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JiIRi ADAMEK, VAcLAV KoUBEK and Jiki REITERMAN, Praha

(Received May 6, 1978)

PART A: FIXED POINTS AND EXACT COLIMITS

A,1 Two seemingly unconnected problems concerning functor-categories turn out
to have closely related solutions. One, dealing with fixed points of representations
of a category K, has been solved by Addmek and Reiterman [1]. A representation,
i.e., a functor F : K — Set

— is non-trivial if FX # 0 for some X € K

— is indecomposable if it is non-trivial and, whenever F = F, v F,, then F, or F,
is trivial;

— has the fixed point property if for each endomorphism 7 : F — F there exists an
object X in K and a point x € FX with tx(x) = x.

Problem 1. Characterize categories whose all indecomposable representations
have the fixed point property.

This problem was inspired by V. Trnkova as part of a broader program of extending
set-theoretical properties to functors.

A,2 The solution of Problem 1 involves quasi-filters for parallel pairs of morphisms
fi1,f2: A— Bin K. A quasi-filter is an n-tuple of morphisms o, ..., «,_; : B = C
in K such that identities of the following form

%o fio = 1 fjo s

afi, = %af;

Oy fum1 = aofj,,—1

n—1
hold, where i, j; are 1 or 2 and ) (i, — j,) = *1.
t

=0
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Definition [1]. A category K is called quasi-filtered if every parallel pair of
morphisms has a quasi-filter and, given objects M, N, there exists an object X with
hom (M, X) #+ 0 # hom (N, X).

Let us recall that a category K is indecomposable (connected) if it is not a sum of
non-void categories. Each category is a sum of its components, i.e. its maximal
indecomposable subcategories. Furthermore, a category K is filtered if every parallel
pair fy, f, has a filter, i.e. a morphism o with af; = af,, and for objects M, N there
is X with hom (M, X) # 0 % hom (N, X). Obviously, a category K has all com-
ponents filtered iff it fulfils the first condition and a weakening of the second: given
morphisms f; : A > M, f, : A > N, there exist morphisms g, : M — X, g, :N - X
with g,/ = g2/>.

Theorem [1]. The following conditions on a category K are equivalent:

(i) Each indecomposable representation of K has the fixed point property;
(i) K has quasi-filtered components;
(iii) K satisfies
) for each pair of morphisms fy,f, with a common domain there exist
morphisms gy, g, with g,f, = g2/2,

(2 each parallel pair of morphisms has a quasi-filter.

A,3 The second problem, solved by Isbell and Mitchell [4], concerns the category
AbX of functors from a small category K to Ab, the category of Abelian groups.
Each of these functors has a colimit, which gives rise to a functor colim: Ab* — Ab.
If colim preserves finite limits, i.e. if finite limits commute with colimits, then colim
is exact.

Problem 2. Characterize small categories K for which colim : AbX — Ab is
exact.

While analogous problems concerning set-valued functors are rather easy, see
[3], the above problem turned out to be very difficult. The solution is in terms of

affinization aff K of a small category K : aff K is a category whose objects coincide
p

with those of K. Morphisms from A to B are all formal combinations Y, A,f; of
i=1

i=

14

K-morphisms f;: A — B such that A; are integers with Y A; = 1. Composition is
i=1

given by (LA:1:) (Lwja;) = Lhu(fi9,)

Theorem [4]. The following conditions on a small category K are equivalent:
(i) colim : Ab® — Ab is exact;

(i) aff K has filtered components;
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(iii) K satisfies (1) and
(3) for every k-tuple of parallel morphisms fy,....f, in K (k=2,3,4,...)
there exists a morphism ¢ in aff K with of; = of, = ... = 0f

A,4 Denote by (3*) the above condition (3) restricted to k = 2. Then (1) + (3*%)
is easily seen to be equivalent to (1) + (2) (see [5] for a precise proof). Overlooking
the distinctness of (3) and (3*), J. Adamek and J. Reiterman made in [1] a remark
(insubstantial for their paper) that the solutions of Problem 1 and Problem 2 are
the same. J. R. Isbell and B. Mitchell conjectured in [5] that this remark is false,
and they asked for an example of a quasifiltered category K with non-filtered aff K.
We shall present such an example in Part C.

A,5 Every filtered category K has filtered aff K. A counterexample to the converse
implication was exhibited by J. R. Isbell and B. Mitchell: the categoty K, of finite
ordinals and order preserving injections. They proved that aff K, is a filtered category.
And K, is far from being filtered: it is a mono-category, i.e. a category in which each
morphism is a mono, equivalently, no pair of disctinct morphisms has a filter.

When trying to find a quasi-filtered category such that aff K is not filtered, it is
interesting to observe that the existence of such K implies the existence of a mono-
category K* with the same property. Indeed, define a congruence on K :a ~ f
iff o, f are parallel and there is y with yo = yf. Then the quotient category K* =
= K/ ~ 1is evidently a quasifiltered mono-category. It is rather easy to verify that
aff K* is not filtered. This observation led us to the investigation of quasi-filtered
mono-categories. We started from a conjecture concerning the following concrete
category Q: It has three objects A = {a}, B = {b,, b,}, C = {¢, ¢3, ¢3} and five

non-identical morphisms: the two from A to B and the following three f, g, h : B — C:

l b, b,
S € €2
g €2 C3
h c3 €4
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Conjecture. The category Q cannot be fully embedded into any mono-category K
such that aff K has filtered components.

Then we started to embed categories into quasi-filtered monocategories. We
succeeded in embedding Q but failed to prove the above conjecture. Therefore, in the
present paper, we find a counterexample by a slightly different method: by com-
binatorial investigation of the embedding of the hom (B, —)-image of Q (see Part C).

