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Jikf RACHUNEK, Olomouc

(Received September 4, 1979)

This paper investigates systems of Y-relations on partial algebras being reflexive
and antisymmetric among others. Systems of the so called X-relations, special cases
of which are systems of equivalences, tolerances or quasi-orders, have been studied
in [5]. In contrast to X-relations, Y-relations do not form lattices but they form
complete A -semilattices. Therefore, the first part of this paper deals with generalizing
compact elements, algebraic lattices, closure operators, etc. for the case of semilattices.
In the second part Y-relations are defined, special cases of which are orders or semi-
orders. It is proved that the set of all Y-relations on an arbitrary set is an algebraic
A-semilattice. Similarly, the set of all Y-relations compatible with any partial algebra
is also an algebiaic A -semilattice. The concluding part studies categories of systems
of Y-relations, i.e. such categories the objects of which are ordered pairs (4, %),
where A is a set and % is a system of Y-relations on A containing id,, and closed under
intersections of non-empty subsystems and under unions of bounded directed
subsystems; the morphisms of such categories are the mappings of the underlying
sets of objects with the property that the coimages of the relations from the ap-
propriate systems of Y-relations are the relations from the corresponding systems
of Y-relations. (The first category of the analogous type studied in literature was the
category of equivalence systems that was defined by M. Armbrust in [1].) In this
paper the basic properties of these categories are shown. (The description of mono-
and epimorphisms, injective and projective objects, separators and coseparators and
the study of completeness and cocompleteness of categories.) In the paper we use
the notions from the universal algebra, see [3], [4] and [6], and those from the cate-
gory theory, see [2] and [7].

1. ALGEBRAIC SEMILATTICES

Let A, B be sets, ¢ a partial mapping from A4 into B. Then Dom ¢ means the
domain of definition of ¢.
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Definition 1.1. Let S = (S, <) be an ordered set with the smallest element 0 and
let A be a partial mapping from S into S such that

1. 0e Dom 4 and 01 = 0;

2. VaeS; aeDoml=a =< al;

3. Va,beS; a<b, beDomi=aeDomAi, al £ bi;
4. Yae S; aeDom A = aleDom 4, (al) A = al.

Then A is called a partial closure operator in S.

Lemma 1.1. Let S = (S, §) be a complete A-semilattice, . a partial closure
operator in S. Then SA is a closed A-subsemilattice of S.

Proof. 0e SA, hence SA = 0. Let a,e SA (x€ A). If a = A a,, then a € Dom 4

aeA

and al < a,A = a, (x€ A), thus ai < a. Therefore al = a.

Let us suppose that S = (S, §) is a complete A -semilattice. If S" < S, then VS’
means the supremum of " in S (provided it exists). It is clear that \/S” exists for each
non-void upper bounded subset S’ of S.

Definition 1.2. Let S be a complete A-semilattice. Then an element x € S is said
to be compact if the following implication holds:
If {ya; awe A} = S is an arbitrary system such that V y, exists and x =V y,,

acd acd
then there exists a finite subset B = A4 for which x £V y,.

BeB
Definition 1.3. A complete A-semilattice S is called an algebraic A-semilattice
if each element of S is equal to the supremum of a set of compact elements of S.
If S is a complete A-semilattice, then we denote the set of its compact elements
by S*.

Definition 1.4. Let S be an algebraic A -semilattice. Then a partial closure operator A
in S is called algebraic if

VaeS* VxeS; (xeDomi, a<xA=3Ix'eS*; x' <x, a=x4).

Let us suppose that S is a complete A -semilattice, A a partial closure operator in S.
Then we shall denote the supremum in SA (ordered by the induced ordering) by Y.

Lemma 1.2. Let S be an algebraic A-semilattice, 2 a partial algebraic closure
operator in S. Then SA is an algebraic A-semilattice.

