Czechoslovak Mathematical Journal

František Šik

Schreier-Zassenhaus theorem for algebras. II

Czechoslovak Mathematical Journal, Vol. 33 (1983), No. 1, 41-57

Persistent URL: http://dml.cz/dmlcz/101854

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

SCHREIER-ZASSENHAUS THEOREM FOR ALGEBRAS II

František Šik, Brno

(Received September 5, 1980)

The generalization of Schreier-Zassenhaus theorem for algebras consists in the following. There are given two congruence series in an algebra; isomorphic refinements of these series are looked for, i.e. refinements and a bijection of these refinements such that the corresponding congruences are isomorphic as factor algebras (and, of course, existence conditions are examined, too). A number of attempts at such a generalization is known. In the present paper we call attention to two such attempts. O. Borůvka in [2] (see also [1] 17.6) attained one such result and A. Châtelet in [3] (see also [7] Theorem 88) another one. We shall not mention the other results. Both the theorems are algebra generalizations of the Schreier-Zassenhaus theorem for invariant series of subgroups.

A particular attention should be paid to Borůvka's attempt [2] (see also [1] 10.1) at a formulation of an analogous theorem for partition series on a set without operations. The question arises whether or not such a theorem may be applied to algebras. Namely, if we omit algebra operations the isomorphism of the corresponding congruences (partitions)is reduced to a set theoretical equivalence. If the construction of this isomorphism (equivalence) is not known then the theorem cannot be applied to algebras and thus does not represent a generalization of Schreier-Zassenhaus group theorem. O. Borůvka [2], [1] discovered the set theoretical character of the Zassenhaus' construction of the isomorphism of refinements and so ensured that his set theoretical theorem [1] 10.1 is applicable to algebras [1] 17.6. The reader can find more details in Part I of the present paper ([9]). In both the Parts I and II we use Borůvka's idea - the notion of coupled partitions. The purpose of Part I is to find a theorem which is an algebra generalization of Schreier-Zassenhaus group theorem and to prove it under the most general conditions (in some sense necessary and sufficient). The aim of Part II is to find a common generalization of the theorems of Borůvka [2] ([1] 10.1 and 17.6), Châtelet [3] ([7] Theorem 88) and, of course, the Schreier-Zassenhaus group theorem, namely under such conditions which have a formulation as simple as possible. Purposefully, we drop the intention of achieving the greatest generality.

For terminology and denotation, cf. [1], [2], [5] and [9]. Some fundamental notions will be listed in the following.

A partition in a set \mathfrak{G} is a system of nonempty pairwise disjoint subsets of the set \mathfrak{G}. The system of all partitions in \mathfrak{G} is clearly in one-to-one correspondence with the system of all symmetric and transitive binaıy relations in \mathfrak{G}. For this reason we shall not distinguish between both notions. If A is any binary relation in $\mathfrak{F}, x \in \mathfrak{F}$ and $\emptyset \neq \mathfrak{B} \subseteq \mathfrak{F}$, we define $A(x)=\{y \in \mathfrak{F}: y A x\}, A(\mathfrak{B})=\bigcup\{A(x): x \in \mathfrak{B}\}$ and $\cup A=$ $=\bigcup\{A(x): x \in \mathfrak{G}\}=A(\mathfrak{F})$. If A is a partition and $A(x) \neq \emptyset$, we call the set $A(x)$ a block of the partition A and $\cup A$ the domain of the partition A [5]; if $\cup A=\mathfrak{G}$ we speak about the partition on \mathfrak{G} or about the partition of the set $\mathfrak{5}$. If $\emptyset \neq \mathfrak{B} \subseteq \mathfrak{G}$, $\{\mathfrak{B}\}$ means the partition in $(\mathfrak{F}$ with a unique block \mathfrak{B}. If A is a partition in $\mathfrak{G}, \emptyset \neq \mathfrak{B} \subseteq$ $\subseteq \mathfrak{G}$, we define $\mathfrak{B} \sqsubset A=\left\{A^{1} \cap \mathfrak{B}: A^{1} \in A, A^{1} \cap \mathfrak{B} \neq \emptyset\right\}$. This partition is called a closure of the set \mathfrak{B} in the partition A. If A is a binary relation in \mathfrak{G} and $\emptyset \neq \mathfrak{B} \subseteq$ $\subseteq(\mathfrak{G}$, then the relation $\mathfrak{B} \sqcap A$ is defined as $(\mathfrak{B} \times \mathfrak{B}) \cap A$ and called the intersection of A with \mathfrak{B}. In particular, if A is a partition then $\mathfrak{B} \sqcap A=\{\mathfrak{B}\} \wedge A=$ $=\left\{A^{1} \cap \mathfrak{B}: A^{1} \in A, A^{1} \cap \mathfrak{B} \neq \emptyset\right\}[1]$ 2.3. Two partitions in $\mathfrak{5}$ are called coupled if each block of one partition meets exactly one block of the second partition [1] 4.1. The set of all binary relations in $(\mathfrak{F}, \mathscr{R}(\mathfrak{5})$, is a complete lattice with regard to the set inclusion. The set of all partitions in $(\mathscr{F}, \mathscr{P}(\mathfrak{F})$, is a complete lattice with regard to the set inclusion as well, infima in $\mathscr{R}(\mathfrak{5})$ and $\mathscr{P}(\mathfrak{F})$ are meets. Operations in $\mathscr{R}(\mathfrak{G})$ are denoted by \cap, \cup, \cap, \cup, in $\mathscr{P}(\mathfrak{G})$ by $\wedge, \vee, \wedge, \vee\left(\vee_{\mathscr{P}}, \bigvee_{\mathscr{P}}\right.$ if necessary $)$. The symbol \geqq denotes the partial order in $\mathscr{R}(\mathfrak{G})$, while $A \supseteq B$, where A and B are partitions in \mathfrak{G}, means that each block of B is a block of A. Under the product of two binary relations A and B in \mathfrak{G} we understand the relation $A B=\{(a, b) \in \mathfrak{G} \times \mathfrak{G}$: there exists $c \in(\mathfrak{5}$ with $a A c B b\}$. The relations A and B in \mathfrak{G} commute if $A B==B A$. Let (\mathfrak{G}, Ω) be an algebra. Partitions in \mathfrak{F} which are stable binary relations in (\mathfrak{F}, Ω), are called congruences in ($\mathscr{5}, \Omega$). The set of all congruences in $(\mathscr{G}, \Omega), \mathscr{K}(\mathscr{G}, \Omega)$, is a complete lattice with regard to the set inclusion, its operations are denoted by $\wedge_{\mathscr{K}}, \vee_{\mathscr{K}}, \wedge_{\mathscr{K}}, \bigvee_{\mathscr{H}}$. We have $\wedge_{\mathscr{H}}=\wedge_{\mathscr{P}}=\cap$ [5] 1.1. The domain of the congruence in $(\mathscr{5}, \Omega)$ is a subalge bra of (G, Ω); if $(\mathscr{5}, \Omega)$ is an Ω-gıoup and $\emptyset \neq A \in \mathscr{K}(\mathscr{W}, \Omega)$ then $A(0)$ is an ideal of the Ω-subgroup $\cup A$ and $A=\bigcup A \mid A(0)[5]$ I 1.4.