A,6 The present paper has three parts. The main theorem, characterizing small
categories, embeddable into quasi-filtered mono-categories, is proved in Part B.
The proof of necessity is rather easy, sufficiency is proved in several steps:

I. We observe that we can work with subcategories of S(1—1) (the category of
sets and one-to-ne maps) with a certain property (Property (4) below).

II. We study a general pair of one-to-one maps f, f> : X — Y with property (4).
It turns out that the only important case is that of X = n — 1, Y = i1 and (fy, f2) =
= (®,, ¥,) with the following convention:

Convention. For every natural number n put it = {0,1,...,n — 1} and define
@, ¥,:n—1->nby®(x)=x+1and ¥,(x) = x.

III. We find standard quasi-filters for the pairs @,, ¥,. Using these, we construct
a quasi-filter for general fy, f, with nice properties.

IV. We show that adding formally a “‘nice” quasi-filter to a parallel pair in K
does not spoil Property (4). We show that, analogously, adding nice maps g, ¢,
for a given f, f, as in condition (1) does not spoil Property (4).

V. We use IV. sufficiently many times to construct, from a given small category K,
with Property (4), a new category K, ., with Property (4) such that a) each parallel
pair in K, has a quasifilter in K,,.; and b) each pair f;, f, in K, with a common
domain has morphisms ¢;, g, in K, ; with g,f; = g,/>.

Starting with a category K = K, having Property (4), we obtain a category K* =

=)
= U K; with quasi-filtered components.
i=0

PART B: THE EMBEDDING THEOREM
B,1 Let K be a category. By a morphism chain on an object X we mean a sequence

X =

Xo X, X, - n-1 X=X
¥, A/ ;x /\"; ‘% /@:’-1
% 1/ Yes

4 = (9o, o, P1, @1s -++» Pu—1> Pn—y) of morphisms such that range ¢, = range

- X
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¢,_, = X and, for any t, dom ¢, = dom ¢;, range ¢, = range ¢, (the indices
are considered modulo n).

The most important concept of the present paper is the following.
Definition. Let A, X be objects of K and let 4 be a morphism chain on X, 4 =
= (¢p @)iZo With @, : Y, > X, and ¢;: Y, > X,,,. We define a graph (a binary

relation) R4(4, X) on the set hom (4, X) as follows: a pair r, r'(: 4 = X) is in
R,(A, X) iff r# r and there exist morphisms po: A4 — Yo, ..., pp—y : A > Y,y

X= Xz X X-,” Xn= X

\VAVARRV

A

such that r = @¢Po, ' = @,_Ps—; and, foreacht =1,...,n — 1,0,p, = ¢;_1p,—;.

Note. An important case is 4 = (¢o, o). Then (r, r') e Ry (4, X) iff r = ¢@qp
and ' = @qp for some p: 4 - X,.

We say that a graph R on a set V is bounded if there exists a natural number k
such that any directed path in R has length <k. In other words, (¥, R) is bounded iff

a) (¥, R) contains no directed cycle;

b) there exists a natural number k such that, given pairwise distinct vertices
Vg -+ Uy € V with (ve, v;) € R, ..., (-1, v,) € R, then n < k.

Embedding Theorem. A small mono-categoryK can be fully embedded into a quasi-
filtered mono-category iff each of the relations R,(A, X) in K is bounded.

Note. We shall, in fact, prove the equivalence of the following conditions on
a mono-category K:

(i) K can be fully embedded into a quasi-filtered mono-category;
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(ii) K is isomorphic to a (not necessarily full) subcategory of a quasi-filtered
category,
(iil) K is isomorphic to a subcategory of a category with quasi-filtered components;
(iv) Each R,(4, X) is a bounded relation.
We first prove the necessity of the Embedding Theorem; indeed, we show (iif) —
— (iv) then (i) — (ii) — (iii) —» (iv) follows. Then we prove the sufficiency, i.e.
(iv) = (i); this will prove the equivalence of (i)—(iv).

B,2 Proof of necessity. We assume that K is a subcategory of a mono-category K,
satisfying the conditions (1) and (2). Let A, X be objects and let A4 = (9o, @0, ...
«.s Qs> ©3) be a morphism chain on X. We shall prove that R,(A, X) is bounded by
induction on s.

I. The initial step s = 1. We have 4 = (f,f,) for some f,.f,:Y— X in K.
Let oy, ..., o,_; : X — Z be a quasi-filter for fi, f,:

afi, = a1 fj, tem,
n—1
with ) (i, — j,) = 1 (or —1, which is irrelevant); we work with the #’s modulo n.
i=0
Put h(t) = (iq — jo) + (iy — j1) + ... + (i;=1 — ji—;); notice that h(n) = 1 and
h(0) = 0 (the void sum).
To verify that R,(A4, X) is bounded, let ry, rs, ..., 14y : A > X be morphisms
with (ry, 72), ..., (Fis 7+ 1) € R4(4, X); we shall prove that then k < 2n.
We have morphisms py, ..., py: 4 - Y with r,, = fp,, and 7, = f,p, (m =

n L I I

vv fi fa

\\/

=1,2,..., k). We shall proceed by contradiction: assume k = 25, Then we can
choose m with n < m < k — n. Let us prove by induction on ¢ < ¢, .., n that

’7«,1

(xtflpm = aOflpm+h(t) forall m = t, t+ 1; (XX} k — t.
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Recall that a, = «,. For t = 0, this is trivial. Assuming this for ¢, we prove it for
t+ 1.

a) Let i, = j, = 1; then h(t + 1) = h(#) and a,f, = o, f;, hence 01 1/1Pm =
= 0,f1Pm = %f 1 Pmt+hry-

b) Let i, = j, = 2; then h(t + 1) = h(t) and «,f, = a,,,f>, hence t+1/1Pm =
= %1 1/2Pm-1 = 0f2Pm-1 = %S 1Pm = %S 1Pmrncry

c) Let i, =1, j,=2; then h(t + 1) = h(f) — 1 and «f; = o,4f2, hence
%4 1S1Pm = %y 1f2Pm—1. (Here we use the fact that m = t + 1 implies m — 1=
21t)

d) Let i, =2, j,=1; then h(t +1)=h(t)+ 1 and o,f, = «,,f;, hence
%4 1f1Pm = % f3p, (Here we use the fact that m < k — (¢t + 1) implies m + 1 =
<k-—1t) .

