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Z-GROUP WREATH PRODUCTS 

C. R. CoMBRiNK, Fort Worth and E. E. DEAN, Arlington 

(Received April 23, 1980) 

In a recent paper [5], Konyndyk proved the following theorem. ,,If Л and G are 
nontrivial locally nilpotent groups, then Л wr G is residually central if and only if 
(l) G is torsion-free, or (2) for some prime p, all elements of G and of A of finite 
order have p-power order." We show that these groups are actually Z-groups. We 
also show that if Л is a Z-group and G is a torsion-free locally nilpotent group, 
then Л wr G is a Z-group. 

A Z-group is a group with a central series. Hickin and Philhps in [4] proved that 
a group G is a Z-group if and only if for each non-trivial finitely generated subgroup К 
of G, X ^ \_K, G]. If Л and G are groups, the standard restricted wreath product of A 
and G, denoted A wr G, is the semidirect product of Я by G where Ä is the set of all 
functions from G into A with only finitely many non-1 values. If осе Ä, g EG, g"^ ag = 
= â  e Л such that (x^(x) = oc(xg~^) for all x e G. Л is called the base group of A wr G. 
If ^1 is a subgroup of Л, we let AI = |(x E Л I Gc(^g^ E A^ for all g E G } . 

Lemma 1, Let A and G be non-trivial Z-groups, Then W = Awr G is a Z-group 
if and only if for every finitely generated subgroup К Ф lofÄ,K $ [X, IF]. 

Proof. If Ж is a Z-group, the condition holds by [4]. Conversely, if i^ ^ [i^, IF] 
for all non-trivial finitely generated subgroups К of Л, let L= <Wi, ..., w„> S W. 
If L ^ Л, IF/Л = G, a Z-group and LÄjÄ is a non-trivial finitely generated subgroup 
of WJÄ. Hence, LÄjÄ S [ЬЛ/Л, Wß] = [L, If] Л/Л and so L ^ [L, I f ] . If L ^ Л, 
L $ [ L , I f ] by assumption. Thus, If is a Z-group. П 

Theorem 1. Suppose that A and G are locally nilpotent groups. Then W = 
= A WT G is a Z-group if and only if 

(1) G is torsion-free, or 
(2) for some prime p, all elements of G and of A of finite order have order 

a power of p. 

Proof. If If is a Z-group, then If is residually central and (1) and (2) follow from 
Theorem 3 of [5]. 

Suppose that (1) or (2) holds and that If = Л wr G is not a Z-group. Since the 
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class of Z-groups is a local class [7], there is a finitely generated subgroup Lof Pf 
which is not a Z-group. Hence, there are finitely generated subgroups A^ of A and G^ 
of G such that Lean be embedded in Ai wr Gj. Thus, A^ wr Ĝ  is not a Z-group and 
AI and Gl satisfy (l) or (2). Therefore, we may assume that A and G are finitely 
generated nilpotent groups. 

By Lemma 1, there is a finitely generated subgroup К of Л such that К ^ [iC, Pf], 
К Ф 1. Since К is finitely generated and A is nilpotent, there exists an integer s such 
that К ^ ЦЛ) but К $ (^.^(Л). If a is the natural homomorphism of W onto 
Ж/С-1(Я), a(X) Ф 1 and a(X) ^ G{[K, W]) = [a(X), (т(Ж)] so that ^ /C- i (Ä) is 
not a Z-grou_p. cj{K) g (7(С(Л) G) and С7{К) ̂  [(т(К), (7(Ж)] = [(т(К), (7(ЦЛ) G)] 
so that (7(С,(Л) G) is not a Z-group. If we set A^ = Cs(^)/Cs-i(^), < Ц Л ) G) ^ 
^ ^1 wr G so that ^1 wr G is not a Z-group. By Corollary 2.11 in Baumslag [1], 
if A and G satisfy (2), Л^ and G also satisfy (2). Thus, we may assume that A is abehan. 

If (1) holds, G is a finitely generated torsion-free nilpotent group and so is residually 
a finite g-group for all primes q [2]. Thus, by Theorem B2 of Hartley [3], W is re
sidually nilpotent and hence a Z-group, a contradiction. If (2) holds, by Theorem 2.1 
of Gruenberg [2], A and G are residually of order a power of p. Hence, by Theorem 
Bl of Hartley [3], FF is residually a nilpotent j^-group of finite exponent and so is 
a Z-group, again a contradiction. 

Lemma 2. Let A and G be nontrivial Z-groups. If Awr G is not a Z-group, then 
there exists a finitely generated Abelian group A2 and a finitely generated subgroup 
Gl of G such that A2 wr G^ /5 not a Z-group. 

Proof. Let A and G be Z-groups, Л ф 1 ф G, and assume that Л wr G is not 
a Z-group. Since the Z-groups form a local class and are subgroup closed, there 
exist finitely generated subgroups A^ of A and Gi of G with W = A^wi G^ not a Z-
group. Hence there exists a finitely generated subgroup К of Ä^, К Ф 1, such that 
К S [к, FF]. Since A^ has a central series, S = {(F^, A^) | a e l], and К is finitely 
generated, there exists a cr e Z with К ^ Ä„ but К J V„. Now, V^ -«̂ i FF and WJV^ ^ 
^ (AilV^) wr Gl. Also, 1 Ф KV^jV^ß ([К, W] V,)IV^ =_[KVjV^, Щ] so^ that 
WjV, is^not a Z-gro_up. Since KVjV^ß ÄjV^ й C ( A I / K J , [{KVJV^I ( I F / K J ] = 
= [{KVJV^), (A^GilV^)] and so, A^G^jV^ ^ (A^jV^) wr Ĝ  is not a Z-group. 

Theorem 2. L t̂ A be a Z-group and G a torsion-free locally nilpotent group. 
Then Л wr G /5 a Z-group. 

Proof. Assume that Л wr G is not a Z-group. Thus there exists a finitely generated 
Abehan group A^ and a finitely generated torsion-free nilpotent subgroup G^ of G 
with Л1 wr Gl not a Z-group. However, by our earlier theorem Л1 wr Gi is a Z-group. 
Hence Л wr G is a Z-group. 

Phillips and Roseblade [6] have constructed examples of residually central groups 
which are not Z-groups. They obtain their examples by starting with a residually 
nilpotent torsion-free polycychc group G with an abehan normal subgroup of finite 
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index and [G : G'] < oo. If p is a prime which does not divide [G : G'] and К is 
the field with p elements, their groups are split extensions of the group algebra, KG, 
by G with elements of G inducing automorphisms of KG by right multiplications. 
This group is isomorphic to К wr G and so gives examples of wreath products which 
are residually central but not Z-groups. 
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