1.

Definition 1.0. ([5] IV 4.8) We say that a set $\emptyset \neq \mathfrak{B} \subseteq(\sqrt{5}$ respects a partition A in \mathfrak{G} if $A^{1} \in A, A^{1} \cap \mathfrak{B} \neq \emptyset$ implies $A^{1} \subseteq \mathfrak{B}$.

Lemma 1.1. (See Lemma 1.1 [9]) Let A and B be partitions in a set $(\mathfrak{5}$ and $\emptyset \neq$ $\neq \mathfrak{B} \subseteq \mathfrak{b}$. Then $\mathfrak{B} \sqcap(A \vee B) \geqq(\mathfrak{B} \sqcap A) \vee(\mathfrak{B} \sqcap B)$. The equality follows if \mathfrak{B} respects the partitions A and B or if $\mathfrak{B} \supseteq \bigcup A \cap \bigcup B$. An analogous assertion holds for the product. (The symbol \geqq means the order in the lattice of all binary relations in (5.)

Definition 1.2 A partition A^{\prime} on a set \mathfrak{G} is said to be an extension on \mathfrak{G} of a partition A in \mathfrak{G} if $A=\bigcup A \sqsubset A^{\prime}$.

Notation 1.3. Let B and C be partitions in a set $\mathfrak{G}, e \in \bigcup B \cap \cap C, B_{0}$ a partition on $B(e)$ and C_{0} a partition on $C(e)$. As in [9] we define $B_{11}=B_{0} \vee(B \wedge C), B_{10}=$ $=B_{0} \vee\left(B \wedge C_{0}\right), \bar{B}_{11}=B_{0}(B \wedge C), \bar{B}_{10}=B_{0}\left(B \wedge C_{0}\right), \bar{K}=\bar{B}_{11}(e) \sqcap B_{10}, \widehat{K}=$ $=\bar{B}_{11}(e) \sqcap \bar{B}_{10}$. Relations $C_{11}, C_{10}, \bar{C}_{11}, \bar{C}_{10}, \bar{L}$ and \hat{L} are defined symmetrically with regard to the symbols B and C. Further let us define $\mathfrak{H}=B(e) \cap C(e), M=$ $=\left(\mathfrak{A l} \sqcap B_{0}\right) \vee\left(\mathfrak{H} \sqcap C_{0}\right)=\mathfrak{H} \sqcap\left(B_{0} \vee C_{0}\right), \bar{M}=\left(\mathfrak{H} \sqcap B_{0}\right)\left(\mathfrak{H} \sqcap C_{0}\right)=\mathfrak{H} \sqcap$ $\Pi\left(B_{0} C_{0}\right)$ and N, \bar{N} symmetrically.

Let $B_{0}^{\prime} \leqq B^{\prime}, C_{0}^{\prime} \leqq C^{\prime}$ be extensions on \mathfrak{G} of the partitions B_{0}, B, C_{0} and C, respectively. Analogously, we define $\bar{B}_{11}^{\prime}, \bar{B}_{10}^{\prime}, \ldots, \bar{L}^{\prime}, \bar{M}^{\prime}, \bar{N}^{\prime}$ and \mathfrak{Y}^{\prime}.

