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The author has shown that every congruence for the A-operation of a semilattice
which is also compatible for any set of distributive v’s is induced by a lattice con-
gruence on the distributive lattice freely generated with preservation of these sups
[F, Theorem DL]. Cornish and Hickman [CH], and in more detail Hickman [H],
have addressed the question of uniqueness of the inducing congruence, basing them-
selves on a preliminary analysis of the structure of these congruences. It will be point-
ed out here that their main results may be obtained more simply, and in a con-
siderably more general setting, by a systematic use of the author’s result; moreover
an explicit form for the smallest inducing congruence may in their setting be deduced
from MacNeille’s construction [M] of the freely generated lattice — a construction
to which they have inadvertently had recourse for their study of congruences.

For example, the main result of [CH], that uniqueness obtains in the presence of
“the upper bound property”, may be seen rather quickly by remembering that the
Tattice L consists of v’s of families in the semilattice S. Then if one attempts to
identify Va; with Vb; in Lone will be forced to identify a; with a; A Vb; = V;a; A
A b; which, being bounded by a;€ S, is = ¢; € S; similarly b; ~ Va; A b; = d; €
€ S; and of course V¢; = Vd;in L. But conversely these conditions require the iden-
tification of Va; with Vb; by any lattice congruence inducing ~ in S, and therefore
such a congruence is uniquely determined. Unlike the development in [CH], the v’s
occurring here are not limited to be finite, nor has it been necessary to postulate
that all existing (finite) v ’sin S be distributive, as will be elaborated more fully below.

Again, the (at first sight unexpected) implication i) — ii) of [H, Theorem 2.4],
to the effect that non-uniqueness of the inducing lattice congruence entails that
restriction to S does not preserve the join of congruences in L(whose proof in [H]
takes up two and a half pages) drops out as follows: By dividing modulo a con-
gruence on S which extends non-uniquely to L one reduces to a non-identical con-
gruence ~ on Linducing the identity on S (this type of reduction will also be detailed
more fully); say it identifies the pair Va; < Vb, where some b; = b £ Va, Ac-
cording to the form of the principal congruence generated by a comparable pair in
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a distributive lattice [G, Theorem 3 p. 74], 6(a A b, Va,) for any a = a; fails to
identify a and b while 0(Va;, Vb;) = ~ induces the identity on S, whence the join
of their restrictions fails to identify @ and b — but their join in L, 6(a A b, Vb)),
does. This, too, will go through in a more general setting; we turn now to spelling
out this generalization.

Recall that a (not necessarily finite) sup Va; in a semilattice S is distributive if
for each a the sup of the translate by a of the a;, Va A a;, also exists and = a A
A Va;.') MacNeille [M] has shown (an outline is sketched in [F']) that every V-
semilattice can be embedded in a complete, completely join-distributive lattice with
preservation of all its distributive v ’s. It follows that for any collection D of subsets
having distributive Vv’s, the universal morphism or reflection (into the subcategory
of complete v -preserving morphisms) which sends S into the complete such lattice L
required to preserve only the v’s in D, is also an embedding. Note that the complete
join-distributivity of L entails that it consists of the v’s (in L) of subsets of S (i.e. S
is v -generating or “join-dense”), the pairwise A being calculated as (Va;) A (Vb;) =
= V(a; A b;). S is a fortiori join-dense in every intermediate A -semilattice S =
< F <= L; and the inclusion into F is universal among semilattice morphisms S’
from S which preserve the v’s in D as well as send some of its subsets, whose Vv’s
include the elements of F, (these subsets may be taken closed for pariwise /\’s) to
subsets having distributive v’s: Indeed for any such morphism the image semilattice
S’ may be embedded into a complete L with preservation of the v ’s of both the images
of the subsets in D and of any of those whose Vv’s include all the elements of F;
and then the given semilattice morphism, which may even be extended to send L
into L in complete v -preserving fashion,?) will have a restriction to F which sends
it into S'.

It was shown in [F, Theorem DL] that every congruence for A compatible also
for the v’s in a translation-closed class D (in the “weak™ sense that from a; ~ aj
and the presence of both subsets in D follows Va; ~ Vaj) is the restriction of a lattice
congruence on F — this was done there for the case that D consists only of pairwise
v’sin S and F of the v’s of its finite subsets in L, but the result holds in general:
the quotient map modulo the given congruence ~ sends the v’s in D to distributive
v’s in the quotient semilattice®) whence its composition with the embedding of the
quotient into the complete lattice universal for preserving these image Vv’s extends
to a complete v -preserving morphism on L whose kernel meets any intermediate F
in a congruence extending ~. It is in fact the smallest on F, compatible for the v’s

1) This identity for any (partial) operation VvV = its arguments already shows it to be sup:
forifa;=a A a;then Va; = a A Va;.

