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0. Introduction. In this paper we study the integrability of a G-structure defined
on a manifold M by a couple (J, T) consisting of an almost complex structure J
and an almost tangent structure T. In other words we consider on M two tensor
fields J and T of type (1,1) satisfying J> = —I, T?> = 0 and ker T =im 7. We
distinguish three cases described by the relations

(1) JT= T,
(2) JT= —TJ,
(3) JT+ TJ = 1.

These possiblities arise quite naturally as the only ones when we require that the sub-
algebra of the associative algebra of tensor fields of type (1,1) generated by J and T
has dimension =<4. The main results are formulated as theorems 1,2 and 3.

For the sake of simplicity we assume all structures to be of class C*.

1. Algebraic preliminaries. Let us consider a real associative algebra A with the
unit element (which we denote by e). We are going to describe all such algebras with
two generators j, t + 0 satisfying

(1) jP=—e, t*=0

under the restriction dim 4 < 4.

It can be easily checked that e, j, t are linearly independent. As a consequence we
have dim 4 = 3 or dim 4 = 4. Of course, the five elements jt, tj, j, t, e must be de-
pendent. We shall need the following

Lemma 1. If there is v
(2) ojt + Ptj + yj + 0t + ce =0
then the combination is either trivial or aff + 0.

Proof. Let us suppose the above combination to be non-trivial. Then obviously
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o® + B* > 0. Let us suppose that o & 0, f = 0. Then
3) » Jt=7p4j + 61t + e
and multiplying this equality by ¢ from the right we get

Vijt + &1 =0.
Substituting (3) into this last formula we have

Vij + (1101 + &)1 + y18,6 =0
which implies y, = ¢, = 0. Thus (3) has the form
jt=0,1.
Multiplication of this identity by j from the left gives
v o—t=2044jt, 1+68)1=0

which implies 7 = 0 and this is a contradiction. Similarly we proceed in the case
o =0, f %= 0. Our lemma is proved.
Now it is obvious that there exist a, b, ¢, d such that

4 jt=at; + bj + ct + de.
Multiplying (4) by ¢ from the left and from the right respectively we obtain
tjt = btj + dt, 0 = atjt + bjt + dt.
These two equations combined with (4) give
2abtj + b* + (ad + bc + d)r + bde = 0
which by virtue of Lemma 1 shows that there are two possibilities:
()b=0,d= 0,
(ii) b=0,a=—1.

In the case (i) the equation (4) multiplied by j from the left and from the right
respectively gives
—t=aqajtj + cjt, jtj = —at + ctj.

From these two equations using (4) we get
2actj + (> —a®> + 1)t = 0.

This proves that either ¢ = 0 and a = 1 or ¢ = 0 and @ = —1. Thus in the case (i)
the generators j, ¢ satisfy either jt = tj or jt = —1j.

In the case (ii) we multiply again the equation (4) by j from the left and from the
right thus obtaining respectively

—t+jti=cjt+dj, jiji—t=ctj+dj.
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Hence we have

c(jt — tj)=0. @

Because jt = tj in this case yields a contradiction (the proof of which we leave to
the reader), we have ¢ = 0, and thus jt + tj = de. If d & 0 it is obvious that there
is no substantial difference between the case jt + tj = de and the case jt + tj = e.
In the sense of this remark we may state the following

Proposition 1. There are exactly three real associative algebras with the unit
element having two generators j,t + 0 such that j2> = —e, t* =0 and having
dimension <4. These three algebras are completely described by the following
identites:

(i) je 4,

(i) jt = —1j,

(iii) jr + 1j = e.

The corresponding algebras we denote by the symbols o, o/ ,, o 5, respectively.

2. The commutative case. Here we shall study the structure which corresponds to
the algebra &/, from Proposition 1. Let M be a manifold provided with a couple J, T
of tensor fields of type (1, 1) satisfying J> = —I, T>* =0, JT = TJ, and ker T =
= im T. This structure will be called a (J, T),-structure. We write m = dim M. We
shall denote by D the distribution ker T= im T. It can be immediately seen that
there is JD < D, TD < D. This shows that m = 0 mod 4, so that we can write
m = 4n.

Proposition 2. There is a 1-1 correspondence between the set of (J, T)-structures
on M and the set of Gy-structures on M, where G, is the Lie group consisting of
all regular matrices of the form '

AL 42 0 0
—-A2 47 0 O
A3 A5 Ap A}
—A3 A3 —A} A

with Ai, Af, A;, Ag being (n X n)-matrices.

Proof. Let us consider a manifold M provided with a (J, T)l-structure, and let
us take any point x € M. The tensor J defines a complex vector space structure on
the tangent space T,(M). Obviously D, is a complex subspace of T,(M). Let us take
any complex basis vy, ..., v, of T,(M) over D,. It is easy to see that vy, ..., v,, Jvy, ...

o Ju,, Tog, ..., To,, TJvy, ..., TJu, is a real basis of Tx(M). The reader can easily
verify that the set of all bases of this type all over M is a G-structure over M.
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Conversely, let a G,-structure on M be given. We take any basis vy, ..., vy, of T,(M)
belonging to this G,-structure and define

4n 4n
Jo; = Z J’;vk » Tw; = Z T:“Uk s
k=1 K=1
where (J}) and (T7}) are the matrices
0-710 O\ and /000 O\,

I 00 O 0000
0 00 -1 1000
0o 01 0 07100

respectively. We denote here by I the unit (n X n)—matrix. It is not difficult to show
that the definition of J and T does not depend on the choice of a basis from the G-
structure. All the other details of the proof we leave to the reader.

For the formulation of the main theorem of this section we shall need a tensor
field {F, G} of type (1, 2) associated with any couple F, G of tensor fields of type
(1, 1) satisfying FG = GF. This tensor field is defined by the formula

{F,G}(X,Y)=[FX,GY] + FG[X, Y] — F[X,GY] — G[FX, Y].
We shall prove
Theorem 1. A (J, T),-structure is integrable if and only if
{(J,J} ={J, T} ={T,T} =0.

Proof. J is an almost complex structure on the manifold M. But because {J, J} =
= 0 the almost complex structure J is integrable, i.e. M is a complex manifold and
we can use complex charts. Now it is not difficult to see that the (J, T),-structure
is integrable if and only if to any point @ € M there exists its open neighborhood

with a complex chart (z1, ..., z?") on it such that
p
0 0 J
Tci= . T¢C—— =0, i=1,2..,n,
azl 6Zn+1 azn+z

where T€ denotes the complexification of T.