Proof. By Lemma 1.1, S1 is a closed A-subsemilattice of S. Let {x,4; x € 4} =

< S and let Y x,A exist. Then V x,4 exists, too, and we have Y x,A = V x,4.
acAd acd acA acA

But Y x,Ae S, hence V x,AeDomZ and Y x4 = (V x,4) .. Moreover, x,€

acAd acA acAd acA
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eDom 4 and (V X,4) A = x,4 for each ae 4, therefore (V x,4) 4 = Y x,4. This
acA acA acA
means

(%) YxA=(VxA) 2.

acA acA

Let ce S* nDom 4, {x,; € A} < Dom A. Suppose that Y x,A exists and ci <

acA

< Y x,A. Then by (x) we have ¢ < (V x,4) A. The algebraicity of A yields the existence

acA acA

of x’ € S* such that x’ <V x,4 and ¢ < x'A. But then there exists a finite subsystem
acd

{x;2; Be B} < {x,A; we A} such that x' <V x;A. Now ¢ < x'A implies ci <
BeB
< x4 £ (V xp4) 2 = Y x,A. Hence cA e (SA)*.
BeB BeB

Now, let ye Dom A. Then there exists {x,; ae A} = S* such that y =V x,.
acA

(It is evident that x, e Dom A for each x € A.) We have yA = (V x,) A = (V x,4) 4 =
acA aeA

= Y x,4, hence S4 is an algebraic A -semilattice.
acA

Definition 1.5. An algebraic A -semilattice S is called finitely compact if for each

finite subset {x;; f € B} = S* the supremum V x, (if it exists) is also in S*.
PeB

Lemma 1.3. Let S be a finitely compact algebraic A-semilattice, 2 a partial
algebraic closure operator in S, x € Dom A. Then xA e (S)u)* if and only if there
exists y € S* n Dom A such that xA = yA.

Proof. Let xAe(SA)*. Since S is an algebraic A-semilattice, there exists {x,;
oaE A} < S* such that x =V x,. But then x, € Dom 4 for each a € A. Here Y x,A
acd acA

exists and satisfies Y x,4 = xA. Indeed, let z € SA be such that z = x,4 for each
acd

ae A. Then z = V x, = x and so z = x/. By the assumption we have x4 e (SA)*,
acd

hence there exists a finite subset B of A4 such that x4 = Y x;4. But then xA =
BeB
= (V x34) A = (V x;) 2. Now, the finite compactness implies V x; € S*.
BeB BeB BeB

Corollary 1.4. Let S be a finitely compact algebraic A-semilattice, A a partial
algebraic closure operator in S. Then the correspondence a |- al is a mapping of
S* n Dom A onto (SA)* which satisfies the implication: If xA, yAe (SA)* and if
xA Y yA exists, then xA Y yA = (x v y) i

Proof follows immediately from (%) and Lemma 1.3.
Lemma 1.5. Let S be a finitely compact algebraic A-semilattice, . a partial
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closure operator in S. Then 1 is algebraic if and only if for each upper bounded
directed subset M = SA, VM e S/ holds.

Proof. Let S be an algebraic A -semilattice, 1 a partial algebraic closure operator
in S. Let M be a bounded directed subset of SA. Let us denote m = VM. Suppose
that z e S* is such that z < mA. Then there exists m’ € S* such that m’ £ m and
z £ m'A. However, m’ £ m = VM, thus it must exist a finite subset M’ = M for
which m’ £ VM'. M is directed, therefore m" < m; e M. Thenz £ m'A < m; < m,
and so each compact element which is less than mA is also less than m. This implies
m = mi, hence m € SA.

Let us suppose that S is finitely compact and that each bounded directed subset
M < S2 satisfies VM € SA. Let a e S*, x € Dom 4, let {x,; we A} be the system of

all compact elements that are less than x and let a < xA. Then x = V x,, x, € Dom 1
acA

for each o€ A and the finite compactness of S implies that the system {x,; a € 4}
is directed. But then system {x,4; o € A} is directed, too, and it is bounded in S2,
thus by the assumption V x,4e€ SA. This implies (V x,4) 4 =V x,4, ie. a <

acAd acAd acAd

<V x,4. The element a is compact in S, therefore there exists a finite subset B of A4
acA
such that a <V xpd. But V x;4 = Y x4, thus by Corollary 1.4, a £ (V x,,) A
BeB peB BeB BeB
The finite compactness of S implies V x; € S*, and hence 4 is algebraic.
BeB

2. SEMILATTICES OF REFLEXIVE AND ANTISYMMETRIC RELATIONS
COMPATIBLE WITH PARTIAL ALGEBRAS

If 4 is a set, then (RAs)y(4) denotes the set of all reflexive and antisymmetric
binary relations on A.