Lemma 1.4. The relations defined in 1.3 possess the following properties denoted by (1)-(12). Similar properties ($\left.1^{\prime}\right)-\left(12^{\prime}\right)$ can be obtained by interchanging B and C.
By the definition we have $\bar{B}_{11}(e)=\left\{x \in \mathfrak{F}\right.$: there exists $a \in \mathfrak{F}$ with $\left.x B_{0} a(B \wedge C) e\right\}$ and so
(1) $\bar{B}_{11}(e)=\bigcup\left\{B_{0}(a): a \in \mathfrak{H}\right\}, B(e) \supseteq \bar{B}_{11}(e) \supseteq \mathfrak{N}$,
(2) $\bar{B}_{11}(e) \sqcap\left(B \wedge C_{0}\right)=\bar{B}_{11}(e) \sqcap C_{0}$.

We have namely $\bar{B}_{11}(e) \sqcap\left(B \wedge C_{0}\right)=\left[\bar{B}_{11}(e) \sqcap B\right] \wedge\left[\bar{B}_{11}(e) \sqcap C_{0}\right]=$ $=\left\{\bar{B}_{11}(e)\right\} \wedge\left[\bar{B}_{11}(e) \sqcap C_{0}\right]=\bar{B}_{11}(e) \sqcap C_{0}$ since by $(1) \bar{B}_{11}(e)$ is contained in the block $B(e)$ of the partition B.
(3) $\bar{B}_{11}(e) \cap \bar{C}_{11}(e)=\mathfrak{N}$.

The relation follows directly from (1) and (1^{\prime}).
(4) $\bar{B}_{11}^{\prime}(e)=\bar{B}_{11}(e)$.

This follows from the relation $B_{0}^{\prime} \sqsupset A^{\prime}=B_{0} \sqsupset \mathfrak{N}$ and (1).
(5) For $y \in \mathfrak{G}$ we have $\hat{K}(y)=\bigcup\left\{B_{0}(a): a \in \mathfrak{M}_{y}\right\}$ for some $\mathfrak{H}_{y} \subseteq \mathfrak{A}$, e.g. $\mathfrak{N}_{y}=$ $=\hat{K}(y) \cap \mathfrak{Y}$. Further, $y \in \mathfrak{N}$ implies $y \in \hat{K}(y)$.
Indeed $\hat{K}(y)=\bar{B}_{11}(e) \cap \bigcup\left\{B_{0}(a): a \in\left(B \wedge C_{0}\right)(y)\right\}$, then by (1), we have the expression for $\hat{K}(y)$. We can choose $\mathfrak{9 r}_{y}=\hat{K}(y) \cap \mathfrak{H}$. We have namely $\hat{K}(y) \cap A \supseteq \mathfrak{H}_{y}$ (for $a \in \mathfrak{N r}_{y}$ implies $a \in B_{0}(a) \subseteq \hat{K}(y)$), thus $(\mathfrak{C}:=) \bigcup\left\{B_{0}(a): a \in \hat{K}(y) \cap \mathfrak{H}\right\} \supseteq K(y)$. Conversely, for $a \in \widehat{K}(y) \cap \mathfrak{A}$ we have on the one hand $B_{0}(a) \subseteq \bar{B}_{11}(e)$ and on the other hand $a B_{0} b\left(B \wedge C_{0}\right) y$ for some $b \in \mathfrak{G}$. Hence $B_{0}(a)=B_{0}(b) \subseteq \bigcup\left\{B_{0}(c)\right.$: $\left.: c \in\left(B \wedge C_{0}\right)(y)\right\} \cap \bar{B}_{11}(e)=\hat{K}(y)$, then $\mathbb{C} \subseteq \hat{K}(y)$. The last assertion: If $y \in \mathfrak{H}$ then by (1) $y \in \bar{B}_{11}(e)$ and $y B_{0} y\left(B \wedge C_{0}\right) y$. Hence $y \in \hat{K}(y)$.
(6) The system of sets $T=\{\hat{K}(y): y \in \mathfrak{A l}\}$ covers $\bar{B}_{11}(e)$. If \hat{K} is a partition then $\hat{K}=T$.
The first assertion follows directly from (5) and (1). The second assertion: If \hat{K} is a partition then T is a set of some blocks of the partition \hat{K}, i.e. $\hat{K} \supseteq T$. Hence T is a partition. Let $x \hat{K} y$. By (5), $a \in \mathfrak{H}$ exists such that $a \in \hat{K}(y)$. Hence $x \in \hat{K}(y)=\hat{K}(a)$ and thus $x T y$. Hence $\hat{K} \leqq T$. Finally $\hat{K}=T$.
(7) $\bar{M}=\mathfrak{N} \sqcap\left(B_{0} C_{0}\right)=\left(\mathfrak{H} \sqcap B_{0}\right)\left(\mathfrak{H} \sqcap C_{0}\right) ; \bar{M}^{\prime}=\bar{M}$.