We shall show first that T€ is a holomorphic tensor field. For this purpose it
suffices to prove that for any holomorphic vector field Z the vector field TZ is again
holomorphic. Taking a holomorphic vector field Z we can write it in the form Z =
= }(X — iJX), where X is a real vector field satisfying #xJ = 0. The symbol %y
denotes the Lie derivative with respect to X. We have T“Z = 4(TX — iJTX). By
virtue of the assumption {J, T} = 0 we get

(Zxd) (V) = (Z1xd) (Y) = T(ZxJ) (Y) =
= [TX, JY] = J[TX, Y] = T[X, JY] + TI[X, Y] = —{J, T} (Y. X) = 0

which shows that TZ is a holomorphic vector field.
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The distribution D is integrable. This can be easily seen because taking two vector
fields X, Ye D = im T we cai. write X = TX, Y = TY, and by virtue of {T, T} = 0
we get
[X, Y] =[TX,, TY,] = T([TX,, Y;] + [X,, TY,])
which belongs to D = im T. Because D is invariant under J, it is possible for any
point a € M to find its open neighborhood %, with a complex chart (z', ..., z*") on

it such that the equations
dzl!=..=dz"=0

1

define on %, the complexification D€ of D.
Obviously there are holomorphic functions A4%; i, j = 1, ..., n such that

TC<A{—6—,>= 0 , i=1,...,n.

0z’ ozt

We shall consider the differential system
6H"+j

— 47 ;o
EF_Ai’ l,_]—l,...,n.

There are holomorphic functions H"*/(z*, ..., z*"), j = 1, ..., n defined on a neigh-
borhood %, = %, of a which form a solution of this system if and only if
0A! 0A]
5 C = , Lik=1,...,n.
( ) azn+k azu+l J

But this last condition is a consequence of the assumption {T, T} = 0. We have

namely

o={re e (il a4 L)L O qe[y O ]
0z’ 0z’ oz"ti gtk 0z/ o'tk

L[ 0 g2 (oA Mo
ozt 0z7 oz"tk gt 0z?

which implies (5). Thus on an open neighborhoed %53 < %, of a we can introduce
a complex chart ('z, ..., 'z*") by

Zi=z, "= H(, L2, i=1,.,n.

With respect to this new chart we have by virtue of (5)

ajre el 0O 0, 0
o'z’ 0z’ ozt oz"ti gty o'zt

which implies
T¢ i 9

a/zi - 6/Zn+i '
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The relation

TC(3

o'zt
is obvious. The theorem is proved.

3. The anticommutative case. In this section we consider a manifold M provided
with a couple J, T of tensor fields of type (1, 1) satisfying J> = —I, T> = 0, JT =
= —JTand ker T = im T. We shall call such a structure a (J, T),-structure. We denote
m = dim M. It is easy to see that again m = 0 mod 4 so that we can write m = 4n.
As in the preceding section we denote by D the distribution ker T = im T.
Obviously JD = D, TD = D holds again.

Proposition 3. There is a 1-1 correspondence between the set of (J, T),-structures
on M and the set of G,-structures on M, where G, is the Lie group consisting of all
regular matrices of the form

AL 420 0

A2 Al o 0

A3 A3 A; —A]
—A3 A3 A7 A

with A}, Aé, Af, A; being (n X m)-matrices.

Proof. Let M be a manifold provided with a (J, T),-structure. We construct
a G,-structure on M in the following way. On any tangent space T,(M) the tensor J
induces a complex vector space structure. D, is obviously a subspace of this complex
vector space. Let vy, ..., v, be any basis of the complex space T, (M) over the sub-
space D,. Then the vectors vy, ..., v,, Juy, ..., Jv,, Tvy, ..., Tv,, JTv,, ..., JTv, form
a real basis of T(M) considered as a real vector space. It is easy to check that all
bases of this form at all points of M constitute a G,-structure on M.

Conversely, let a G,-structure be given on a manifold M. Let us take any basis
vy, -, Ugy of T,(M) belonging to the G,-structure. We define J, and T, by the formulas

4n 4n
Jo, =Y Jiv, Tw, =Y Th,, i=1..4n,
K=1 k=1
where (J%) and (T}) are (4n x 4n)-matrices
6) 0—-70 0\ and [0 000\,
I 00 O 0 000
0 00 —1I I 000
0 01 O \0 —-100

respectively. By I we denote here the unit (n x n)-matrix. It is easy to see that the
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definition of J and T, does not depend on the choice of a basis from the G,-structure.
All the other details of the proof we leave again to the reader.

Let us recall now that for any two tensor fields F, G of type (1, 1) we can define
the Nijenhuis tensot field [F, G] (which is a tensor field of type (1, 2)) by the formula

[F,G](X, Y) = [FX,GY] + FG[X, Y] — F[X, GY] — G[FX, Y] +
+ [GX, FY] + GF[X, Y] - G[X, FY] — F[GX, Y].

{
These Nijenhuis tensor fields, or briefly Nijenhuis tensors, will appear in the fol-
lowing proposition. Let us remark that [F, F] = 2{F, F}. For our special tensors
J and T we introduce one more tensor of type (I, 2) by the formula

(J, T)(X, Y) = T(J[JX, JTY] + [X, JTY] + J[X, TY] — [JX, TY]).

Now we may state the following proposition, which provides us with necessary tools
for the proof of the main theorem of this section.

Proposition 4. Let M be a manifold with a (J, T),-structure such that
[J.J]=[/.T]=[T.T]=(J,T)=0.
Then there exists on M a torsionless connection V such that VJ = VT = 0.

Proof. We recall first a well known result from the theory of almost complex
manifolds (see [1], p. 143). Let M be a manifold endowed with an almost complex
structure J. Taking any torsionless connection V on M we can define a connection V
by ViY = V,Y — Q(X, Y) with

O(X, Y) = HVyud)(X) + +J(VyJ) (X) + 3J(VxJ)(Y).

With respect to this new connection we have VJ = 0. Moreover, the torsion tensor
of V is equal to [ J, J].