Lemma 2.1. If A is a set, then (RAs)o(A) ordered by the set-inclusion is an
algebraic A-semillattice in which the infimum is formed by the intersection.
The smallest element is id ,.

Proof. It is clear that (RAs)y(A) is a complete A-semilattice. Let o' = {(x;, y:)s
i = 1,..., n} be a finite antisymmetric relation on 4 and ¢ = ¢’ U id,. Let us suppose
that {g,; @ €I} is a system in (RAs)o(4) such that ¢ = V  {g,; x €I} exists and

(RAS)o(4)
0 < 0. Now, ¢ = U ¢, and for each (x;, y;) € ¢’ there exists g,, (¢; €I) such that

ael
n n

(xi» y;) € 05, This implies ¢ = U ¢,, = V @.,- Hence ¢ is a compact element in
i=1 i=1

(RAs)o(A). Hereby, it is evident that exactly all compact elements in (RAs)o(4)
are formed in this manner.
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But then each element of (RAs)y(4) is the supremum of compact elements, there-
fore the A semilattice (RAs)o(A) is algebraic.

Now, let us consider a system Y of relational quasi-identities of the type <{2)
with the signature {(4%) which contains the identity of reflexivity and the quasi-
identity of antisymmetry, and let us suppose that any other quasi-identity of Y (if
it exists) is in the form

Vxg .. Vx (o & ... & A, = A),

where o7y, ..., &/,, o/ are primitive formulas and the following conditions are
satisfied:
a) for each x; (i = 1, ..., n) there exists at least one of the formulas &/, ..., &/,

containing x;,
b) if p > 1, then each &/, (k = 2, ..., p) contains at least one of the variables
contained in </, _4,

¢) o = Aj(x, x,), r,qe{l, ..., n}.

Definition 2.1. A binary relation on a set A4 satisfying all quasi-identities of Y
is called a Y-relation on A.
We denote the set of all Y-relations on 4 by Y,(4).

Lemma 2.2. Y,(A) ordered by inclusion is a closed subsemilattice of the A-
semilattice (RAs)o(A) with the smallest element id 4.

Proof. Evident.

Let A be a set. We put I' = {0 € (RAs)y(4); Jo € Yo(4) : ¢ = 6}. If g€ T, then ¢
means the intersection of all relations of Yy(A) containing o.

We define the partial mapping A : (RAs)y(4) — (RAs)o(4) by Dom A = I' and
o4 = ¢ for each g e I'. It is evident that A is a partial closure operator in (RAs)o(4)
and that ((RAs)y(4)) 2 = Y(4).

Let us show that A is algebraic. Evidently, the algebraic A -semilattice (RAs)o(4)
is finitely compact. Hence by Lemma 1.5 it suffices to prove that for any bounded
directed subsystem X < Y(A4), VZ € Yy(A4) holds.

Lemma 2.3. Let X be a bounded directed subsystem in Yo(A). Then UZ € Yo(A).

Proof. The antisymmetry of (JZ follows from the boundedness of X in Yo(A4).
For the other quasi-identities of Y see [5, Proof of Lemma 2].
Therefore we have

Theorem 2.4. If A is a set, then Yy(A) is an algebraic A-semilattice.

Proof. Since the suprema in (RAs)y(A4) are formed by the unions, Lemmas 1.5
and 2.3 imply that the partial closure operator A is algebraic. Thus, by Lemma 1.2,
((RAs)o(4)) A = Yo(A) is an algebraic A-semilattice.
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Let now U = (4, F) be a partial algebra, where A =+ 0 is the support of U and
F # 0 is a set of partial operations on A. If f € F, then n, denotes the arity of f
and D(f, A) denotes the definition domain of f.

Definition 2.2. Let 0 be a Y-relation on 4. Then 0 is called a #-relation on U if
the following implication holds for each fe F:

If (ay,...,a,), (by,...b,)eD(f,4) and if (a;b;)e6, i=1,..,n, then
(ay...a,f, by ... b,.f)e0.

The set of all #-relations on 2 is denoted by #().

Theorem 2.5. If A = (A, F) is a partial algebra, then %() ordered by inclusion
is a closed A-subsemilattice of the complete A-semilaitice Yo(A4). The smallest
element in H(A) is id 4.

Proof. Evident.