Then the relation \bar{M} is a partition if and only if the partitions $\mathfrak{A} \sqcap B_{0}$ and $\mathfrak{H} \sqcap C_{0}$ commute or equivalently if $\bar{M}=\bar{N}$.
In this case \bar{M} is a partition on \mathfrak{N} and $\bar{M}=\bar{N}=\left(\mathfrak{H} \sqcap B_{0}\right) \vee$ $\vee\left(\mathfrak{H} \sqcap C_{0}\right)=M$.
The first assertion follows from 1.1. The second assertion: If $x \mathfrak{H}^{\prime} \sqcap B_{0}^{\prime} C_{0}^{\prime} y$ then $x, y \in \mathfrak{H}^{\prime}$ and $x B_{0}^{\prime} a C_{0}^{\prime} y$ for some $a \in \mathfrak{G}$. Hence $e B^{\prime} \times B^{\prime} a C^{\prime} y C^{\prime} e$, thus $e B^{\prime} a C^{\prime} e$, i.e. $a \in \mathfrak{A Y}^{\prime}$. Consequently $\bar{M}^{\prime} \subseteq\left(\mathfrak{H}^{\prime} \sqcap B_{0}^{\prime}\right)\left(\mathfrak{H}^{\prime} \sqcap C_{0}^{\prime}\right)$ is proved. But $\left(\mathfrak{H} \sqcap B_{0}\right)$. . $\left(\mathfrak{H} \sqcap C_{0}\right)=\bar{M}$ is on the right side. Thus $\bar{M}^{\prime} \subseteq \bar{M}$. The inclusion $\bar{M} \subseteq \bar{M}^{\prime}$ is evident. The last two assertions follow from the properties of the commuting partitions on a set (on $\mathfrak{H})$ (e.g. [5] 3.1.1(5)).
(8) $\hat{K}=\bar{B}_{11}(e) \sqcap B_{0}\left(B \wedge C_{0}\right)=\left[\bar{B}_{11}(e) \sqcap B_{0}\right]\left[\bar{B}_{11}(e) \sqcap C_{0}\right]$. Then the relation \hat{K} is a partition if and only if the partitions $\bar{B}_{11}(e) \sqcap B_{0}$ and $\bar{B}_{11}(e) \sqcap C_{0}$ commute.
The first assertion follows from 1.1, since by $(1) \bar{B}_{11}(e) \supseteq \bigcup B_{0} \cap \bigcup\left(B \wedge C_{0}\right)=\mathfrak{H}$. The relation \widehat{K} as a product of partitions is a partition if and only if the partitions commute [5] 3.1.
(9) $\bar{K}=\bar{B}_{11}(e) \sqcap B_{10}=\left[\bar{B}_{11}(e) \sqcap B_{0}\right] \vee\left[\bar{B}_{11}(e) \sqcap C_{0}\right], \mathfrak{M} \subseteq \bigcup \bar{K} \subseteq \bar{B}_{11}(e)$ and every block of the partition \bar{K} meets \mathfrak{N}.
The first assertion follows from (1), (2) and 1.1 and the last two assertions from (1).
(10) $M=\mathfrak{M} \sqcap\left(B_{0} \vee C_{0}\right)=\left(\mathfrak{H} \sqcap B_{0}\right) \vee\left(\mathfrak{H} \sqcap C_{0}\right)$. The relation \bar{M} is a partition if and only if $\bar{M}=M$ or equivalently $\bar{N}=N$ or equivalently $\bar{M}=\bar{N}$.
The representation of M follows from 1.1. As $\mathfrak{M} \sqcap B_{0}$ and $\mathfrak{H} \sqcap C_{0}$ are partitions on \mathfrak{A} and \bar{M} is their product (see (7)), the rest of the assertion follows from the properties of commuting partitions on a set (e.g. [5] 3.1.1(5)).
(11) $\bar{M}=\mathfrak{H} \sqcap \hat{K}=C(e) \sqcap \hat{K}$.

We have $C(e) \sqcap \hat{K}=\mathfrak{M} \sqcap \bar{B}_{10}=\left(\mathfrak{H} \sqcap \bar{B}_{10}\right) \cap C=\mathfrak{H} \sqcap\left(\bar{B}_{10} \cap C\right)=\mathfrak{Y} \sqcap$ $\sqcap\left(B_{0} \wedge C\right)\left(B \wedge C_{0}\right)=\left[\mathfrak{H} \sqcap\left(B_{0} \wedge C\right)\right]\left[\mathfrak{H} \sqcap\left(B \wedge C_{0}\right)\right]=\left(\mathfrak{H} \sqcap B_{0}\right)\left(\mathfrak{H} \sqcap C_{0}\right)=$ $=\bar{M}$. The second equality follows from the fact that \mathfrak{Y} is a subset of a block of the partition C, the fourth from 4.14 [5], the fifth from 1.1 and the last from (7).
(12) If \bar{M} is a partition and $a \in \mathfrak{H}$ then $\hat{K}(a)=\bar{K}(a)$.