Now we start to consider a manifold M with a (J, T)z—structure. Our plan is the
following one. T'is an almost tangent structure on M. Because [T, T] = 0 this struc-
ture is integrable and therefore there exists a torsionless connection V on M such that
VT = 0 (see [2], pp. 238 and 240). Applying the above described ~-procedure to V
and J we get a connection with respzct to which J is parallel and which is torsionless
because [J, J] = 0. Unfortunately T need not be parallel with respect to this new
connection. In order to improve this we shall alter the connection V. More precisely,
instead of V we shall consider the connection V defined by VyY = VY — P(X,Y)
with a suitably chosen P(X, Y). The connection V should fulfil the following require-
ments. It should be torsionless, satisfy VT = 0, and the ~-procedure applied to V
and J should provide us with a connection, which we denote again by V, satisfying
VT = 0. We remark that the second requirement is not necessary, but we shall
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work with it because it simplifies the proof. In other words our plan is to find P(X, Y)
with the following three properties

(i) P(X, Y) = P(Y, X),

(i) P(X, TY) = TP(X, Y),

(i) VT =0,
where Q is defined by the same formula as Q with V instead of V.

A calculation shows us that
(7) (VxT)(Y) = —3TP(JX, JY) + 3JTP(JX, Y) + 1T(V,yJ) (X) +

+ 1TI(VyJ) (X) = H(Vyryd) (X) — 2I(Viyd) (X) .
We introduce the following notation:
V(X,Y) = 4T(V,;,J) (X) + 3TI(VyJ) (X) +
+ HVored) (X) + H(Vaed) (X)
W(X,Y)= TP(X,Y).

With this notation the condition (iii) can be expressed in the form
(8) TIW(X,JY) + iW(X, Y) = V(X,Y).

Let us denote by & the vector space of tensor fields of type (1,2) on M. On ¥ we
define an endomorphism « : & - & by

(«S)(X,Y) =4JS(X,JY) + 1S(X, Y), Ses.
We easily find «® = «, or equivalently «(« — ) = 0, where .# is the identity map.
Thus we obtain a decomposition & = &, @ &, with ¥, = ker « and &, =

= ker (e — .#). The corresponding projectors are .# — & and «. Using the endo-
morphism &/ we can rewrite (8) into the form

) aW=V.
Now it is obvious that we can find W satisfying (9) if and only if «V = V. We have
(«V)(X,Y) = —3JT(VyJ) (X) + $T(VsyJ) (X) + $J(Viyd) (X) —
—H(Vuyd) (X) + 3T(VyJ) (X) + $TI(VyI) (X) —
—3(Vyryd) (X) + $I(Vid) (X) = V(X, Y).

This shows that (9) has a solution. This solution is obviously W = V, and any other
solution has the form ¥ — N, where N is a tensor field of type (1, 2) satisfying «N =
= 0, or equivalently N(X, JY) = JN(X, Y). Let us remark that we are not interested
in any solution W of (9). Our final goal is to find P which by (i) is to be symmetric.

563



Then, of course, W = TP must be also symmetric. Therefore we shall now try to
find N such that

(iy N(X,JY) = JN(X, Y),

(il V(X,Y) — N(X, Y) = V(Y. X) — N(Y, X).
A calculation shows that :
(10) V(X, Y) = V(Y, X) = =4T(V,xJ) (Y) + 3T(VyJ) (X) =

= I, IT](X,Y) - HJ[J, T](X. V).
We shall need the formula (see [3], p. 94)
[H,KL] + [K, HL] = K[H, L] + H[K, L] + [H,K]L+ [H,K]. L
which is valid for any three tensor fields of type (1, 1). In this formula [H, K] L
and [H,K].L are tensor fields of type (1,2) defined by ([H,K]L)(X,Y)=
= [H,K](LX, Y) and ([H,K].L)(X,Y)=[H,K](X,LY), respectively. Using
this formula we easily find
[7,JT]) = —-T[J,J] - J[TJ] - [J, T]J - [J, T].J.

Now by virtue of the assumptions we get from (10)

V(X, Y) — V(Y, X) = —3T(V,xJ) (Y) + $T(V,yJ) (X) .

This result shows that if we set

NX,Y) = —1T(V,xJ)(Y)
then the condition (i)' is obviously satisfied. But it is easy to see that this N satisfies
“also (i)’. We get

N(X. JY) = =3T(V,xd) (7¥) = =3T(Vox(=Y)) + 4TI (Vi ¥) =

It

—1JT(V,xJY) + 3TV, Y = IN(X, Y).
Thus we have found
WX, Y)=V(X,Y)=NX,Y) = 1T(V,;J)(X) + 1TJ(VyJ) (X) +
+ 3(Vyryd) (X) + 3I(Vryd) (X) + T(V,xJ) (Y)
which is a solution of (9), and which is moreover symmetric, i.e. W(X, Y) = W(Y, X).

In order to find P such that TP(X, Y) = W(X, Y) we must prove first that
TW(X, Y) = 0. We obtain
TW(X, Y) = $TJ(J[JX, JTY] + [X, JTY] + J[X, TY] — [JX, TY]) =
= —1J(J, T)(X, ¥) = 0.
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Further calculation shows that
W(X, TY) = lTJ(J[JX, JTY] + [X, JTY] + J[X, TY] — [JX, TY]) =
= -—%J(J, T) (X, Y) =0.

These two results enable us to define P as follows. First we choose a distribution D
on M such that D @ D = T(M). We need the following notation: if X € D we denote
by X the unique element from D satisfying TX = X. Now we define

P(X,Y)=0 for X,YeD,
P(X,Y)=W(X,Y) for XeD, YeD,
P(X,Y) = W(X,Y) for XeD, YeD,
P(X,Y)=T 'W(X,Y) for X,YeD.

T~ 'W(X, Y) denotes here the unique element from D the image of which under Tis
W(X,Y). P(X, Y) satisfies (i) because W(X, Y) is symmetric. (ii) follows from the
very definition of P(X, Y). Finally, P(X, Y) satisfies (iii) because «W = V. Our
proposition is proved.

Now let us consider again a manifold M with a (J, T),-structure satisfying
[1,J]=[JT]=[TT]=(J,T)=0.