Theorem 2.6. Let X be a bounded directed subsystem in %(). Then UZ € ¥(N).

Proof follows from Lemma 2.3.

For a partial algebra 9 = (4, F) let us define the partial mapping 4 : Y,(4) -
— Y,(A) such that Dom 4 is formed by exactly all relations from Yo(4) each of which
is contained in some relation from #(), and ol = N{oc € #(N); ¢ < o} for each
0 € Dom 1. Obviously 1 is a partial closure operator in Yy(A). Therefore Lemmas 1.2
and 1.5 and Theorem 2.6 imply

Theorem 2.7. If A = (A, F) is a partial algebra, then %() is an algebraic
A-semilattice.

In particular, let 9 = (4, F) be a partial algebra and (#.4/5) (%) the complete
A -semilattice of all compatible reflexive and antisymmetric relations on 2. Let us
denote £ = {¢ = A x A; ¢ < o} for some o € (B/5) (A)}. If ¢ € &, then 5, means
the intersection of all relations of (2./4) () containing ¢. Consider the partial
mapping 1 :exp (A x A) — exp (4 x A) defined by Dom A = Z and ¢4 = &, for
each g € Z. Then

1. Dom 2 = 0;

2. geDom A = g < ol;

3. 01 € 02, 026 Dom A = g; e Dom J, 9,4 S 0,4;

4. ¢e Dom . = gj e Dom 4, (¢4) A = 0A.

Theorem 2.8. Let 9, < A x A (x€l) and ¢ = U @,. Let g€ Dom A. Then o =
ael
=V o,/ in (Rt 3) (N).
ael

Proof. Since g, = ¢, we have g, Dom 4 and g4 < o for each o el. Hence
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V 0.4 exists and 04 2 V ¢4 Let o€ (Rs£5)(A) be such that ¢ 2 U g, Then

ael acl ael

9 2 g, for each a €I, thus ¢ = |J g,. But then ¢ = g4 2 g/, therefore o/ = V g, /.
ael ael
For {(a, b)} € Dom } we denote ({(a, b)}) 2 by (a, b) .

Corollary 2.9. If ¢e Dom A, then o = V (a, b)A. In particular, if g€
(a,b)ee
€ (RA3)(N), then ¢ = V (a, b) A

(a,b)ee
Let U = (4, F) be a partial algebra. If a € A4, then a° means the nullary operation
on A with the value a. Further, we put A° = {a% ae A}, A° = (4, F U A%). It is
clear that the algebraic functions of 9 are exactly the polynomials of 2°.

Now, let ge Dom 2. We denote ¢ = {(u,v)e A x A; there exist an algebraic
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function X ... x,p and (a;, b)eo, i =1,..,n,such that a, ... a,p, b, ... b,p exist
and u = ay ... a,p, v = by ... b,p}.

Theorem 2.10. Let 9 = (A, F) be a partial algebra, ¢ e Dom A. Then ¢A = o.

Proof. Since ¢ < ¢" = o4 holds, it suffices to prove ¢f € (25) (). Let ce 4,
xp = (c, x) €2, (ay, a;)eo. Then a;p = a,p = ¢, hence " is reflexive. Since
of < o4, o is antisymmetric.

Let now feF, (ay,...,a,), (by,....b,)eD(f, 4), (as, by),...,(a,, b,,) €0,
¢=day...a,f, d=by..b,[f Then by the definition of of, for an appropriate

me N there exist m-ary polynomial symbols p, ..., p,, over F u A° and elements

u®, w2, o, o L u a5 e 4 such that a, =
1) 1 — (1) (1) — 1,(nf) ( — (nf) (nr)

=u” . uPpy, by =0 o pys s a,, = Ul ul0p, b, =00 05D,

But p; ... p,,f is also an m-ary polynomial symbol over F U A° and

eY) ) (ng) (n5)

c=uj’ . ..ty'py. Ui unp, S
= D (1

d=o" .. o p...of o, f,

hence ¢f is compatible with f.
Therefore of € (Z.445) ().

3. CATEGORIES OF SYSTEMS OF Y-RELATIONS

In the sequel, Y again means a system of relational quasi-identities of the type (2)
with the properties described before Definition 2.1.

