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We define a bracket of vertical prolongation operators on arbitrary fibered mani-
folds by means of a recently introduced operation of the so called strong difference,
[2], [3], and we show that these operators constitute a Lie algebra. (Kosmann-
Schwarzbach, [4], introduce such a bracket by means of the so called “linearization
of vertical differential section operators. However, one step of her construction cannot
be applied to arbitrary fibered manifolds. Hence our construction is a purely geo-
metrical treatment of the original idea by Y. Kosmann-Schwarzbach). Then we deduce
some properties of a special class of vertical prolongation operators formed by
generalized Lie derivatives of sections and morphisms. — All considerations are in
the category C”. '

1. Strong difference. We shall need the concept of strong difference introduced
in [2] or [3]. Given the second tangent bundle T(TM) = TTM of an arbitrary
manifold M, we have besides the bundle projection pry: TTM — TM also the
tangent map Tpy: TTM — TM to the bundle projection of the (first) tangent bundle
py: TM — M. In [2] and [3] the author has proved that every two vectors 4, Be
€ TTM satisfying pry(4) = Tpy(B) and pry(B) = Tpy(A) determine a vector
in TM denoted by A — B and called the strong difference of 4 and B.

We apply the concept of the strong difference to the second vertical bundle VVY
of an arbitrary fibered manifold Y over X. In this case we perform the construction
described in [3] on each manifold Y, (= the fiber over x). If p: Y — X is a fibered
manifold and gy: VY — Y is its vertical bundle, we have besides the vector bundle
qyy: VVY — VYalso a second vector bundle Vgy: VVY — VY, where Vqy is the vertical
tangent map to gy. Acording to [3], any two vectors 4, Be VVY satisfy the con-
ditions for the strong difference iff

(1) Vay(4) = ayy(B), Vay(B) = qyy(4).

In natural local coordinates (x‘, yP,YP, dy",dY”) on VVY induced from some
local coordinates (x', y?) on Y, A, Be VVY satisfy the conditions for the strong
difference iff 4 = (x, y”, a”, b?, A7), B = (x', y?, b”, a®, B*). Then 4 ~ B = (x, ",
AP — BP),
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As a direct consequence of Theorem 1, [3], we obtain

Lemma 1. Let Y— X and Z - X be two fibered manifolds over the same base
and let f: Y — Z be a base-preserving morphism. If A, Be VVY satisfy the condi-
tions for the strong difference, then VVf(A), VVf(B)e VVZ also satisfy the con-
ditions for the strong difference, and

VVf(4) = VVf(B) = Vf(4 ~ B)
holds.

2. Lie algebra of vertical prolongation operators. Let Y — X and Z — X be two
fibered manifolds over the same base. A differential operator A of Y into Z is a rule
transforming each section s of Y into a section As of Z. Operator A is said to be of
the order r, if the value As(x) depends only on the r-jet jis, x € X. In this case we
obtain an associated base-preserving morphism 7: J'Y — Z which is assumed to
be smooth. By definition, we have </(jis) = As(x).

For any r-th order differential operator 4 of Yinto Z, we define its vertical pro-
longation VA which is an r-th order differential operator of VY — X into VZ — X.
Any section g: X — VY can be expressed, at least locally, as

0
o =

= —|s,,
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0

where s, is a one-parameter family of sections of Y. Then we put
0
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To demonstrate the global character of this definition, we use the associated morphism
/. J'Y - Z. The morphism ¥ «/: J'VY — VZ associated with VA is of the form
V'of = Vol o iy, Where VoZ: VJ'Y - VZ is the vertical tangent map to ./ and
iy: J'VY — VJ"Y is the canonical identification defined by
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for every one-parameter family of sections of Y and every x € X, see [1]. Indeed,
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If Z is a fibered manifold q: Z — Y over Y and A satisfies gA4s = s for all sections

of Y, then A will be called a prolongation differential operator. In [4], prolongation
differential operators are called differential section operators. A prolongation
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As(x) = <
s(x) = —
o o1
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differential opzrator A is characterized by the property that o/:J'Y > Z is a
morphism over idy. Then vertical prolongation VA4 is a prolongation differential
operator with respect to projection Vgq: VZ — VY. Indeed,

Va(VA(o)) = Vg (VA (~ A) “a

P -
5, =Vyq <
0t|o ot
for every section g: X — VY.