By the preceding proposition we can find on M a torsionless connection with respect
to which J and T are parallel. Let V and V' be two connections with these properties.
We shall write VyY = VyY — S(X,Y). Obviously we have S(X, Y) = S(Y, X),
S(X,JY) = JS(X, Y) and S(X, TY) = TS(X, Y). If we denote by R and R’ the cur-
vature tensors of V and V', respectively, we have

(11) R(X,Y)Z = R(X, Y) Z = (Vx(S(Y, 2)) = V4(S(X., 2))) -
= (S(X, VyZ) = S(Y, VxZ)) + (S(X. S(Y, 2) — S(Y, S(X, 2)) +
+ S([X. Y], Z).
If Z € D we can find Z such that TZ = Z. Then for any X we have
S(X.Z) = —J*S(X, TZ) = —J*S(TZ,X) = —JS(TZ, JX) =
—~JS(JX, TZ) = —JTS(JX, Z) = TIS(Z, JX) =
TI*S(Z,X) = —-TS(X,Z) = —S(X, TZ) = —5(X, Z)

which implies S(X, Z) = 0. Using this result and (11) we easily find that for any
Z e D we have
R(X,Y)Z = R(X,Y)Z.
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Moreover, because VT = 0 we have R(X, Y)Z € D. This leads us to the following

Definition 1. Let M be a manifold with a (J, T),-structure satisfying
[,J]=[J.T]=[T.T]=(J,T)=0.
Then we define a 3-linear mapping
B :!T(M) x T(M)+ D — D
by the formula B(X, Y, Z) = R(X, Y)Z, where R is the curvature tensor of any

torsionless connection V satisfying VT = VJ = 0.

Now we have prepared all necessary tools for the proof of the main theorem of
this section.

Theorem 2. A4 (J, T),-structure is integrable if and only if the following condi-
tions are satisfied:

() 7] =[/TI=[T.T]=(J,T) =0,

(ii) B = 0.

Proof. Let a (J, T),-structure on a manifold M be integrable. That means that
for any point of M there exists its open neighborhood with a chart (x', ..., x*") on
it such that with respect to the basis 9/0x", ..., §/0x*" the tensors J and T have the

matrix expression (6). This immediately implies (1) But if this is the case B can be
defined. Taking any connection V with VJ= VT = 0 we have

B _a‘.a i) "‘_L =
oxt ox/ oxtK

— a1~;,2n+K _ 611’1'-,2n+K + I—vs.
ox’ ox’ ’

4 A r a
,2n+KFis - Fi,2n+KFjs) a;
for i,j,r=1,...,4n, K = 1,...,2n. The _F’s denote here as usual the Christoffel
coefficients of V. We shall prove that I’} ,,,, =0 for i,j=1,...,4n and K =
=1,..., 2n which will imply B == 0. We denote by lower-case Greek lette1s the integers
1, ..., n and we write V; instead of V,,... We have

: 0 0 0 a ;0
bomig =V, v (1= v, L (i 9=
Jo2ns ox, T oxnta J( 5x“) C oxr ( " Bxi)

=7# 9 _ e 0
Hoxmth It ants

which implies I'},,,, =0 for 1 <i < 2n. Along the same lines we obtain
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I} 3yinse = 0. Furthermore,

0 0 0 a 0
Moy L =v,— v (12) = 1(v,- L) = 7(v -
2P o oxntE ( 6x”) ( ax”) ( ﬂax”)

=JTV

n+a

ox

0 i} 0 0
=J Vn+1 (T@> =J Vn+az 5’;,:5 =J VZnﬂ"ﬁ W = V2n+ﬂ <J :7,7.;) =

0 0 I 0

= —V2n+ﬂ§1 = - aW = ‘Fa,zn+/; (';I
from which we get I':’Z,,H, = 0. Similarly we proceed in the remaining cases.

Conversely, let us suppose that a (J, T),-structure on a manifold M satisfies (i)
and (ii), and let us take a point a € M. The condition [T, T] = 0 implies the in-
tegrability of the distribution D = im T. Thus we can find an open neighborhoed %,
of a and a chart (x}, ..., x") on it such that D is spanned by the vectors /dxi""", ...
..., 0[ox$". Generally [J, J] = 0 implies the integrability of the almost complex
structure J. At this place we shall use this fact only partially. Namely, inspecting the
proof of integrability of an almost complex structure (see e.g. [1], Appendix 8),
we obtain easily its modification depending on an arbitrary number of parameters.
More precisely this means that on a smaller open neighborhood %, < %, of a we
can find a chait (x3, ..., x3") with

r_ 1 T _ p2ntIf 1 4 _ )
xp =xy, x3"T= L%, I=1,..,2n
such that (x3"*! + ix3"*"* 1 .., x3""" + ix3"*"*") is a complex chart on any leaf

of the distribution D contained in %,.
Let us write now

o K8 k0

J— =& — 4d¥—_ I1=1,..,m.
oxl  Toaxk T gu2nk

We get easily cfck = —&F. This enables us to introduce on each leaf of the com-
plementary distribution D’ = [a/ax;, e 8/6x§"] an auxiliary almost complex struc-
ture J' by

0 0

J’ T = Cf i
0x; 0x;

We want to show now that this almost complex structure has relatively nice pro-
perties. For this purpose we rewrite the tensor (J, T) into the form

(J, T)(X,Y)=TI[J, J](X, TY) + 2T(J[X, TY] — [JX, TY]) =
= 2T(J[X, TY] — [JX, TY))
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I

and apply the assumption (J T) = 0. Taking X = 9/dx} and Y such that TY
= 0[ox3"" " we get

0 F [ B
0=3LT)(X.Y)=T , 0 S S
"( ? )( ) ( [a I a 2n+L] [I axg( I axgn-%K axgn-f-L

ock T 0

= 2n+L K
0x5 0x;

Il

{
which implies dcf[dx3"*" = 0. Another important property of J' follows from the
assumption [J, J] = 0. With X = 9/dx], Y = 0[/ox5 we obtain

O:[J)J] i, i e C%ii’ CM a .._J c;‘,j_i, _a_ —
oxy  ox% 0x5 oxy x5y ox%

- J ﬁ, cM 9 + element of D .
ax; axz

This shows that [J’, J'] = 0 on any leaf of D. This fact together with the indepen-

dence of ¢f on x3"*',...,x3" enables us to find a chart (x3,...,x3") on an open neigh-
borhood %5 < %, of a with
x5 =g'Gx, .., x3"), 3" =X I=1,...,2n
and such that
0 0 0

(12) J— = nta dg 2n+K ’

ox3  0xj 0x35

2 o .
ax"_'_a"*é;g'{‘ "+162"+K’ a=1,...,n.

(The coefficients d differ of course from those above denoted by the same letter.)