It is known that a system of equivalences on a non-empty set A forms the system
of all congruences of some partial algebra with the underlying set A4 if and only if it
is closed under intersections of arbitrary subsystems and under unions of directed
subsystems and if it contains id,. Hence, in [1], the author studied the category
the objects of which are sets together with the above described systems of equivalences.
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In general, in [5] we investigated categories the objects of which are sets together
with systems of X-relations. The concluding part of the paper describes some pro-
perties of analogous categories of Y-systems.

Definition 3.1. A y-system is any ordered pair (4, %), where A is a set and % <
c YO(A) is a system that is closed with respect to the intersections of non-void
subsystems and under the unions of bounded directed subsystems, and that contains
id,.

Definition 3.2. Let (4, %), (B, %) be y-systems, ¢ : A — B. Then ¢ is called a y-
morphism from (4, ¥) to (B, Z) if ¢p~' € % for each g Z.

Definition 3.3. We denote by Y the category whose class of objects is exactly the
class of all y-systems and whose morphisms are precisely the y-morphisms between
these y-systems.

Theorem 3.1. If ¢ : (A4, %) — (B, Z) e Mor Y, then ¢ is an injection.
Proof. Let ay, a,€ A, ay # a,, a,¢ = ayp. Then (ay, a,), (as,a;)eidg @™,

But idz 0 ! e @, so it is antisymmetric, a contradiction.

Theorem 3.2. Let ¢ : (4, %) — (B, %) € Mor Y. Then

a) ¢ is a monomorphism;
b) ¢ is an epimorphism if and only if it is bijective.

Proof. a) Follows from Theorem 3.1.

b) Let ¢ : (4, %) > (B,Z)eMor Y, BNA¢p + 0. Let be BN Ao, d¢ B, D =
= By {d}, % = {idp}. Denote by x, 1, : B— D such mappings that x, = 1z,
%o | BN{BY) = 21 | (BN{b}), bya=d. Then idpy;' =idged, idpy;' =
= idg\py U {(b, b)} = idz € Z. But this implies that ¢ is not an epimorphism.

Theorem 3.3. The category Y is concrete.

Proof. Let 4 = {a}, ¥ = {(a, a)}. Consider an arbitrary (B, #)eOb Y. Let
¢ : A > B be a mapping. Every relation of % is reflexive, hence ¢ is a morphism from
(4, %) to (B, Z) and hereby it is the unique extension of the mapping ¢. Therefore
(A, WJ) is a free object over Y, and so Y is concrete.

Lemma 3.4. If (4,,%,), ye T, are objects in Y and if card I' > 1, then the product
of the objects (A,,%,), y € I', exists if and only if card A, = 1 for each yeI.

Proof. Let (4,,%,)eOb Y, yeT, card I > 1 and let there exist y; € I' such that
card A,, > 1. Suppose that (4,%)eOb Y together with ¢, :(4, %) (4,,%,)e
e Mor Y, y e I, form the product of (4,, %,), ye I'. Let x, y € 4;,, X ¥ y. Consider
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({a}, {(a, a)})eOb Y and choose z, € A, for each y e I'\{y,}. Then the mappings

LYY o {a} > 4,, and ¥, :{a} > 4, (e I'\{y,}) defined by ay] = x, ay}, = y
and ay, = z, (ye I'\{y,}) are morphisms of the corresponding objects in Y.
Since (A, %) is the product of the objects (4,, #,), y € I', there exist unique morphisms
¥, ¢ 2 ({a}, {(a, a)}) = (A4, %) e Mor Y such that

Ve, =i, Ve, =1,
and
Vo, =i, Veo,=1y,.
Now, for each y e I'\{y,} the equality ¢, = ’¢, holds and since ¢, is a mono-
morphism, ¥* = *. But this means that /] = 7, a contradiction.
Now, we immediately obtain -

Theorem 3.5. The category Y is not complete.

Now let Y contain either exactly the identity of reflexivity and the quasi-identity
of antisymmetry or exactly the identity of reflexivity and the quasi-identities of anti-
symmetry and transitivity. Then the following theorem holds:

Theorem 3.6. The category Y is not cocomplete.