For t = n we get 0t fyPp = %of1Pm+1- Since o fy is a mono (indeed, K* is a mono-
category), this implies p,, = pm+1- But this cannot occur because r,, = f1P» and

w1 = f1Pms1 AN (Fps Fus 1) € R4(4, X), hence, by the definition of R4, X),
Tm F Tmsqe

1I. The inductive step. Let 4 = (¢, qo;,, @1y Py eeor Pom1s @oy) with s> 1.
Use (1) to find g, g’ in K with g@,—1 = g0 1(9:X>,_12, 9 :X> Z).

V4 Zz

9' 9 g‘
va XX
Y, Y,
Define a new morphism chain 4 = (Yo, Y05 - -+ Ys-2, Ys—,) on Z by
Yo=9'¢o; Vi=9; for i=1..,s-2,

Yi=¢; for i=0,..,8=3; Y, =9, ,.
Then we have a graph homomorphism from R,(4, X) into Rz(4, Z) defined by
risg'r for any r : A — X. Indeed, given (r, ') € R4(4, X) then we have p;: A > Y;
with
r'=@oPo, I =@s-1Ps-1 and @ip;= @i 1Pisy .
Using the same p; we see that (g'r, g'r’) € R4(4, Z), because
gt = g'®oPo = YoPo »
g'r' = g'Qs_1Ps-1 = 9Ps-1Ds—1 = gPs—2Ps-2 = Ys_2Ps—2
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This homomorphism is injective because g’ is mono (in K*). Hence, R,(4, X) is
a subgraph of Ry(4, Z). The latter graph is bounded by the inductive hypothesis.
It easily follows that also R,(4, X) is bounded.

B,3 Now we start proving the sufficiency. First, for concrete categories K we can
work with simpler relations than R,(4, X), not involving A. Let 4 = (¢;, ¢})iZ¢
be a morphism chain on an object X of a concrete category K, ¢;: Y¥; - X; and
¢;: Y, > X;,,. Define a relation R, on the set X: a pair (r, r’)eX x X belongs

r

A % ¥ ¥

};, Yy Yn-1

to R, iff there exist points y; € Y; such that r = @o(yo), ¥ = ¢,_;(y,-,) and for
eachi=1,...n — 1, ;) = ¢;—4(yi-,). Recall that S(1 — 1) denotes the category
of sets and one-to-one maps.

Lemma. The following conditions on a small category K are equivalent:

(i) K is a mono-category such that each R (A, X) is bounded,;
(ii) K is isomorphic to a (not necessarily full) subcategory of S(1—1) such that

(4)  for every morphism chain A on an object X, (X, R,) is bounded.

Proof. Let U : K — Set be the sum of all hom-functors,

U =]]hom(4,(-)).

AeK
Then U is a one-to-one functor, thus U(K) is a subcategory of Set, isomorphic to K.
If (i) holds then U(K) is a subcategory of S(1—1) and (1) and (4) are satisfied. If (i)
holds then clearly (i) does.

B,4 Convention. A pair f, g : X — Y of maps is said to be a restriction of a pair h,
k : S — T if there exist one-to-one maps v:X — S and w:Y — T such that the
squares below both commute.

x—1 .y X—2—»y
14 / JW v : W

The disjoint union of « copies of a set X is denoted by X (thus, X = X x I
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for an index set of power oz); analogously f® = f x id, for a mapping f. Recall
@, ¥, in A6.

Lemma. Let f, g : X — Y be a pair of one-to-one mappings such that the graph
R, is bounded. Put X, = {xeX; f(x) = g(x)}, Yo = (Y — (f(X) L g(X))) U
U {f(x); xe X}, and denote by f',g' :(X — X,) = (Y — Y,) the domain-range
restrictions of f, g. Then there exists a natural number n and a cardinal o such
that the pair [, g’ is a restriction of ®@, ¥ : 7 = 1@ - p®,

- n

Note. The above number n can be chosen arbitrarily big because, for m > n, we
see that the pair @,, ¥, is a restriction of the pair @,,, ¥,,..

Proof of the lemma. First, since f, g are one-to-one, clearly f(X — X,) ~ (Y — Yo)
(given x e X — X, then f(x) e Y, would imply f(x) = f(x’) for some x’ € X, but then
x = x’ — a contradiction); also g(X — X,) ~ (Y — Y,). Hence the restrictions f’, g’
are correct.

Second, recall that a pair (a, b)e Y x Yis an edge in R, , iff there exists x € X
with a = f(x), b = g(x) and a #+ b. In other words, edges are exactly the pairs
(f(x), g(x)) with xe X — X,,. Given two distinct edges (a, b) and (a’, b’) in R,
then a # a’ and b + b’; in other words, if two distinct edges meet then one starts
at the end of the other. (Proof: we have x, x’ € X, with a = f(x), b = g(x) and a’ =
= f(x'), b = g(x'). Now a = a’ implies x = x since f is one-to-one, and b = b’
implies x = x’ since g is one-to-one. It follows that R, , is a disjoint union of paths
and cycles. Now, R, , is bounded, therefore there are no cycles and there exists n
such that all paths in R, have length smaller than n. We consider an isolated
point as a path of length 0. Clearly, all points in Y, are isolated.