It is evident that (x3"*' + ix3"™"*', .., x3"*" + ix3"*"*") is again a complex
chart on any leaf of D contained in %;.

We now introduce an auxiliary complex structure on % using the complex chart

zh ., 22") defined by

2 3
=% + iy, = x4ttt a=1,...,n.

Of couise, this complex structure on %5 need not coincide with the complex structure
induced by J. Nevertheless the both structures coincide on any leaf of D. We shall
use this complex chart in order to rewrite the equations (12) into a complex form.

Let us mention first that by virtue of J> = —I we obtain from (12) the equalities
&, =d", &b =_df; . p=1,...,n
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Using this we find easily the complex form of (12), namely

0 d 0
13 J—=i—+(d —id** .
(13) oz* oz* ( ) oz *h

Moreover, if we introduce the notation Df = d? + id}*# we can write (13) in an equi-

valent form
(14) Jazii+BfL.
oz" oz" oz b
The assumption [J, J] = 0 provides us with an important information concerning
the D’s. Calculating [J, J] (0/0z%, 0]/0z"*") we obtain

B
(15) f?,lla_

62n+'y
Let us consider now the differential system
OH? _

16 —3iD) ——;
( ) ¥ 21 "azn+6

=0; a,fy=1,..,n.

2n

for the functions Hy(z', ..., z*", z, ..., 2*"). Considering the equation

0 \ 78
9 (s O\ _ 0 (g ol
0z" oz"+o 0z* oz" e
we come to the conclusion that the system (16) is involutive (see [4]) if and only if

the following conditions are satisfied:
O_D,; _6_1); ——li<D's oD, — D’ 9D,

a =O, a fe=1,...,n.
oz oz ozrte 7 az"“> d

Bur fortunately this is the case in our situation. It suffices to use again[J, J] = 0

and to calculate [J, J] (9/0z*, 8/0z”). Thus we have proved that the system (16) is
involutive. Taking the corresponding Cauchy data in the form

Hﬂ(zl, e, z2"0,...,0, :Z';+1, e 22”) = (pﬁ(zl, ey 22") ,

where ¢f are holomorphic with respect to the variables z"*! ..., z2" and such that
det (0¢?[0z"**) & 0 we can see that by virtue of (15) there is a solution

Hi(z', .., 2% 2 ...,2"), B=1,..,n
of (16) which is holomorphic with respect to the variables z"*!, ..., z2". We denote
R Hh(xy, ., x3") = Re HA(ZY, ..., 2", 2!, .., "),
R2 (L, L, x3") = Im HA(ZY, ., 22, 2 7)) B=1,..,n
and perform the coordinate change

I _ I 2n+I _ p2n+If 1 4n
Xy = X3, Xg = h*" (x3"--:-x3 , I'=1,...,2n.
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This new chart is defined on an open neighborhood %, < %5 of a. Obviously
[0/ox3"*", ..., 0/ox3"] is agein a basis of D, and (x***! + ix?*r+i x2ntn 4
+ ix®"*"*") is a complex chart on any leaf of D contained in #,. Moreover we have

2n+p 2n+n+p
(17) J o _ J 0 +6h 26+ oh 26 _
0x5 x5 ox%  oxinth ox%  oxymtnte
0 ah2n+/} 6 ah2n+n+ﬂ bl
= =+ —_
ox !0x”3‘ oxaninth ox3  oxite

and by virtue of (12) also

(19) o 0 k 0 _ 0 ot o
(')xasz 6xr31+a x 6X§"+K ax2+a ax n+a ax2n+ﬂ
6h2n+n+ﬂ bl - 6h2"“‘ Fi
axg+a 8xin+n+[} « ax§n+K ax:ni-L

Taking the real and the imaginary part of (16) we obtain the equations

ah2n+ﬁ ah2n+n+ﬂ 17 ahln+n+ﬂ ity l‘)\h2n+n+ﬂ
—_— = ( _——
(3 a >

0% oxy*e ox3amty ox3ninty

ah2n+[3 ah2n+n+/} , ath-Pﬂ ity athJrﬂ
+ I T 2n+n+y *
oxy"* 0x3 ox3""7 ox3y"T Y

Using these equations we get easily from (17) and (18) the result J(3/0x3) = d[oxi*™.
Similarly we get J(0/ox"**) = —o/ox".
Let us introduce now a complex chart (v', ..., v*") on %, by

vt = x4 + 1x2+a, U‘n+z — 2n+rz +] 2n+n+az’ o = 1.2
This time it is easy to see that the complex structure defined on %, by this coincides
with the structure induced by the almost complex structure J. We notice that the
relation JT = —TJ implies immediately that the image under T of any complex
vector field of type (1, 0) is a vector field of type (0, 1). This enables us to write

T 0 5 0

a
o ointh’

a=1,...,n

where the coefficients a’ are complex functions on %,. We denote by bf the elements
of the inverse matrix to (af).

Now we are going to perform the last step of the proof. First we must prove that
the functions

(19) by—2; I=1,...2n; a,fp=1..n
are holomorphic. Let us choose on M any symmetric connection V with VJ = VT =
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= 0. We need to notice that VJ = 0 implies that the covariant derivative with respect
to any field of a complex vector field of type (1, 0) is again a complex vector ficld
of type (1, 0). The same holds for vector fields of type (0, 1). By virtue of this and of
the symmetry of V we find that V;/5,r 0/05% = V,,,;x 000" is a vector field both of
type (1, 0) and (0, 1) which means

0 0
Va/e,;xgET( = V«?/r?vxﬁ = 0, I,K = l,..., 2n .