2) Thus L is also the universal, complete V -preserving, completion of F for preservation of D
augmented with such a collection of (L—) V’s of S-subsets (they are distributive in F).

3) Use footnote 1; the structure of a translation-closed class of V ’s is preserved by homo-
morphic image, product and subsemilattice.
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of any translation-closed class including D and yielding all of F, which induces ~
on S, as follows from the universality noted on the preceding page of the inclusion
of S/~ into the image of F.

An explicit form for this smallest congruence could therefore be derived by car-
rying back to F a description of equality in such complete join-distributive lattices
universal over the quotient semilattice. Now such a description appears in MacNeille
[M] at the beginning of Section 12 p. 446 (one may also consult [F']) for the case D
all distributive v’s in S and F = L; but analysis of his argument shows that it re-
mains valid, thus furnishing the desired description, if only D is translation closed,
includes every subset having a greatest element, and satisfies the following “Fubini”
condition: if a doubly-indexed a;, has V;a;;, Via;; and V{(V,a;;) all in D then it also
has V(V;a;;) *). Specifically, let such a collection D of subsets having distributive
v’s in S be specified. Then on the power set of S (construed as indexed subsets
of S) the relation: for every j, {a; A b;};€ D and V,a; A b; = b, is reflexive and
transitive. Modulo the equivalence making this a partial order the image of every
subset is the join of its singleton subset images, whence the quotient is a complete
lattice. The images of singletons are an order-isomorphic copy of S, which permits
writing every element of the lattice (not necessarily uniquely) as Va,, inasmuch as
the v’sin D are preserved by the embedding of S (in fact they are the only singleton
v’s of singletons). The finite v’s in S are prescrved by virtue of (Va;) A (Vb)) =
= V,a; A bj, from which also complete join-distributivity follows.

It does not appear to be particularly easy to assure the Fubini condition in a quo-
tient. It would pass to the images, from a class of distributive Vv’s in which it holds,
modulo an A-congruence compatible with them in the “strong” sense that from
a; ~ a; and the presence of one of the subsets in D follows that of the other (in
addition to Va; ~ Va;}). It also holds in the class of all subsets less numerous than
some regular cardinal which have distributive v’s in S, and so with D just these
subsets augumented with the subsets having greatest elements, the above suf-
ficient criterion for the description of equality in L is fulfilled. The augmentation is
not needed for the description of equality in the sublattice F of v’s of such cardinal-
limited subsets of S: This F realizes the lattice over S universal for preserving all the
v’s in D and in which all limited subsets have distributive v ’s. This is the situation
treated by [CH] when the limited subsets are the finite ones (under the additional
requirement that all existent finite v’s are distributive) and by [FS] more generally
when they are those bounded by a regular cardinal — both treatments retrace
MacNeille’s.

Now when the images of the designated class D of subsets with distributive v’s
in S fulfill the above criterion modulo ~, an A-congruence compatible for these v'’s,

#) Only the presence in D of {Vjaij} as an j-indexed subset is at issue: its V,V ;;a;;, exists
in S and (as a V which becomes distributive on decomposing its terms into distributive Vv ’s)
is distributive. Also, it is enough to have this for a;; = a; A b;.
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then MacNeille’s description of equality for v’s of subsets of S/~ in the distributive
lattice completion universal for preserving all these image v ’s, yields that the smallest
lattice congruence extending ~ to any distributive lattice universal for preserving
the V’s in D identifies Va; with V/b; (recall that this universal lattice, as a sublattice
of L, consists of v’s of subsets of S) just when a; A b; ~ ¢;jeSwitha; ~V ¢;;€D
(whence also ~ Via; A cij€ D) and symmetrically b; ~ V;b; A dj;.

Some supplementary remarks: One can of course always reduce Va; ~ Vb; to
a; ~Va; A b, (and symmetrically) by using that ~ is an A-congruence and that
all v’s in F are distributive, but the v on the right is in general only in F and so
this does not, like MacNeille’s, provide a description internal to S — unless one
makes an additional postulate such as the “upper bound property” of [CH]: Cf the
analysis of their theorem given at the beginning.

They have couched their discussion in terms of the operation of restriction of con-
gruences from F to S (a surjection by the author’s cited Theorem DL): this preserves
arbitrary n (and so in particular there is a smallest inducing congruence) whence
the lack of lattice preservation touches only the join of congruences. A dual discussion
would assign to each congruence on S its smallest inducing congruence on F and lead-
to a complete join-preserving injection of the congruence lattice of S onto the sub-
semilattice of smallest inducing congruences of F — but now it is presumably N
which is not preserved. (The smallest congruence inducing ~ must identify Va;
with Va; whenever a; ~ a;: this is already reflexive symmetric and substitutional
but taking the transitive closure cannot be expected to commute with m.)
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