Thus, there exists a decomposition

Y-Y=UY
iel
such that
a) for every edge (a, b) € Ry 4 there exists i eI with a, be Y,

b) the restriction of Ry, to Y; is a path of length k; < n (i 1).
Hence, we can write Y; = {Vb, ¥i, .., i} where (yis1, Vi) € Ry, for all tek,
Therefore, there exist x! € X — X, (i €1, te k;) with
() J(x0) = yipr and g(x;) = y;.

Notice that X — X, = {x,},e, ek (because xeX — X, implies f(x) # g(x), hence
(f(x), g(x)) e Ry ) and x; =+ x! whenever i+ i or t+1t. Also Y— Y, =
= {y} icr.eie1- We remark that the isolated points in Y — Y, i.e. the points
yeY — (f(X) v g(X)) have the form y = yo for some i with ¥, = {y}} and for
such i there is no x;, of course.
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Put a = card I; we shall show that the pair f’, g’ is a restriction of &, x id,,
Y, xidj:n— 1 xI-nxI, ie. a restriction of &® ¥® Define v:X —
—»n—1 xTandw:Y—-n x I by

u(x;) = (t,1) and w(y)) = (1, i).
Then v, w are one-to-one mappings. By () we have wf’ = &{v and wg’ = Y.

B,5 Construction. For every natural number n and for every number s = 4k + 1,
where k = n, we shall construct a quasi-filter

Bos oo By 11> §
for @, ¥,:n — 1 — il in the category S(1—1).
The maps By, --., B2 are defined by

) Bix)=x+i if x+i<2k,

B(x) =x+i+Qk—n+1) if x+i>2k;
the maps B+ 1> ---» Pay are defined by
(6) Bx) =x—i+6k—n+2 if x—i+6k—n+2>2k,

Bix)=x—i+4k if x—i+6k—n+2z=2k.

In other words, the Bs are described by means of n-tuples (840), ..., Bi(n — 1))
as follows:
() a) B ,...n—1)

By (1,...,n)

ﬁlk—n+1 (2k — n + 1, ooy 2]()
b) Pokonsz (2k —n 4+ 2...,2k, 4k — n +2)
Baionss 2k —n +3,..,2k 4k — n + 2, 4k — n + 3)

sz (2k, 4k — n + 2, ooy 4k)
) Bus: (dk—n-+1,4k—n+2,.., 4%
Bak+2 (4k -n,..., 4k — l)

ﬂ4k_,,+1 (2k + 1, ceey 2k + n) '
d) Pakoniz (n—2,2k+1,..,2k + n — 1)
Ba-nsis (n——3,n—2, 2k+1,...,2k+n—-2)

ﬂ4k (0,...,"-“2, 2k+1)
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It is a purely routine process to check that

Bib, = Bisi¥, for i=0,..2k—1,
ﬁlkén = ﬂ2k+1¢n s

B¥, =Biv1®, for i=2k+1,..,4k -1,
ﬂ4klpn = ﬁOlIln .

Thus, B, ..., Bax is a quasi-filter for @, ¥,.

Lemma. If B{(x) = B,(y) (for i, j€s, i <j and x, y € i) then the number x — y
is determined by i, j, n and k. More in detail, B{(x) = B,(y) implies just one of the
following identities:

a) x — y = j — i in the case i,j < 2k,

b) x —y =i —j in the case i,j > 2k,

¢)x—y=4k —i+jinthecase i<n—1,j>4k —n + 1,

d)x —y=4k + 1 —i+j in the case 2k~n+1<i§2k, 2k <j <2k + n.

- Proof. We have three possibilities.

1. i,j £ 2k. If the numbers x + i, y + j are both smaller or equal to 2k or both
bigger than 2k, clearly the case a) takes place. The remaining possibilities cannot
occur. E.g. if x + i < 2k but y + j > 2k then B{x) = B,(y) yields 2k = x + i =
=y+j+2k—n+1>4k — n + 1, a contradiction because k = n.

II. i,j > 2k. If the numbers x — i+ 6k —n+2, y—j+ 6k —n+ 2 are
both smaller or equal to 2k or both bigger than 2k then clearly the case b) takes
place. Again, the remaining possibilities cannot occur. E.g., if x — i + 6k — n +
+2=<2k but y—j+6k—n+2>2k then B(x)=x—i+4k<n-2<
<2k <y-—j+6k—n+2=p/».

L. i £ 2k, j > 2k. There are four subcases, two of which turn out to be impos-
sible.

o) x + i <2k, y —j+ 6k —n+ 2> 2k This is impossible because f(x) =
=x+iZ2k<y—j+6k—n+2=p().

B) x +i<2k, y—j+6k—n+2<=<2k Then j=y+4k —n+ 2> 4k —
—n+1 and also y —j + 4k < n — 2. Further, B{(x) = (y) yields x + i =
=y —Jj+ 4k Tt follows that x — y =4k — (i+j)and iSx+iSn—-2<
<n-—1

Y) x+i>2k,y—j+6k—n+2>2k Theni>2k —x =2k —n+ 1and
J<y+dk—n+2; Bx)=P(y) vields x + i + 2k —n+ 1=y —j + 6k —
—n+2iex—y=4k+1—i+jItfollowsalsoj=4k +1 —-x+i+y<
<4k +1—2k+n—1=2+n.

8) x +i>2k y—j+6k—n+2< 2k This is impossible because f(x) =
=x+i>2k>y——j+4k=ﬂj(y)_
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B,6 Conventions. For a mapping h : X — Y we denote by h the set
h = {h(x); xe X} .

A path in a graph of length —n (n = 1,2, 3, ...) is simply a path of length n in
the graph with the opposite orientation of edges.