For $a \in \mathfrak{A}$ we have $x \bar{K} a \Rightarrow x\left[\bar{B}_{11}(e) \sqcap\left(B_{0} \vee\left(B \wedge C_{0}\right)\right)\right] a \Rightarrow x \in \bar{B}_{11}(e), x A_{1} x_{1}$ $x_{1} A_{2} x_{2} \ldots x_{n-1} A_{n} a$, where A_{1}, \ldots, A_{n} are by turns equal to B_{0} or $B \wedge C_{0}$. Hence $x_{1}, \ldots, x_{n-1}, a \in \mathfrak{A}$ and thus

$$
\begin{equation*}
x_{1} \mathfrak{H} \sqcap A_{2} x_{2} \ldots x_{n-1} \mathfrak{H} \sqcap A_{n} a \tag{*}
\end{equation*}
$$

If $A_{1}=B \wedge C_{0}$, then $x \in \bar{B}_{11}(e) \cap \bigcup C_{0}=\mathfrak{A}$ and thus the preceding sequence $(*)$ can be extended at the beginning by the relation $x \mathfrak{A} \sqcap\left(B \wedge C_{0}\right) x_{1}$. Hence $x\left(\mathfrak{H} \sqcap B_{0}\right) \vee\left(\mathfrak{H} \sqcap C_{0}\right) a$ (the partitions $\mathfrak{M} \sqcap\left(B \wedge C_{0}\right)$ and $\mathfrak{A} \sqcap C_{0}$ being evidently the same), thus by (7) $x\left(\mathfrak{H} \sqcap B_{0}\right)\left(\mathfrak{H} \sqcap C_{0}\right) a$ and by (1) and (8) $x \hat{K} a$.

Now let $A_{1}=B_{0}$. From (*) it follows that $x_{1}\left(\mathfrak{N} \sqcap B_{0}\right)\left(\mathfrak{N} \sqcap C_{0}\right) a$ and by (1) and (8) $x_{1} \hat{K} a$. Then the following relations hold: $x\left(\bar{B}_{11}(e) \sqcap B_{0}\right) x_{1} \hat{K} a$ and by (8) $x\left(\bar{B}_{11}(e) \sqcap B_{0}\right) x_{1}\left(\bar{B}_{11}(e) \sqcap B_{0}\right) y\left(\bar{B}_{11}(e) \sqcap C_{0}\right) a$ for some $y \in \mathfrak{G}$, thus $x\left(\bar{B}_{11}(e) \sqcap\right.$ $\left.\sqcap B_{0}\right)\left(\bar{B}_{11}(e) \sqcap C_{0}\right) a$, i.e. $x \hat{K} a$.

Definition 1.5. ([1] 4.1) Two partitions in a set \mathfrak{G} are said to be coupled if each block of one partition meets exactly one block of the other partition.

Lemma 1.5a. (Borůvka [1] 4.1, see also 1.4 [9]) Partitions A and D in a set (5 are coupled if and only if
(a) $\cup D \sqcap A=\bigcup A \sqcap D$,
(b) Every block of the partition A meets $\cup D$ (or equivalently $\cup A \cap \cup D$) and symmetrically.
Evidently, (a) is equivalent to
$\left(a^{\prime}\right)(\cup A \cap \cup D) \sqcap A=(\cup A \cap \cup D) \sqcap D$.
The following Theorem 1.6 follows from [9] 1.6 and 1.8. The special conditions of 1.6 make it possible to give a short direct proof.

Theorem 1.6. Let B and C be partitions in a set $\mathfrak{5}, e \in \bigcup B \cap \cup C, B_{0}$ a partition on $B(e)$ and C_{0} a partition on $C(e)$. If the partitions $\mathfrak{H} \sqcap B_{0}\left(=\bigcup C_{0} \sqcap B_{0}\right)$ and $\mathfrak{H} \sqcap C_{0}\left(=\bigcup B_{0} \sqcap C_{0}\right)$ commute then \bar{K}, \bar{L} and \bar{M} are pairwise coupled partitions (on $\bar{B}_{11}(e), \bar{C}_{11}(e)$ and \mathfrak{U}, respectively). Moreover,

$$
\mathfrak{Y} \sqcap \bar{K}=\mathfrak{H} \sqcap \bar{L}=\bar{K} \sqcap \bar{L}=\bar{M}=\bar{N} .
$$

Proof. The commutativity of the partitions $\mathfrak{A} \sqcap B_{0}$ and $\mathfrak{A} \sqcap C_{0}$ implies that the product $\left(\mathfrak{H} \sqcap B_{0}\right)\left(\mathfrak{H} \sqcap C_{0}\right)$ is equal to \bar{M} and is a partition (1.4(7)), so the relation $\mathfrak{M} \sqcap \hat{K}(=\bar{M}$ by $1.4(11))$ is a partition, too. This partition is the system of sets $\{\mathfrak{H} \cap \widehat{K}(a): a \in \mathfrak{H}\}$, which is, by $1.4(12)$, equal to $\{\mathfrak{H} \cap \bar{K}(a): a \in \mathfrak{H}\}=\mathfrak{H} \sqcap \bar{K}$. $\bar{N}=\mathfrak{A} \sqcap \bar{L}$ is proved analogously. As \bar{M} is a partition, we have $\bar{M}=\bar{N}(1.4(10))$. By 1.5 and 1.4(9), the partitions \bar{K}, \bar{L} and \bar{M} are pairwise coupled. Finally, $\bar{K} \wedge \bar{L}=$ $=\mathfrak{A} \sqcap(\bar{K} \wedge \bar{L})=(\mathfrak{H} \sqcap \bar{K}) \wedge(\mathfrak{A} \sqcap \bar{L})=\bar{M}$.

We shall introduce some conditions equivalent to the condition of Theorem 1.6.
Lemma 1.7. Let B_{0} be a partition on $B(e)$ and C_{0} a partition on $C(e)$. Then the following conditions are equivalent.
(i) $\mathfrak{M} \sqcap B_{0}$ and $\mathfrak{N} \sqcap C_{0}$ commute,
(ii) \bar{M} is a partition,
(iii) $T=\{\widehat{K}(y): y \in \mathfrak{H}\}$ is a partition,
(iv) $T=\bar{K}$.

