Therefore, the semi-continuity is independent of the weak-continuity. 

In 1963, N. Levine showed that every open continuous function is pre-semi-open 
[9, Theorem 9]. In 1969, N. Biswas showed that every semi-open continuous function 
is pre-semi-open [2, Theorem 11]. Moreover, in 1977 T. Neubrunn improved the 
result as follows: Every somewhat open continuous function is pre-semi-open [11, 
Theorem 4]. We shall show that the condition "continuous" in the last result can be 
replaced by "weakly-continuous". 

Theorem 2.3. / / a function / : Z -> Y is weakly-continuous somewhat open, then 
it is pre-semi-open. 

Proof. Let A e SO(Z) and y е / (Л) . Let Fbe any open neighborhood of y. There 
exists X e A such that у = f{x). Since / is weakly-continuous, there exists an open 
neighborhood U of x such that f{U) a Cl(F). Since xeU пАе SO(Z), there 
exists an open set WofX such that 0 Ф Ж cz [/ n Л. Moreover, s ince/ is somewhat 
open, there exists an open set G of У such that 0 Ф G с /(Pf); hence G cz C1(F) n 
nf{A). Therefore, we have G с C1(F) n Int {f{A)) and hence Vn Int {f{A)) Ф 0. 
This shows that у e Cl(lnt {f{A))) and hence f{A) с Cl(lnt {/{A))). Consequently, 
weobta in / (^ )GSO(y) . 

Corollary 2.4. Every weakly-continuous semi-open function is pre-semi-open. 

Proof. Since every semi-open function is somewhat open, this is an immediate 
consequence of Theorem 2.3. 

The following theorem shows that the condition "continuous" in Theorem 11 
of [2] can be replaced by "almost-continuous". 

Theorem 2.5. / / a function / : X -> Y is almost-continuous semi-open, then it is 
pre-semi-open. 

Proof. Let t/ G SO(X). There exists an open set GofX such that G a U cz C1(G). 
Since / is almost-continuous, we have /(Cl(G)) с Cl(/(G)) by Theorem 10 of [17] 
and hence /(G) с f{U) с C1(/(G)). Since / is semi-open, we obtain / (G) e SO(y) 
and / ( [ / ) e SO(y). 

Theorem 2.6. / / a topological space X is extremally disconnected and a function 
/ : X -> Y is semi-continuous semi-open, then f is pre-semi-open. 

Proof. Let (7 G SO(Z). There exists an open set G of Z such that G с t/ с C1(G). 
Since X is extremally disconnected, we have C1(G) = G by Lemma 1.13. Since / 
is semi-continuous, we obtain/(G) c= C1(/(G)) by Theorem 1.16 of [4] and hence 
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/ (G) с / ( [ / ) с C1(/(G)). Since / is semi-open, we have /(G) e SO{Y) and /(17) G 
e SO(7). 

By virtue of the following example due to Z. Piotrowski [15], we may notice 
that the condition "extremally disconnected" on X in Theorem 2.6 cannot be 
removed and also a semi-continuous open function is not necessarily pre-semi-open. 

Example 2.7. Let X = Y= {a, b, c, d}, a = {X, {a, b}, {a}, {b}, 0} and т = 
= {У, (Ь, с, d}, {а, b}, {а}, {Ь}, 0}. Let / : {X, G) -^ (7, т) be the identity function. 
Then / is open and semi-continuous but it is not pre-semi-open. Moreover, X is not 
extremally disconnected. 

3. WEAKLY-CONTINUOUS FUNCTIONS 

As we have already noted, the semi-continuity is independent of the weak-con­
tinuity. In this section we shall give two sufficient conditions for a semi-continuous 
function to be weakly-continuous. For this purpose we need the following lemma. 

Lemma 3.1. (Rose, [17]). Ä function f : X -^ Y is weakly-continuous if and only 

if C\{f-^{V)) с f-\Cl{V)) for every open set Vof Y. 

Theorem 3.2. / / a topological space X is extremally disconnected and a function 
f : X -^ Y is semi-continuous, then f is weakly-continuous. 

Proof. Let V be any open set of Y. Since / is semi-continuous, f~^{V) e SO(X) 
and f~^(V) с / ~ ^ ( C 1 ( F ) ) by Theorem L17 of [4]. Since X is extremally disconnected, 
it follows from Lemma L13 that Cl(/-^(F)) cz/- i (Cl(F)) . Thus, by Lemma 3.1 
we obtain that / is weakly-continuous. 

In Example 1.9, the topological space (У, т) is not extremally disconnected and the 
inverse function / ~ ^ : (У, т)-> (X, (т) o f / is semi-continuous but not weakly-
continuous. Therefore, the condition "extremally disconnected" on X in Theorem 
3.2 cannot be removed. A topological space X is aid to be S-closed [19] if for every 
semi-open cover {17(3̂  | a e V} of X there exists a finite subset VQ of V such that X — 
= U{Cl(t/J|aeVo}. 

Corollary 3.3. Let X be an S-closed regular space and Y a Hausdorff space. If 
a function f : X -^ Y is semi-continuous, then it is closed. 

Proof. Since X is S-closed regular, by Theorem 6 of [19] X is extremally discon­
nected and hence / is weakly-continuous by Theorem 3.2. Let F be any closed set 
of X, Every S-closed regular space is compact. Therefore, F is compact in X and 
h e n c e / ( F ) is Я-closed in У Since У is Hasudorfif,/(F) is closed in У This completes 
the proof. 
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A topological space X is said to be dense in itself [15] if, for each xeX, the single­
ton {x} is not open in X, 

Theorem 3.4. / / a topological space Y is dense in itself and a function f : X -^ Y 
is presemi-open semi-continuous, then f is weakly-continuous. 

Proof. Assume t h a t / i s not weakly-continuous. By Lemma 3.1, there exists an 
open set Fin У such that C l ( / - ^(F)) ф / " Ч^КЮ)- Hence, there exists x e Cl{f-^{V)) 
such that X ^ / ~ ^ ( C 1 ( F ) ) . Since / is semi-continuous, / ~ ^ ( F ) e S O ( Z ) and hence 
/ - ^ ( F ) u { x } 6 S O ( X ) . Since / is pre-semi-open, Я = / ( / " ^ F ) u {x}) e SO(y). 
On the other hand, since/(x) ф C1(F), there exists an open neighborhood G of/(x) 
such that G r\ V = Ф. Therefore, we have 

/ (x ) e G n H c : G n ( F u {/(x)}) = {/(x)} . 

Thus, {/(x)} = GnHe SO{Y). It follows from Lemma 4 of [13] that {/(x)} is 
open in y. This contradicts the assumption that У is dense in itself. Therefore, / is 
weakly-continuous. 

Corollary 3.5 (Piotrowski, [15]). Let a topological space Y be regular and dense 
in itself. If a function f :X -^ Y is pre-semi-open semi-continuous, then it is con­
tinuous. 

Proof. This follows immediately from the result that a function / : X -> У is 
continuous i f / i s weakly-continuous and У is regular [8, Theorem 2]. 

Corollary 3.6 (Anderson and Jensen, [1]). Let a metric space Y be dense in itself, 
if ci function f : X -^ Y is pre-semi-open semi-continuous, then it is continuous. 

Proof. Since a metric space is regular, this is an immediate consequence of 
Corollary 3.5. 
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