Construction. For one-to-one mappings f, g : X — Y such that R, ;) is bounded
we shall construct a quasi-filter with special properties.

As in B4, consider f’,g" : (X — X,) = (Y — Y,), where X, = {xeX; f(x) =
= g(x)}, Yo = Yo' U Y5, where Y = Y — (fu §), ¥s = f(X,)- By B,4, we have one-
to-one mappings v: (X — Xo) > n— 1 x I, w:(Y— Yp) > i x I (for some n,1I)
such that

wf’ = (P, x id))v and wg' = (¥, x id))v.
By B,5 there is a quasi-filter §, : i — 5 (i€ 5, s = 4k + 1, k 2 n) for @,, ¥, with the
property from Lemma B,5; we have a quasi-filter

BD =P xid;:ii x I -5 x1 for &, ¥® where o =cardl].
Put
Z=Y5u(Ys x3)u(Y—Y) x1I
(the three sets, union of which is Z, are assumed to be disjoint). Define mappings
a;: Y Z (ie3) by
a(y) =y for yeYs,
=(», i) for yeYq,
=B w(y) for yeY—Y,.
Then clearly ag,...,%_;: Y~ Z is a quasi-filter for f, g. It has the following
properties.
(9) Given i, j €5, there exists an integer z;; such that arbitrary points y, y'€ ¥ — Y5
with a(y) = o)(y’) can be connected by a path of length z;; in the graph Ry g
(10) Given me 3§ then
Gy N8 S 8y OBy y forevery j=m+1,m+2,...,m+ (s —2n),
%

N8y < @puynG, forevery j=m—1,m—2,..,m—(s—2n),

where the addition of indices is mod s.
, N
(11) Given ies and fy,f,e{f,g} such that af; = a;41f, then & N 0iry =
P
= o;f;. (i + 1 meansi + 1 mods.)

Proof of properties (9—11). It suffices to show that the quasi-filter {;} for @u ¥
has these properties. Then clearly so does the quasi-filter {{} for &%, ¥{* and so
does any domain-range restriction of {#{*} as a quasi-filter for any domain-range
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restriction of @@, Y. And the above constructed quasi-filter differs from a restric-
tion of { {”} only at the points of Y. Now, the points on Y5 do not spoil the properties
(9—11): in (9) they are excluded and for (10), (11), we remark that the sets o ¥5)
(j € 5) coincide. The points of Yy play no role in (9) and for (10), (11) we remark
that the sets a(Y3) (j € 5) are pairwise disjoint.

For {B;}, the property (9) immediately follows from Lemma B,5 and from the
observation that, given y, y’ € i1, then there leads exactly one path from y to y’
(or, from ' to y) in R, w,,, the length of which equals y — y'. Properties (10), (11)
are easy to check by inspection of (7).

B,7 Note. Let 4 = (¢4, 9o, @1, P15 -+ Pu_1, Pa_y) be @ morphism chain in the
category S(1—1). Then R, is a bounded graph iff R, is, whete 4; = (¢;, ¢}, ¢;41,

(p;+1, coos Pu—1gs (PIII-I’ ?os (P(,), ces Qi (pli—l) (fOI' any i = 0? ce 1) Indeed! it
suffices to show that if R, is bounded then so is Ry,.

This follows from the fact that, given subsequent edges (p, q), (¢, r) in Ry, we
obtain an edge (p’, q’) € R, such that

P =007 (p), 4 =901 (q)-

P P’ q q' r
MMX /VM\” /,

Thus, a path of length 2 in R, induces a path of length 1 in R,,. In the same way,
a path of length n in Ry, induces a path of length n — 1in Ry,.

Note. Let f,g: A — B be one-to-one mappings, let b Bs, where By = {f(a);
ae A, f(a) = g(a)}. Given a quasi-filter o, ...,04_; : B— C in S(1-1) for f, g
then '

ao(b) = oy(b) = ... = (D) .
Indeed, for each i€ k we have fy, f, € {f, g} with «;f; = @;,f,. Given a € A with
f(a) = b, we have f,(a) = f,(a) = b, hence a,(b) = a;,(b).

Convention. Given a collection of one-to-one mappings we speak about the cate-
gory they generate as the least subcategory of S(1—1), containing all these mappings.

Lemma. Let K be a small subcategory of S(1—1), satisfying (4). Letf,g: A — B
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be its morphisms. Given a quasi-filter «,, ..., 0, : B = C for fi,f, in S(1—1)
with property (9) and such that C ¢ K, then also the category, generated by K U
U {&g, ..., %}, has property (4).

Proof. Denote by L the category generated by K U {ar},ep. Its morphisms are those
of K, id¢ and mappings «,p : X — C where e k and p : X — B is a morphism of K.
Let 4 be a morphism chain in L, 4 = (¢g, 9o, .., Pu—1, @) With @, 1 X; > Y3
denote by b(4) the number of those i = 0,...,n — 1 for which ¥; = C. We shall
prove that R, is bounded by induction on b(4). If b(4) = 0 then 4 lies in K and K
has property (4), thus R, is bounded.

Let b(A) > 0. By the above note we can assume that Y, = C. Then either ¢, =

= id [which is a trivial case: since dom ¢, = C = dom @; we have also ¢, = id¢
and the chain 4" = (¢y, ¢}, ..., 91, ¢,_;) has the property that R, = R, and

WA

b(4') < b(4)] or 9o = o,p, tek,p: X, > BinK.
In the latter case we have range ¢, = C = range ¢,_,. Then either ¢,_; = id¢

[a trivial case] or ¢, = o, ¢, where se k, ¢ : X, > B in K.
Cc
“f o\
B
Ve fu /‘ \
Xo

Now we use condition (9) for oy, «,. Assume e.g. z,, = 0 and define a new chain 4’
in L:4" = (P, 90 @15 @1 --» Pu2s Pre2s Puz15 45 f> 9> 1+ 9> --» /- g) with f, g re-
peated z,-times. (For z,, < 0 we would repeat g, f instead of f, g.) Clearly, b(4") <
< b(4), and so R, is bounded.