Proof. $\mathrm{i} \Leftrightarrow$ ii by 1.4(7).
ii \Rightarrow iii: $x \in \hat{K}\left(y_{1}\right) \cap \hat{K}\left(y_{2}\right) \Rightarrow($ see $1.4(5)) x \in B_{0}\left(a_{1}\right) \cap B_{0}\left(a_{2}\right)$ for some $a_{1}, a_{2} \in$ $\in \mathfrak{H} \Rightarrow a_{1} \in B_{0}\left(a_{1}\right)=B_{0}(x)=B_{0}\left(a_{2}\right) \subseteq \hat{K}\left(y_{1}\right) \cap \hat{K}\left(y_{2}\right) \Rightarrow \emptyset \neq\left[\mathfrak{} \mathfrak{N} \cap \hat{K}\left(y_{1}\right)\right] \cap$
$\cap\left[\mathfrak{U} \cap \hat{K}\left(y_{2}\right)\right]$. Since the intersection of two blocks of the partition $\bar{M}=\mathfrak{N} \sqcap \hat{K}$ (1.4(11)) is nonempty, thus the blocks are the same. By 1.4(5), $\hat{K}\left(y_{1}\right)=\bigcup\left\{B_{0}(a)\right.$: $\left.: a \in \hat{K}\left(y_{1}\right) \cap \mathfrak{A}\right\}=\bigcup\left\{B_{0}(a): a \in \hat{K}\left(y_{1}\right) \cap \mathfrak{U}\right\}=\hat{K}\left(y_{2}\right)$ holds. Therefore T is a partition.
$\mathrm{iii} \Rightarrow \mathrm{iv}$: Suppose $x T y$. Then there is $z \in \mathfrak{H}$ such that $x, y \in \hat{K}(z)$. Consequently $x, y \in \bar{B}_{11}(e), x \bar{B}_{10} z, y \bar{B}_{10} z$. Thus $x \bar{B}_{11}(e) \sqcap B_{10} z, y \bar{B}_{11}(e) \sqcap B_{10} z$ and from the transitivity $x \bar{K} y$. Hence $T \leqq K$. We shall prove $T \geqq \bar{K}$ and so $T=\bar{K}$. By 1.4(1), (5) and (6) we have $T \geqq \bar{B}_{11}(e) \sqcap B_{0}$. We shall prove $T \geqq \bar{B}_{11}(e) \Pi\left(B \wedge C_{0}\right)$. Indeed, from the relation $x \bar{B}_{11}(e) \sqcap\left(B \wedge C_{0}\right) y$ it follows that $x, y \in \bar{B}_{11}(e)(\subseteq B(e)=$ $\left.=\bigcup B_{0}\right), x B \wedge C_{0} y$ and $y \in \bar{B}_{11}(e) \cap C_{0}(y) \subseteq B(e) \cap C(e)=\mathfrak{A}$. From the first relation, we obtain $x B_{0} x\left(B \wedge C_{0}\right) y, x, y \in \bar{B}_{11}(e)$, i.e. $x \in \hat{K}(y)$. The second one implies $y \in \hat{K}(y)(1.4(5))$ and we have $x T y$. Consequently, T contains the supremum $\left[\bar{B}_{11}(e) \sqcap B_{0}\right] \vee\left[\bar{B}_{11}(e) \sqcap\left(B \wedge C_{0}\right)\right]$, which is equal to \bar{K} by $1.4(9)$ and 1.4(2). iv \Rightarrow iii is evident.
iii \Rightarrow ii: If we prove $\mathfrak{H} \sqcap T=\mathfrak{A} \Pi \hat{K}$ it will be proved that \bar{M} is a partition for by $1.4(11) \mathfrak{A} \sqcap \hat{K}=\bar{M}$. By definition $\mathfrak{H} \sqcap \widehat{K}=\{(x, y) \in \mathfrak{A} \times \mathfrak{H}: x \in \widehat{K}(y)\}$ and $\mathfrak{A} \sqcap T=\{(x, y) \in \mathfrak{H} \times \mathfrak{H}: x, y \in \widehat{K}(z)$ for some $z \in \mathfrak{H}\}$. In the first case, $y \in \widehat{K}(y)$ by $1.4(5)$ and in the second $\widehat{K}(z)=\widehat{K}(y)$, since \widehat{K} is a partition. Thus $\mathfrak{q f} \sqcap T=$ $=\mathfrak{M} \sqcap \hat{K}$.

2.

Let us recall some lemmas from [9].
Lemma 2.1. (see Lemma 2.1 [9]) If A and D are congruences in an algebra (\mathfrak{G}, Ω) and $\bigcup A \supseteq \bigcup D$ then $A \vee_{\mathscr{H}} D=A \vee_{\mathscr{P}} D$.

Let \mathfrak{A} and \mathfrak{D} be Ω-subgroups of an Ω-group ((\mathscr{G}, Ω).
Definition 2.2. (see Definition 2.2 [9]) \mathfrak{H} and \mathfrak{D} are called Ω-commuting Ω-subgroups if $[\mathfrak{U}, \mathfrak{D}]=\mathfrak{A}+\mathfrak{D}$, where $[\mathfrak{A}, \mathfrak{D}]$ means the Ω-subgroup of (\mathfrak{G}, Ω) generated by the set $\mathfrak{A} \cup \mathfrak{D}$.