The assumption (ii) implies

OZBi,_a_’ _9 -r(L, L) 2 __
ot kK avte ot oK) ot

0 0 -5 O
- _ _ o = V... N A2 ) =
- Va/aal Va/é’va (31)"+1 Va/avK Vu/rv’ 5l)"+1 V(,cu’ Va/cuK T ba Eﬁ )

0 b &
= TV051 Vojoux <b£ 557}) = TV, 5 <__k —.) =
b o Gl A o (0B 9
= Voo (2T = Ve (2ay - ) = L (D) =
"’“(aux aaﬁ> a"“(au" ’ au"+>') 5" (auK “) a0t

B 0 bp c’a} é
et \ Y oK) artr

which shows that the functions (19) are holomorphic. (By R we have denoted the
curvature tensor of V.) This enables us to study the question of existence of holo-
morphic functions ®2(v', ..., v*); @, f = 1, ..., n which are solutions of the system

\ ! da:
(20) 0 g ot o =1, .n.

o’ o’

The standard procedure shows that this system is involutive, and this implies the
existence of holomorphic solutions ®%. It is easy to see that we can find ®# such that
@%(a) = 5%. Let us use now the assumption [T, T] = 0. We have

0=[TT] i,i=a§ 6(@_61; da, d
o o oty oty ) gpnte

or equivalently

oal da
_a” = b} _as ooy =1,..,n.
avn—l-y avn+a

Using this and (20) we find easily d9%/0v"*? = 0®2[ov"**. Therefore we can find
holomorphic functions K"**(v', ..., v*"); « = 1, ..., n such that
6K,|+1 B a

(21) — = .

avn+ﬂ

&
a
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The functions

(22) al ——

are holomorphic because by virtue of (20) we have

0 oK’ 0 oK? F
2 8 Y ] ate!
o’ (a" af;"ﬂ’) o' <a“ aw*‘”) P )

II

(?a‘9 o) oa’l Coa"
) + a’ —2 &) — by — @] =
ot T o T G " ot
oat oa’
o R
ov ov

Moreover we have

2 <, aKv)_ 0al oK

avn+e @ 65"-!-[3 - 6vn+e aﬁn-ﬂr =

This follows immediately from the assumption [J, T] = 0. Namely,

B
OZ[J’T](a a>=2iaa¢_ 9

_ —
avn-*-e avaz avn+£ al—)n+ﬂ

which implies da2/0v"** = 0. Thus we have proved that the functions (20) are holo-
morphic and depend on the variables v?, ..., v" only. We can therefore consider the

system

(23)

The equality

SO el
o® @ o e ’

a . aKn+y a . aKuH
— | 4y = — a,, —
ov? ote o o"te

is obviously equivalent to

dal _ day

o o

But even this last equality follows from the assumption [J, T] = 0. We get namely

0 .(Oay  0Oal\ O
0=[J, T — ) =2 - = .
/. 7] (611 00”) (60"‘ 60”) oty

Now it is easy to see that the system (23) is involutive. Then there exist holomorphic-
functions K’(v', ..., v"); y = 1, ..., n which satisfy (23).
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It remains to perform the coordinate change
W= K0!, ..., 0"), wrtt =Kl L0 et L0, =1,

introducing in this way a complex chart on an open neighborhood %5 < %, of a.
We shall write

wh = x3 4+ i, owrtr = X2 il g =1,
Obviously the chart (w', ..., w*") induces again the same complex structure on %
as the almost complex structure J. This implies that the matrix expression of J with
respect to the basis 8/dx3, ..., 0/0x$" is exactly the left matrix in (6). Concerning T
we obtain

B 5 n+p B
r0 _ g3 20K 0\ _ oK' 0
o* o owP ov* ow'th o owP
o .8 LRt )
— = - =a S—_—
o* oty ot ownth

From these two equalities by virtue of (23) we get T(d/ow*) = ¢/ow"**. Now it is
easy to see that the matrix expression of T with respect to the basis /0xs, ..., 0/0x%"

is exactly the right hand matrix in (6). The proof is complete.

Corollary. A (J, T)z-structure is integrable if and only if there exists on M a tor-
sionless connection V such that

(i) VJ = VT = 0,
(i) R(X, Y)Z =0, X, Ye T(M), Ze D

where R denotes the curvature tensor of V.

4. The case JT + TJ = 1. In this section we consider the last case, namely
a manifold M provided with a couple J, T of tensor fields of type (I, 1) satisfying
J*= —I, T>* =0 and JT + TJ = I. We shall call this structure a (J, T)s-structure.
It is not necessary here to suppose that ker T = im T because, as we shall see in the
next lemma, this appears as a consequence of our assumptions. We denote again
m = dim M. Obviously we can write m = 2n.

Lemma 2. We have ker T = im T.

Proof. Obviously im T < ker T. If X € ker T we can write X = JTX + TJX =
= TJX which shows that X eim T.

We introduce on M two tensor fields Py, P, of type (1, 1) by
P, =JT, P,=TJ.
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Lemma 3. P, and P, are complementary projectors.

Proof. We see immediatcly that P? = P,, P = P,, P, + P, = I.
This result enables us to introduce two complementary distributions D, D, on M.
We set
D,=imP,, D,=imP,.

Lemma 4. We have D, = ker (J + T), D, = ker T. Moreover, J and T map D,
isomorphically onto D, and thus dim D; = dim D, =

Proof. Let X € D,. Then there exists Ye T(M) such that X = JTY. We get
(J+ T)(X)=(J + T)JTY = —TY + TY = 0, which implies D, < ker (J + T).
Conversely, let (J+ T)X =0. We have JX = —TX, and hence X = JTX
which shows ker (J + T) < D;.

Let X € D,. This yields the existence of Ye T(M) such that X = TJY. Obviously
TX = T?JY so that D, < ker T. For X e ker T we can write X = JTX + TJX =
= TJX which gives ker T = D,. The proof of the last assertion we leave to the reader.

Proposition 5. There is a 1-1 correspondence between the set of (J, T)s-structures
on M and the set of Gs-structures on M, where G5 is the Lie group consisting of all

matrices of the form
A0
0 4

with A being a regular (n X n)—matrix.

Proof. Let us consider a (J, T)s-structure on M. We define the corresponding
G;-structure in the following way. Let us take a point x € M and a basis v, 1, - ., Uay,

of D,.. Furthermore let us set v; = Jv,,;; i = 1,..., n. Now it is easy to check
that all the bases of the form Jw,,q, ..., JsUs4 Upsys---» Ua, at all points of M
constitute a Gs-structure on M. )

Conversely, let us have a G-structure on M. We choose any basis vy, ..., U5, of

T(M) belonging to the Gs-structure. We define J, and T, by the formulas

2n

J.v; —ZJvk, Tv; —-ZT’(U,,

where (J}) and (T?}) are (n x n)-matrlces

(24) (—10 (1)) and (;) g),

respactively. We have denoted here by I the unit (n x n)-matrix. An easy computa-

tion shows that this definition does not depend on the choice of a basis from the

Gj-structure. The reader can verify that in this way we get a (J, T);-structure on M.
Similarly as in the preceding section our main tool will be
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Proposition 6. Let M be a manifold with a (J, T)s-structure such that
[/,J]=[J,T]=[T.T]=0.
Then there exists on M a unique torsionless connection V such that VJ = VT = 0.