To prove that also R, is bounded, it clearly suffices to show that, given (z,, 22),
(z2, z3) € Ry, there exists (zj,z5)e R, such that o/z}) =z, and o(z}) = z,.
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Since a, is one-to-one, it follows that each path of length m in R, induces a path of
length m — 1 in R,.; hence, if R,. is bounded, so is R,. We have x; € X; with

Zy = (Po(xo)§ Z; = (Pn—l(xn-l) and (P;(xi) = (Pi+1(xi+1);
further we have X; e X; with

Zy = (Po()_co) y Z3 = ‘P:.—l()—cn—l) and (Pli(xi) = (Pi+1(gi+1)'

Put zj = p(x,) and zj = p(X,). We see that a,(z}) = «, p(x,) = @o(xo) = z; and
a,z3) = z,. Let us show that (z}, z3) € Ry Since z; = a,q(x,-,) = o, p(%,), we
have two possibilities.

L q(x,-,)€ B° = {f(a); ae A, f(a) = g(a)}. By the above note,

0y Q(xn~1) = O q(xn—-l) [= o P(fo)] .

Since a, is one-to-one, q(x,-;) = p(Xo) [= f(a) = g(a) for some ae A]. Then
(1, z5) € Ry, as suggested by the following figure:

z Xot) = (@) Ka) f(a)  f(a)=z

VVEVVAY

11. q(x,-1) ¢ B hence p(X,) ¢ B°, because if p(X,) € Bg then o, p(%,) = o, p(%o) =
= o, q(x,-1) would imply g(x,-,) = p(%o) € B§. Then we can use condition (9):
since o, q(x,-1) = a, p(X,), there exists a path of length z,, from g(x,-,) to p(¥X,) =
= zj in R(s,g, say (Yo, - ¥a) With yo = q(x,—1), y4 = 25 and (v,, Vit1) € Ris oy
ie. yi = f(xI), yir1 = g(x7) for suitable x} e 4. Then (z}, z3) € R4, as suggested
by the following figure:

q(Xny) =

VAVAVIEVAV

B,8 Lemma. Let K be a small subcategory of S(1—1), satisfying (4). Given objects
By, B, inK, let C= B, v B, be their sum (disjoint union) with C ¢ K; let v; : B; - C,
i = 1, 2, be the canonical injections. Then the category generated by K U {vl, va}
has property (4) as well.

Proof. Denote by L the category generated by K U {v;, v,}. Its morphisms are
those of K, id; and mappings v;p : X — C where i = 1,2, and p : X — B, is a mor-
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phism of K. Let 4 be a morphism chain in L, 4 = (¢, 94, ---» Pu—1, @p—1) With
¢;:X; > Y. Denote by b(4) the number of those i =0,...,n — 1 for which
Y, = C. We shall prove that R, is bounded by induction in b(4). This is clear for
b(4) = 0. Let b(4) > 0 and let e.g. Y, = C, i.e. C is the range of ¢, ¢,_,. The case
that ¢, _, is idc is trivial. Thus we may assume that

Qo =Vip, @,_y=V;q, where i,j=1or2, pqgek.

If i & j then ¢y N @,_, = 0, hence R, contains no path of length 2, and so R, is
bounded. If i = j, put

Al = (p’ (P(’), D15 (plla cees P2, (p;x—Z’ Pn—15 q) .

Yot

c Y Y, ] c
! / \/ ’
B Ju 9 v ¢\ B
PX _ "\ #q
X, X, X,

n-1

Then A4’ is a morphism chain with b(4") < b(4), hence R, is bounded. It follows
that R, is bounded because for each edge (z,, z,) € R, there exists edge an (z}, z5) €
€ R, with v(z}) = z, and v,(z}) = z,. Hence, each path of length m in R, induces
a path of length m in R..

B,9 The proof of sufficiency of B,1. By Lemma B,3 we are to prove that every small
subcategory K of S(1—1) with property (4) can be fully embedded into a quasi-
filtered subcategory of S(1—1). Put K = K, and define categories K, K, K3, ...
by induction as follows.

Given K,,, construct K,, . { in two steps. First choose a well-ordering of the set of
all parallel pairs of morphisms in K,,. We get a collection {(f% g%); i <y} (y an or-
dinal), f%, g* : A" > B" and for each of them we find a quasi-filter

i i . pi i
Ogs wves Opy—q : B' = C

in S(1—1) which has the property (9) and such that C' ¢ K,, U {C"}, ., (this is pos-
sible by Construction B,6). Using Lemma B,7 inductively (with i < y) we see that
the category L, generated by K,, u {a}; i <7y and e i1}, has property (4) as well.
For the second step choose a well-ordering of the set of all pairs of objects in K,,.
We get a collection {(B], B}); j < &} (¢ an ordinal). For each j choose a disjoint
union C/ = B{ v B} with canonical v/: B/ —» C/ (t =1,2) so that C'¢L, U
U {C/'};.-;. Using Lemma B,8 inductively (with j < J) we see that the category
K, .y, generated by L, U {vi};_;,-,,, has property (4) as well. This category
K,, . contains K,, as a full subcategory and has the property that

a) each parallel pair of morphisms in K,, has a quasi-filter in K1
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b) given objects By, B, in K,,, there exists an object C in K,,+; and morphisms
from B, to C and from B, to C.