Clearly, Ω-commuting Ω-subgroups are commuting subgroups.
Lemma 2.3. (see Lemma 2.3 [9]) Let \mathfrak{H} and \mathfrak{D} be Ω-subgroups of an Ω-group $(\mathfrak{5}, \Omega)$. Then the following conditions (a) to (e) fulfil $a \Leftrightarrow b \Rightarrow(\Leftrightarrow d \Leftrightarrow e$.
(a) \mathfrak{H} and \mathfrak{D} are Ω-commuting,
(b) $\mathfrak{G} / r[\mathfrak{G I}, \mathfrak{D}]=\mathfrak{F} / r^{\mathfrak{N}} . \mathfrak{G} / r \mathfrak{D}$,
(c) $\mathfrak{G} / r^{\mathfrak{O}}$ and $\mathfrak{G} / r^{\mathfrak{D}}$ commute,
(d) $\mathfrak{F} / r \mathfrak{O Y} \vee_{\mathscr{P}} \mathfrak{F} / r \mathfrak{D}=\mathfrak{F} / r^{\mathfrak{H}} . \mathfrak{F} /{ }_{r} \mathfrak{D}$,
(e) \mathfrak{A} and \mathfrak{D} commute.

Analogous assertions hold for the left-sided decompositions.

Remark 2.4. Theorem 1.6 implies "The general four-group theorem" [1] 23.2 and consequently even the Zassenhaus Lemma (in a strengthened setting).

Corollary 2.5. (Borůvka [1] 23.2) Let $\mathfrak{B} \supseteq \mathfrak{B}_{0}$ and $\mathfrak{C} \supseteq \mathfrak{C}_{0}$ be Ω-subgroups of an Ω-group $(\mathbb{5}, \Omega)$. Let the following Ω-subgroups be Ω-commuting:
$\mathfrak{B} \cap \mathfrak{C}$ and $\mathfrak{B} \cap \mathfrak{C}_{0}$ with $\mathfrak{B}_{0} ; \mathfrak{C} \cap \mathfrak{B}$ and $\mathfrak{C} \cap \mathfrak{B}_{0}$ with \mathfrak{C}_{0}.
Then the following (left- or right-sided) decompositions

$$
\begin{gather*}
\bar{K}=\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}_{0}, \quad \bar{L}=\mathfrak{C}_{0}+\mathfrak{C} \cap \mathfrak{B} / \mathfrak{C}_{0}+\mathfrak{C} \cap \mathfrak{B}_{0}, \tag{1}\\
\bar{M}=\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B}_{0} \cap \mathfrak{C}+\mathfrak{C}_{0} \cap \mathfrak{B}
\end{gather*}
$$

are pairwise coupled. All given sums of Ω-subgroups are Ω-subgroups. Further,

$$
(\mathfrak{B} \cap \mathfrak{C}) \sqcap \bar{K}=(\mathfrak{B} \cap \mathfrak{C}) \sqcap \bar{L}=\bar{K} \wedge \bar{L}=\bar{M} .
$$

(Zassenhaus Lemma.) In particular, if \mathfrak{B}_{0} and \mathfrak{C}_{0} are ideals of \mathfrak{B} and \mathfrak{C}, respectively, then all the partitions (1) are congruences and the corresponding factor Ω-groups are isomorphic.

Proof. Let us define $B_{0}=\mathfrak{B} / \mathfrak{B}_{0}$ and $B=\mathfrak{B} / \mathfrak{B}$ (where / means e.g. the right sided decomposition). Similarly C_{0} and C are defined. Let $e=0=$ the zero element of the additive group \mathfrak{G}. Then (in the notation from Theorem 1.6) $\mathfrak{N}=B(0) \cap$ $\cap C(0)=\mathfrak{B} \cap \mathfrak{C}$. The partitions $\mathfrak{H} \sqcap B_{0}=(\mathfrak{B} \cap \mathfrak{C}) \sqcap \mathfrak{B} / \mathfrak{B}_{0}=\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B}_{0} \cap \mathfrak{C}$ and $\mathfrak{A} \sqcap C_{0}=\mathfrak{C} \cap \mathfrak{B} / \mathfrak{C}_{0} \cap \mathfrak{B}$ commute since the Ω-subgroups $\mathfrak{B}_{0} \cap \mathfrak{C}$ and $\mathfrak{C}_{0} \cap \mathfrak{B}$ are Ω-commuting (2.3 and [9] Theorem 2.5(iv)). Thus the conditions of Theorem 1.6 are fulfilled. By 1.4(1) $\bar{B}_{11}(0)=\bigcup\left\{B_{0}(a): a \in \mathfrak{H}\right\}=\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}$ and by supposition, this set is an Ω-subgroup ([4] III 4.1). By 1.4(9) and (2),

$$
\begin{gather*}
\bar{K}=\left(\bar{B}_{11}(0) \sqcap B_{0}\right) \vee\left(\bar{B}_{11}(0) \sqcap\left(B \wedge C_{0}\right)\right)=\left(\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B}_{0}\right) \vee \tag{2}\\
\\
\vee\left(\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B} \cap \mathfrak{C}_{0}\right),
\end{gather*}
$$