Consider now the case Z = VY. A prolongation differential opzrator of Yinto VY
will be called a vertical prolongation operator on Y. Such operators form a real
vector space, provided one defines

(q4s,) = < s, =0
0 dtlo

(kA4 + k,B)s:= k,As + k,Bs, ki, k,eR

for every section s of Y. Each vertical prolongation operator 4 on Y can be prolonged
in the above sense into an operator VA of VY into VVY. If A, B are two vertical
prolongation operators on Y, we can construct VA(Bs), VB(4s): X — VVY for every
section s of Y. Both VA - B and VB . A are prolongation differential operators of Y
into VVY. We have Vqy(VA(Bs)) = Bs since VA is a prolongation differential operator
with respect to the projection Vgy. Further, if Bs is tangent to s,, 5, = s, then

qvy(VA(Bs)) = qyy <~6~ As,) = As.
Ot|o

Similarly we have Vqy(VB(As)) = As, q,y(VB(As)) = Bs. Hence the conditions (1)
for the strong difference are satisfied. If 4 and B are vertical prolongation operators
of orders r and s, then VA - B and VB - A are prolongation differential operators of
order r + s. The associated morphism to VAo B is VAoiy o J'B :J Y - VVY
because of VA(Bs(x)) =Vl o iy j (B o jis) = Vol o iy o JB(j; °s), where J' % is the
restriction of the r-th jet prolongation of # to J'™Y < J’(JSY). Similarly, the
associated morphism to VBo A is VB o iy o J°Z : J'7Y > VVY.

We now define a vertical prolongation operator of order r + s on Y, called the
bracket of A, B, by

(3) [4, B] (s) := VA(Bs) ~ VB(ds): X — VY.
The associated morphism to [4,B] is [A, B] =Vl oiy o B = VB oiy o J5oA :
Y 5 VY.

We are going to define the “value” of a vertical prolongation operator on any

function f: Y — R. Denote by df: VY — R the fiber differential of f, [1]. For a vertical
prolongation operator 4 with the associated morphism ./ we put

4) Af:=0f ol : Y > R.

Lemma 2. If A, B are two vertical prolongation operators of order r such that
Af = Bf holds for every function f: Y — R, then A = B.
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Proof. In local coordinates (x’, y”) on Y and the induced coordinates (x', y*, Y?)
on VY and (x% y?, yb,...,y%_ ;) on JY, we have f = f(x',)?), o =x' =x,

yP =y, YP = AP(x', y", ..., y? ;) and a similar expression for #. Then
3 a
af= L ogo, = e,
ay? a)!

Setting f = y”, we obtain A? = B? for every p, which implies &« = 4. QED.

Further, if f: J°Y — R is a function, we have the fiber differential 6f : VJ*Y — R.
Taking into account Jio/ : J"t5Y — J°VY, we define

(5) Af i= 6f oy o ' 1 J"TY > R.

Using (4) and (5), we shall prove

Proposition 1. The set of all vertical prolongation operators on an arbitrary fibered
manifold forms a Lie algebra with respect to the bracket defined by (3).

Proof. Any function f: Y — R can be considered as a base-preserving morphism
f: Y>> X x R, where X x R — X is the product fibered manifold. Then Jdf is the
second component of the vertical tangent map Vf:VY — V(X X R) =X x TR
and Af is the second component of Vf ..« : J'Y - X Xx TR. Further, according to
(5), B(Af) is the fourth component of

VVfoVsl oiyoJ'B:J Y>> X x TIR.
Similarly, A(Bf) is the fourth component of
VVfo VA o I;r o JS : JP+SY—‘) X x TTR.

But Vif o iy o J'% and V& o iy o J°o/ satisfy the conditions for the strong difference
and Lemma 1 implies

VVfo Vet o i;oJr‘Uz - VVfo V;@oi;o.’s&l{ =
= VIV oiy o B = VB oiyo Jod) = Vo[, B].

Hence the second component of the latter map is [4, B] f. On the other hand, the
second component of VVf o Vel o iy o J'B = VVf o VB o iy o J°sZ is B(Af) — A(Bf),
so that

(6) [4. B]f = B(4f) — A(Bf).
Using (6), one finds easily .

(T4, B1. ] + [[B. C). 4] + [[C. 41, B))/ = 0.
By Lemma 2, we deduce the Jacobi identity. QED.

3. Generalized Lie derivatives of sections and morphisms. Let Y — X be a fibered
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manifold, # a projectable vector field on Y over a vector field £ on X and s a section
of Y. Then the Lie derivative (see [2]) of s with respect to  is
Ly =Ts0ol —nos: X > VY.

Thus, every projectable vector field # transforms any section s of Y into a section
Z,s : X — VYand we can consider %, as a vertical prolongation operator of order 1.

According to Proposition 1 the set of the Lie derivatives of sections with respect
to the projectable vector fields forms a Lie algebra. The bracket is defined by the
following formula

(7) [Z,. Li]ls = VL, Lys =~ VLLs .