Proof. Consider (A4;,%,), (A;,%,)eOb¥ such that A, = {a,, a,}, ¥, =
= (i, id,, U {(a, az)}} Ay = {by, by, by}, @y = {id,,, id,, U {(by, by), (b, ba)}}
Let (C, Z) together with ¢, : (4, #,) - (C, Z) and ¢, : (4;, ;) = (C, Z) be the
coproduct of (4, %) and (4,, %,) in Y. Since each morphism in Y is an injection,
card C = 3. On the other hand, there exists (D, %) e Ob Y such that card D = 3
and that the sets of morphisms from (4,, %) to (D, %) and from (4,, %¥,) to (D, %)
are non-empty. (For example, if % = {id,}.) Hence card C = 3. Moreover, x : A; —
— A, defined by a,y = by, ax = b, is a morphism from (4, %) to (4,, %,).
Therefore if C = {cy, c,, ¢3}, then either Z = {id, idc L {(cy, ¢3), (¢4, €3)}} or &
is different from this form only by a permutation on the index set {1, 2, 3}.

Let us suppose that & = {idc, idc U {(cy, ¢2), (¢4, ¢3)}}. Let a0, = ¢, i = 1,2,
bip, = ¢;, i = 1,2, 3. Evidently ¢,, ,€Mor Y. Let (D, %)eOb ¥, D = {d,, d,,
ds}, % = {idp, idp U {(dy, d,), (dy, d3)}}. Denote ¥, : A; = D, Y, : A, > D such
that a; = d;, i = 1,2, by, = dy, by, = ds, by, = d,. Then , is a morphism
from (4,,%,) to (D, %) and V¥, is that from (4, %,) to (D, %). Hereby it exists
¥ :(C, Z) - (D, %) e Mor Y such that ¥, = ¢;¥ and ¢, = ¢,¥. Indeed, a,y, =
= d,, (a20,) ¥ = co¥ and by, = dj, (b,92) ¥ = c¥, hence d, = dj, a contradic-
tion.

Similarly we obtain a contradiction for all other injections of 4, and A4, into C.

In the sequel, Y again means a general system of quasi-identities.
Theorem 3.7. The category Y has no injective objects.
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Proof. Suppose that (4, #)eOb Y. Let b¢ 4, B= AU {b}, 7 = {g u{(b, b)};
ee%}. It is evident that (B, %) e Ob Y. Let us consider the mappings 1,: 4 — 4
and 1,5:A— B. Then 1,:(A, %) > (4, %), 1,5:(4,%) - (B,Z)eMor Y and
14, is a monomorphism. However, there exists no injection ¢ : B — A for which
1,45 = 1, hence there exists no morphism from (B, ) to (4, %) with this property.
Therefore (A, %) is not injective in Y.

Theorem 3.8. An object (A, %) is projective in Y if and only if ¥ = Y,(A).

Proof. Let (4,%)eOb¥Y and let ¥ = Y,(4). Clearly (4, Y,(4))eOb Y. Let
¢ =y =1, Then ¢:(4, Yo(4) > (4, %), y:4, %) > (4, % eMorY and ¢
is an epimorphism. But y = 1, is not a morphism from (4, %) to (4, Y,(A4)), hence
(A, @) is not projective. Therefore if (4, #) e Ob Y is projective, then & = Y,(A).

Let A be any set, (B,%),(C,2)eObY, ¢ :(B,Z) - (C, Z), ¥ : (4, Yo(4)) -
— (C, &) e Mor Y and let ¢ be an epimorphism. Then V is an injection, ¢ is a bijec-
tion and Z 2 {0~ '; 0 € Z}. If this is the case, then the mapping y : A — B defined
by ay = ayp~ ' is an injection, and thus the coimage of each relation from Z is
a Y-relation on A. Hence y is a morphism from (4, Y,(A4)) to (B, %) and x¢ = ¥
holds. Therefore (A4, Y,(A4)) is projective in Y.

Theorem 3.9. a) In the category Y no separator exists.
b) (S, %)eOb Y is a coseparator in Y if and only if card S = 1.

Proof. a) Follows from the fact that each morphism in Y is an injection.

b) If ¢,y : (4, %) - (B,%)eMor Y are such that ¢ # y, then A #+ 0. Hence
again Theorem 3.1 implies that if (S, %) is a coseparator in Y, then card S = 1.
Let ¢, : (4, %) - (B,Z)eMor Y, ac A4, ap + ay and let S = {s}. Then the
mapping ¢ : S — A defined by s¢ = a is a morphism from (S, %) to (4, %) and
Ep + &y
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