It follows that the category K* = | K,, is quasi-filtered. It is a subcategory of

m=0

S(1—1) and, on the other hand, K, is its full subcategory.

Example. The category Q of A,5 is easily seen to have property (4).

PART C: A COUNTEREXAMPLE

C,1 Construction. Let K = K, be the concrete category with two objects V = {0}

and W={1,2, 3} and with three non-identity morphisms vy, v,,v3: V> W,
v/(0) = i.

1
7
v,
0 2 -2
Vv Ys
3
“7

0
We construct a category K* = |J K,, as in B,9, only restricting somehow the quasi-

m=0
filters used. Recall that, for each quasi-filter oy, ..., o,_; for f, g € K* added when
passing from K, to K,,,,; we have s = 4k + 1, k = n, where n is a natural number

depending on f, g while k can be chosen arbitrarily. Thus, we shall suppose that
s/3n is an integer and

%) Lzt

where {a,}w_, is a strictly decreasing sequence of real numbers such that

1 .
a,=2, a,>- and ———— isa natural number for each m .
2

1 — Am+1
ap

Remember also properties (9), (10), (11).
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C,2 Theorem. The above category K* is quasi-filtered but aff K* has not filtered
components.

Proof. I. It suffices to prove that for arbitrary pairwise distinct K*-morphisms
hyy..., h,: W— X we have

(@) e
=1

(NI

r.

1

Then there exists no aff K*-morphism ¢ : W — X with gv, = gv, = gv;. Indeed,
suppose that such g exists. We can choose it in the form

(b) Qz(f1+"‘+ft+l)_(gl+'-'+gr)

with t the least possible number. Then clearly f; # g; for all i, j (else we choose
o=0—-f; + g,). Now, let hy, ..., h, be the list of all distinct morphisms among the

r
fs and g;’s. For each x € | f; there exist distinct p, g€ {1, ..., r} with xe h,  h,.
i=1 S

(Proof: given x e h, with, say, h, = f,, there exists z € {1, 2, 3} with x e fuv, since
W=10, Ud, U d;. Assume e.g. z = . Recalling gv, = gv, we see that either
fivy = g;v, forsome j, or f; v; = f, v, for some u. We have either x € §; and f; + g;,
or x € f, and f; * f,, for f is a mono.)

Since each f; has power 3, it immediately follows that

10
=1

i

)

~

IIA
e

1,»| r.

This contradicts (a).

1. To prove (a) we shall verify that for every K*-morphism g :Y — X with
X € K, the following conditions hold:

(c,) Given h: W — X in K* with ]ﬁ N g| > 1, there exists h; : W— Y in K*
such that h = ghy;

(d,,) given distinct hy, ..., h,: W— X in K* with Iﬁ,- ) él <1 for each i, then

lU Ei - él g apt.
i=1

Then (a) is proved as follows: given pairwise distinct hy, ..., h,: W— X then
|h; k| <1 (for, if |h; n K| > 1, then, by (c,), there would exist h: W— W
with h, = h;h;; since hom (W, W) = idy, h, = h; — a contradiction). Thus, by (d,,),

r—1
|Uﬁi——hr gam(r_ ])a
i=1

therefore

+ |A, h,

2 a,(r—1)+

r r—1
10| = [UR -,
i=1 i=1

As a,, > % and |h,| = 3, (a) follows.

We prove (c,,) and (d,,) by induction on m.
III. The proof of ¢, and d,, is clear (the only morphisms to Win K are those in KO).

385



1V. Assuming (c,,), (d,) we shall prove (Cn+1), (d,s ). This is clear if X € K,,.
If X €K, ., — K, there are two possibilities: X is either the range of a quasi-filter
of a parallel pair of morphisms in K,,, or it is a sum of two objects from K, like in B,8.
In the former case, denoted here by V, all K*-morphisms into X factor through the
maps of the quasi-filter. In the latter case, denoted here by VI, they factor through
the new summand injections.

V. Let ¢, @, : S — Tbe morphisms in K,, with a quasi-filter ay, ..., 00,y : T > X
in K,,+, such that g, h and hy, ..., h, factor through the o;’s.

V, 1. The proof of (c,,,H). Without loss of generality, g factors through o, i.e.

g = aog* for some g*: Y- T in K*. We know that h factors through some «;,
h = a;h7.
W
h ‘
o )
X +— T % —)
NO WZ
9

We shall prove that also h factors through «,. As |ﬁ N é| = 2, also |o‘zj N &01 > 2.
By (10) we have either &, N &; = &;_; N &; or & N & <= &; N &;,,. In the former
case, consider the equality o;p, = o;_¢,, which must hold for some p, g € {1, 2}

P
because o, %;_ are neighbours in a quasi-filter for ¢y, ¢,. Since by (11) a;p, =

PN P NN
= 4;_; n &, we see that h r\ocj(ppl =2, ie. Iocjh;‘ Noa;p,l =2 and, since o; is
1-1, IE;" o) (/3,,1 = 2. Thus, we can use (c,,) on h} and ¢, to obtain hY*: W— Sin K*
with k¥ = @ h7*. Put hT_, = @,h%*. Then h = a;_(h}_, and we can repeat this
procedure until we get hy : W— T in K* with h = aohg. In the case 8; N &, =
< &; N &;,,; we proceed analogously, this time considering the equality o;p, =
= O:j+ I(Pq'

Now we use (c,,) on g*, h¥: since g is 1—1,

h¥ 0 g| =2 2 and TeK,,

Hence, there exists h; : W — Yin K with hg = g*h,. We get h = gh,.
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V, 2. The proof of (d,,). Without loss of generality, again g = «,g*. Define
sets Ho, ..., H,_y = {1,...,r} by

H, = {i; h; = aoh} for some h; in K*},

H; ={i; i¢ Hyu...u H;_; and h; = o;h; for some h; in K}

j+3n—-1
for j = 1,...,s — 1. Further, for each j =0,...,s —3n put H;= U H,. Re-
t=j
member that s/3n is an integer and observe that the sets Hy, Hs,, Hq,, ..., H,_3, are
pairwise disjoint, their number is s/3n; their union is {1, ..., r}. Thus, if A, is the

one of them with the minimal cardinality, then
©) A<D <r <1 - u)
S Am
3n
(for the latter inequality, see (x)). To prove (d,+;) we put L= {1, ..., n} — A, and
verify that

() | Uk gl 2 anlL].