Lemma 3. For every projectable vector field n on Y and every section @ : X — VY
we have

(®) V)P =i-2,,9.

where i is the canonical involution of VVY and vector field Vi is the vertical pro-
longation of n defined by means of the vertical prolongation of the flow of 3.

Proof. In local coordinates, ® = (x', p”(x), #”(x)). Then V&, transforms @
into

; oo .. onf
(xla (Pp, (g"(p)p’ ¢p’ ?&'T C' - i (pq> .

oyt
Further,
. : 0 0 on? 0
V,=¢&8(x)— +n(x,y) — + — Y1 —
" ( )ax' () cyP oy! oY’
and

op? ; 0 or . onP 0
Lt = (2 gp) Lo (g = Tge) S
ox' ayP ox! 07 aYr
Thus &y, transforms @ into
. oPpP . onP
xl’ (pPB d)P’ (gq(p)ps - L.:’ - ﬂ ¢q 0y QED.
ox* 0y?

Owing to Lemma 3, the bracket of Lie derivatives of sections can be expressed
equivalently as

©) [L0 L3l (s) = Lviis = Liays -
In [2], Kol4f has proved k
(10) LS = LyiLys = Lryirs -

From (9) and (10) it follows that Zy, 15 = [%,, £;] (s) and we can consider & as a
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homomorphism of the Lie algzbra of all projzctable vector fields on Yinto the Lie
algebra of all vertical prolongation operators on Y.

Let Y- X and Z —» X be two fibered manifolds over the same base. Let 5 te
a projectable vector field on Y over a vector field £ on X and { a projectable vector
field on Z over the same vector field &. Then for every base-preserving morphism
f: Y — Z we define its Lie derivative with respect to n and { by

g(,”;)/‘:'—’ ch-l’}—Cof:Y-‘) VZ.

Remark. Let G »9Z -7 X be a double fibered manifold and f: Y —» Z a base-
preserving morphism. A prolongation differential f-operator of Y into G is a rule
transforming each section s of Y into a section 4s: X — G such that g(A4s) = fos.
(Kosmann-Schwarzbach, [4], calls such an operator a differential section f-operator.)
In the special case of VZ —-1Z —? X, a prolongation differential f-operator will be
called a vertical prolongation f-operator. Lie derivatives of morphisms can be
considered as vertical prolongation f-operators transforming each section s of Y
into a section (&, nf) o5 : X - VZ.

Let i7 and & be another pair of projectable vector fields on Y and Z over the same
vector field { on X. Then we define the iterated Lie derivative by

(11) g(ﬁ.VZ)g(mC)f: Y——) VVZ.

Proposition 2. L, v L i of and Ly L., of satisfy the conditions for the
strong difference and

(12) g(m"!)g(ﬁ,f)f = g(ﬁ,VZ)zfn,Z)f = ’S’p([n,ﬁ].[LE])f'

Proof. The generalized Lie derivative of a map f: M — N with respect to a pair
of vector fields ¢ and # on M and N is defined by the formula £, f := Tf. ¢ —
—fof M — TN, [3]. In general, it is easy to see that if the values of f lie in a sub-
manifold Q = N and the vector field » is tangent to Q, then- L ,f = Lenfs
where 7 is the restriction of # to Q. Since { is a projectable vector field on Z and the
values of Z; . f lie in VZ, we have, in our case, L, roLanf = LavoLans
where T( is the prolongation of { with respsct to the tangent functor constructed by
means of flows, [3]. Our proposition is then a special case of Theorem 2 of [3]. QED.

Owing to Proposition 2, the set of Lie derivatives of morphisms forms the Lie
algebra with a bracket defined by

(13) [ipw,o’ °g(ﬁ,Z)]f = ’?('I,VC)’?('?;Z)f - "g’p(r‘l.VZ)g(mi)f'

A simpler situation occurs, if Z = E is a vector bundle. Then #, ,f can be
considered as a base-preserving morphism of Y into E as well. Hence we can
construct the iterated Lie derivative £, %7 f: Y — E. A projectable vector
field { on E is called linear, [2], if its flow is formed by linear fiber isomorphisms.
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Proposition 3. Let Y — X be a fibered manifold, E — X a vector bundle over the
same base, and f: Y — E a base-preserving morphism. Let n, ij be two projectable
vector fields on Y over vector fields &, & on X, and {, { two linear vector fields on E

over the same vector fields &, &, respectively. Then
(14) g(r‘:.t)g(n,of - $<n,:)$(ﬁ.t)f = g([ﬁ.n],[f,él)f'

Proof represents an easy direct calculation in local coordinates. We remark that
in the vector bundle case we do not need the strong difference. However, the con-
dition of linearity of { and  is essential, i.e. (14) does not hold for general projectable
vector fields ¢ and (.
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