Proof. We shall proceed along the same lines as in Proposition 4. We refer the
reader to the proof of this proposition, where he can find the details which we omit
here.

We introduce first an auxiliary tensor E = JT — TJ. One finds easily
E*=1, JE=—-EJ, TE= —ET, T= —J(E-{-I).

The tensor E is nothing else than the tensor associated with the almost product
structure (D, D,) consisting of the two distributions D, and D,. Using the formula

[H,KL] + [K,HL] + K[H, L] + H[K,L] + [H,K] L+ [H,K].L
mentioned in the previous section we can calculate
[P, P,] = —[T, T]+ 2JT[J, T] + 2J[J, T] T +
+2J[J,T]. T+ [J,J]T.T=0

where ([J, J] T. T)(X, Y) = [J, J](TX, TY). This shows that the almost product
structure (D,, D,) is integrable, and therefore (see e.g. [3], p. 97) there exists on M
a torsionless connection V such that VE = 0. We introduce a new connection V
by VyY = VY — P(X, Y), where P is a tensor field which is to be determined. It
must satisfy

(i) P(X. Y) = P(Y, X),

(ii) P(X, EY) = EP(X, Y).
Furthermore, we define on M a connection V by VY = VY — (X, Y) where

O(X, Y) = (Viyd) (X) + 1J(VyJ) (X) + HVyJ) (Y).

The last requirement on P is the following one:

(iii) VE = 0.

The calculation of (VyE) (Y) gives us the following result:

(VyE)(Y) = —3EP(JX, JY) — JEJP(JX, Y) + 1E(V,J) (X) +
+ EJ(Vyd) (X) = H(Viprd) (X) — 20(Verd) (X) .
Similarly as in the preceding section we introduce the notation
V(X,Y) = 3J(VyJ) (X) + H(Viyd) (X) + FEJ(VeyJ) (X) — 3E(ViyyJ) (X)),
W(X,Y) = P(X, Y).
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The equation (iii) can be rewritten with the use of this notation in the form
(25) WX, Y) — 1JW(X, JY) = V(X, ).

Now we use again the space & of tensor fields of type (1, 2) on M. In this space
we define an endomorphism «, this time by

(28)(X,Y) =4S8(X,Y) — 1S(X,JY); Se¥
and find «®> = « or equivalently «(2 — #) = 0. Thus we can write & = &, @ ¥,
with & = ker « and &, = ker (@ — J). Instead of (25) we can write now simply
(26) aW=V.
We know that this equation has a solution if and only if «V = V. We calculate
(aV)(X,Y) = £J(VyJ) (X) + $(Viyd) (X) + $EJ(VeyJ) (X) —

= 3E(Vesyd) (X) + H(Vard) (X) + $(VyJ) (X) —

— E(Veyyd) (X) + FEI(Viyd) (X) = V(X, Y).
Thus (26) has a solution, and each of its solutions has the form ¥V — N where N is

a tensor field of type (1,2) satisfying «N = 0, ie. N(X, JY) = —JN(X, Y).
Because P has to be symmetric we shall be looking for N satisfying

(iy N(X,JY)= —JIN(X, Y),
(iiy V(X,Y) = N(X,Y) = V(Y,X) — N(Y, X).
For this purpose we calculate
V(X,Y) = V(Y,X) = —3J(VxJ) (Y) + $J(VyJ) (X) + 4[EJ, EJ] (X, Y) +
-+ 3E E](X,Y) - 4[E E](JX,JY) —
— [EJ, ET](JX, JY) = —=4(VxJ)(Y) + $J(VyJ) (X).
Here we have used the fact that [E, E] = 0, [EJ, EJ] = 0. The proof of this we lcave

to the reader.
The last result suggests to take

N(X,Y) = —3J(VyJ)(Y).
This N obviously satisfies (ii). But it is not difficult to see that it satisfies also (i)'.
We have namely

N(X,JY) = —3J(VxJ)(JY) = $J3(VxJ) (Y) =
= —J(=3J(VxJ)(Y)) = —JIN(X, Y).
Summarizing we can say now that we have found
P(X, Y) = 3J(VyJ) (X) + H(VorJ) (X) + 2EJ(ViyJ) (X) —
— 1E(Vgyd) (X) + 2J(VxJ) (Y)
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which satisfies (i) and (iii). It remains to prove that it satisfies also (ii).
P(X,EY) = EP(X,Y) = £J(ViyJ) (X) + 3(VyeyJ) (X) + 3EJ(VyJ) (X) +
+ 3E(V,yd) (X) + 3J(VyJd) (EY) = 3EJ(Vyd) (X) — LE(V,4J) (X) —
— 2J(Viyd) (X) + H(Vesnd) (X) — 2EJ(VyJ) (V) =
= LIVy(JEY) + 3V(EY) — $EJ(VyJ) (Y) =
= —JJE Vy(JY) + 3EV,Y — 1EJ(V4J) (Y) =
= —JJE(VyJ)(Y) = JEVyY + JEVyY — JEJ(V4J) (Y) = 0.

Thus we have proved the existence of a torsionless connection with respect to which
the tensor fields J and E are parallel. But because T = — J(E + I), the tensor field T
is parallel with respect to this connection, too. This proves the existence assertion of
the proposition.

In order to prove the uniqueness assertion let us consider two torsionless con-
nections V and V' such that J and T are parallel with respzct to both of them. We
can write VyY = VY — U(X, Y). The tensor field U obviously satisfies

U(X,Y)=U(Y,X), UX,JY)=JU(X,Y), UX,TY)=TU(X,Y).
We notice moreover that
JTU(X, Y) = JU(X, TY) = JU(TY, X) = U(TY, JX) = U(JX, TY) =
= TU(JX, Y) = TU(Y, JX) = TJU(Y, X) = TJU(X, Y).
Using this and Lemma 3 we find
U=JTU + TJU = JTJTU + TJTJU = (JTTJ + TJIT)U =0

which completcs the proof of the proposition.