Then we obtain (d,,. ;) because

1_\;)15,- — 4| z a,|L| = a,(r — |H})|) 2 a, (r —r (1 — 91’1)) - ra,,, .

am

Define sets L, ..., L,_3, = L by the following rule: for j = 0, ..., j, — 1,

ST
L, ={ieL; h; = a;hf for some h¥ in K*} — U L; ;
i J i 2o

for j = jg, ..., s = 3n —1,
Jj-1

L, ={ieL; h; = o_j,; _,hf for some h} in K*} — U L;.
i=0

By induction on ¢ = 0, ..., s — 3n — 1 we prove for L; = U h; that

ieLj
t t
(2) UL - 4| 2 a, ) |L]
Jj=0 j=0
t
This will prove (f), for t = s — 3n — 1 yields U Ly=Uh.
j=0 ieL
V, 2.1. t = 0. We are to show that |L, — §| = a,|Lo|. First, let j, + 0; then we
. N 7 .
can use (d,,) on g* and h¥, i€ Ly: since 1 2 |§ 0 k| = |oog* 0 ooh}| = |§* n B},
we get
R N .
lLo - ﬁl = IU aohy — “og*l = L,{ |hi - g*l = am,LOI .
ieLo ieLo
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Second, let jo = 0. Then L, = {i€ L; h; = a,_h}}. Since o, a,_ are neighbours
in the quasi-filter for ¢,, ¢,, we have ayp, = a,_,¢, for some p, g € {1,2}. For
each ie L, we have ]ﬁ:" N (f)q! < 1. (Proof: assume the contrary for some i€ Ly;

X’uo T! e S

then by (c,,) there exists hf* : W — S in K* with h} = ¢ hf* and so h; = ao(@,h}*),
which implies i € H, = H,, a contradiction to i e L)
We can use (d,,) on hf, ¢, (i € L,) to obtain
| U R = @] 2 an|Lo| -

ieLo

Now, since g factors trough a, and each h; (i € L,) factors through o,_,, we have

-~ ~ /\ . .
Uhi—3d2>Uh; — (4-, n &) and, by (11), &_, N & < o_;¢,. Since a,_, is
ieLo ieLo

1—1, we get

~ ~ N
|Lo — gl = |Uhi = 9] 2 |U a_ hf — a_ 10, =

ieLg ieLo
= [UAT = ¢ 2 an|Lo| -
ieLo

V,22. 0 <t < j,and (g,-) holds. We shall verify that
(h) I = (&=1 N )| 2 an|Ly| .

Then (g,+,) follows, because, by (10), & n& = &_,; N & for j=0,...,1 — 1
(indeed, as j, < s — 3n <s — 2n, all j’s with 0 < j < #(<j,) belong to {t — 1,
t—2,...,t —s — 2n(mods)}. Now, g and h; (ie Lyu ... U L,_,) factor through
dg, ..., &,_; and each h; (i € L,) factors through «,, hence we see that

t—1 t—1

L—(ULug>L-Usnégo>L —(@-.na).

j=0 j=0

Thus, using (h) and (g,-,) we get (g,).
To prove (h) we again use the fact that a,_;¢, = @, for some p, g € {1, 2}. By

the definition of L,, no h; (i € L,) factors through «,_,; applying (c,) we easily see
that then |} N @,| £ 1, i€ L,. Hence, we can use (d,,) to obtain

R PN /\* AN ~
|U ki = %, = |L£ ahf — o, = ll{ hi — ¢ 2 au|Ly .

ieL:
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N

Now, o, = &,_; N &, holds by (11); and this yields (h).

V.23 jo<t<s—3n—1 and (g-,) holds. This is analogous to V, 2.2:
g and h; (ieLyu ... U L_,) factor trough o, ..., 0y— 1, Oty g5 Og— 2y «vuy Cgmpp jo
AS]O_S—3n<S—2I’l all ’s with0 < j < j, — land all j’s withs — 1 =2 j =
Zs—1t+j, belong to {(s—t+jo—1)+1 (s—t+jo—1)+2..

o(s =1+ jo— 1) + (s — 2n)}, we can apply (10) to obtain

PO N 4
Xj OV Oy jo—1 & Os—rtjo—1 O Xs—rtjo—1+1

for all these j’s. Thus, it suffices to prove

(h,) Iﬁ, - (&s—l+j—l N as—zﬂ')l 2 amlLt‘ s
which is done similarly to (h) above.

VI. Let X be the sum of By, B, in K with injections v; : B — X so that g, h and all
hy, ..., h, factor through vy, v,. Then (c,,4,) is clear: since § N i # 0, both g and h
must factor through the same v; : g = v,g’, h = v;h’. Apply (c,,) to g, h'.

(d,u+1) is also clear: assume g = v,g" and let 4 be the set of all i € {1, ..., r} with
h; = v,h}; applying (d,,) first to g, h} (i € A) we get | U b, — gl |Al For each

j ¢ A we have h; = v,h] and, by (d,), | U k)| = a,.(r — ‘A| ). We get
j¢A

O =l = [0 Fi= gl + U] 2 ad + o = 14) = aur.

This concludes the proof of C,2.
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