For the formulation of the main theorem of this section we shall need a certain
3-linear mapping, which is very similar to the mapping B from the previous section.
Let us suppose that a (J, T)s-structure satisfies [J, J] = [J, T] = [T, T] = 0.
Then according to Proposition 6 there exists a unique torsionless connection V with
VT = VJ = 0. Let us denote by R its curvature tensor. We introduce a 3-linear map-
ping

C:D, x Dy x D; - D,

by C(X, Y, Z) = R(X, Y) Z. Now we can already formulate the main

Theorem 3. A (J, T)s-structure is integrable if and only if the following conditions
are satisfied:

() [, 7] = [4. 7] = [T.T] = 0,

(i) € = 0.
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Proof: If a (J, T);-structure on M is integrable then for any point a € M there
exists its open neighborhood with a chart (x', ..., x®) on it such that with respect
to the basis 9/dx’, ..., 9/0x*" the tensors J and T have the matrix expressions (24).
Using this chart it can be very easily checked that (i) is satisfied. In order to prove
(i) et us notice first that VJ = VT = 0 implies VP; = VP, = 0. Consequently
We have VyYe D, for any X and for Ye D;, i =1, 2. Because V is torsionless we have

F 0

djoxn+i
5

Vi ——— = =
d/0x 6x"+j i

Having this in mind we get

o) a ) 3 A
C".,—°~.,i>=R6.,i‘=Ra.,i.J‘7<=
\ox"ti ox/ ox* ox"ti oxi) oxk ox" Tt ox/ oxntk

9
= V(?/(?.\'"*" V('?/éxf (J —a ) - VC«,/ij Va/éxn+i (J —) =
4 axn+k axrl+k

0 G 0
= J (V@/axni’i Va/ax] W - Va/l(’}x_] Va/axnd»i W) = _J V(‘:/ax_] Va/axn+im =
: b G
= = Vapous Vet T3 ) = =ITVapos Ve =5 = 0

which proves (ii).

Conversely, let us suppose that the conditions (i) and (ii) are satisfied. We know from
the proof of Proposition 6 that (i) implies the integrability of the almost product
structure (Dy, D,). Thus for any point a of M we can find its open neighborhood U,
with a chart (x', ..., x*") on it such that d/ox", ..., 9/0x" and d[ox"*", ..., 0/ox*" are
local bases of D, and D, on %, respectively. There are uniquely determined functions
al,i,j=1,..., nsuch that

Tai :—a—, i=1,...,n.
ox’ oxnti

We denote by (b)) the inverse matrix to the matrix (af).
First we shall consider the differential system
5‘/’{ ) daf

(27) o= el k=L

n+1
5 eeey

The coefficients b,(0a}[0x*) do not depend on the variables x x>". In order

to prove this we can write

0 (]v _ , 0 3
0= Va/ax’c(ax +) Vojoxi T(a, &x”) = T Va0 (a, @) =
A P X
—r (%0 rri, =) = (52 + alry -2
ox* oxP ox’ oxk OxP
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which implies

By virtue of (i) we get
0 ) 0
0=C{—r, i s _5_ V(“:/Ex""jvi}/axki = Va/ax"*i Fl':i ‘ =
ox*ti T oxk T ox' ox' oxP
BT
oxnti M oxp

0 p0af\
oxti <bigc7‘> =0

This enables us to consider the system (27) as a system in variables x!, ..., x" only.
Considering the equation

o (,,0af ;\ 0 (047 ;
5@(1’@"’1’ = e\l o

we find easily that the system (27) is involutive. Therefore we can find solutions
@i(x',...x"), i,j = 1,...,n of (27) defined on an open neighborhood %, < U,
of a and satisfying det (¢7) = 0 on %,. We shall investigatc now the difference

ij’ _%i:<b,.£7a_§’_b,f3ﬁ> 4

I

and therefore

oxk ox! i o) P

One can easily see that this difference vanishes if and only if
dal

1
) i
ox! ox!

J
; Oa,

=0.

We shall show now that the above identity is a consequence of the assumption
[J,J] = 0. For

we get
0= [J, J] (X, Y) = [JX, JY] - [X, Y] — J[JX, Y] — J[X, JY] =
= [TX, TY] - [X, Y] - T[TX, Y] = T[X, TY] =

_ 0 0 _ ali ali _T __?___ a{_a_ _
C Loxnte T ot FoxtT T oxt ox"tk T ox!
Jj J j j
Cafal, O] - (al gl Ol
ox! oxnti oxt oxt/] oxi PR X" o
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which implies
oal , Oal

28 g —L-—ad—*=0,
(28) * ox! ox'
dal oal
29 — k =0
( ) 6xn+k 6x"+’
Thus we have proved that Oqoj/ 0x* — d¢;[ox’ = 0 and therefore on an open
neighborhood %5 = %, ofa’there exist functions h'(x ( yeeer X ), i =1,...,nsuchthat
a_hi =0l ii=1
axj_'(Pja Lj=1,..,n.
Our next task is to investigate the functions af(oh’[ox"); i,j = 1, ..., n. By virtue
of (27) we get
o [ oW O i k00l 0dk y aa o ad
—a; — ) = — (ag; =ai_4+_‘ J = bP J+_l J =0
ax’< 6x"> ot (91 oxt oxt 6T Pa T G
which shows that our functions do not depend on the variables x!, ..., x". Moreover,

using (29) we get

0 (hOW\ 0 [ OW\ _ (o aaf\aW _
ox"t! (7x Coaxrti 5x ox"t' ox"ti) oxk
which implies the existence of functions A**i(x"**,...,x*"), i = 1,..., n defined on
an open neighborhood %, < %5 of a satisfying

~ ot hi
(30) Ll
ox"ti ox*
On an open neighborhood %5 < %, of a we introduce a new chart ('x’, ..., 'x*") by
/xi= hi(x ’x) n+l — hn+r(,n+1 .. x2n)’ i = 1,,"

With respect to this new chart we get by virtue of (30)

J
a’{% L_T lah a_-;Ta’i‘_a_ B:Z
oxk  o'xd ox* o'x ox* ox"ti

okt 9 L Oh 0
ot gt i oxk o'xnti
which implies :
0 0

a/xi a:xn+i :

This together with the obvious identity T(0/0'x"*") = 0 shows that the matrix
expression of T'with respect to the basis 9/0'x", ..., 8/0’x?" is exactly the second matrix
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from (24). Finally, using Lemma 4 we get
' 0 a 0

ax -

ax o'x"ti

and consequently J(0/9'x"*¥) = 0[0'x" thus showing that the matrix expression of J
with respect to the basis 0/0'x", ..., 0[0’x*" is the first matrix from (24). This com-
pletes the proof of the theorem.
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