for $B \wedge C_{0}=\mathfrak{B} \sqcap \mathfrak{C} / \mathfrak{C}_{0}=\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B} \cap \mathfrak{C}_{0}$ Then (2) can be written in the form

$$
\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}_{0} .
$$

Inded, this partition (say S) contains both the partitions on the right side of (2), therefore it contains \bar{K} as well and its domain agrees to $\bigcup \bar{K}$. Let R be a partition, $S \geqq R \geqq \bar{K}$ and $a \in \bigcup R\left(=\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}\right)$. Then $R(a)-a \supseteq \bar{K}(0)=\left\{\bar{B}_{11}(0) \sqcap\right.$ $\left.\sqcap\left[B_{0} \vee\left(B \wedge C_{0}\right)\right]\right\}(0) \supseteq \mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}_{0}$ so that $\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}_{0}+a=S(a) \supseteq$ $\supseteq R(a) \supseteq \mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}_{0}+a$; hence $S(a)=R(a)$, thus $S=\bar{K}$. Analogously the representations of \bar{L} and \bar{M} are looked for.

Now, if \mathfrak{B}_{0} and \mathfrak{C}_{0} are ideals of \mathfrak{B} and \mathfrak{C}, respectively, then by [4] III $4.1 \mathfrak{B}_{0}+$ $+\mathfrak{B} \cap \mathfrak{C}, \mathfrak{C}_{0}+\mathfrak{C} \cap \mathfrak{B}$ are Ω-subgroups of $(\mathfrak{G}, \Omega) . \bar{K}$ as \mathscr{P}-supremum of congruences
in (\mathscr{G}, Ω) the domain of the first of which contains that of the other one (see (2)), is a congruence. This completes the proof of (a strengthened form of) Zassenhaus Lemma.

Lemma 2.6. Let B and C be partitions in a set $\left(5, e \in \bigcup B \cap \cup C, B_{0}\right.$ a partition on $B(e), C_{0}$ a partition on $C(e)$ and let $B_{0}^{\prime} \leqq B^{\prime}, C_{0}^{\prime} \leqq C^{\prime}$ be extensions on $(5$ of the partitions B_{0}, B, C_{0} and C, respectively. If $B^{\prime}(e) \sqcap B_{0}^{\prime}$ and $B^{\prime}(e) \sqcap C_{0}^{\prime}$ commute then $\mathfrak{A} \sqcap B_{0}\left(=C(e) \sqcap B_{0}\right)$ and $\mathfrak{H} \sqcap C_{0}\left(=B(e) \sqcap C_{0}\right)$ commute and $\bar{K}^{\prime}=$ $=\hat{K}^{\prime}=\bar{K}$. Analogous theorem holds if we interchange B and C.

Proof. First the proof of the relation $\bar{K}^{\prime}=\hat{K}^{\prime}$. By 1.4(1), (2), (4) and 1.1 we have

$$
\begin{gathered}
\bar{K}^{\prime}=\bar{B}_{11}^{\prime}(e) \sqcap\left[B_{0}^{\prime} \vee\left(B^{\prime} \wedge C_{0}^{\prime}\right)\right]=\bar{B}_{11}^{\prime}(e) \sqcap\left\{B^{\prime}(e) \sqcap\left[B_{0}^{\prime} \vee\left(B^{\prime} \wedge C_{0}^{\prime}\right)\right]\right\}= \\
=\bar{B}_{11}^{\prime}(e) \sqcap\left\{\left[B^{\prime}(e) \sqcap B_{0}^{\prime}\right] \vee\left[B^{\prime}(e) \sqcap C_{0}^{\prime}\right]\right\}
\end{gathered}
$$

similarly

$$
\begin{equation*}
\hat{K}^{\prime}=\bar{B}_{11}^{\prime}(e) \sqcap\left[B^{\prime}(e) \sqcap B_{0}^{\prime}\right]\left[B^{\prime}(e) \sqcap C_{0}^{\prime}\right] . \tag{1}
\end{equation*}
$$

Since the supremum of two partitions on a set (on $\left.B^{\prime}(e)\right)$ is equal to their product if (and only if) these partitions commute ([8] 1.1), we have $\bar{K}^{\prime}=\widehat{K}^{\prime}$.

We shall prove $\hat{K}^{\prime}=\bar{K}$. (The following statements (2) and (3) hold independently of the suppositions of Lemma.)

$$
\begin{equation*}
x \hat{K}^{\prime} z \Leftrightarrow x \hat{K} z \quad(\text { for } z \in \mathfrak{H}) \tag{2}
\end{equation*}
$$

Indeed, fix $z \in \mathfrak{H}$. Then (see 1.4(4) and (1)) $x \hat{K}^{\prime} z \Rightarrow x \in \bar{B}_{11}^{\prime}(e), x \bar{B}_{10}^{\prime} z \Rightarrow x \in$ $\in \bar{B}_{11}(e) \subseteq B(e), x B_{0}^{\prime} a C_{0}^{\prime} z, a B^{\prime} z$ for some $a \in \mathbb{6}$. Now, $a B z$ follows from the relations $z \in B(e), a B^{\prime} z$, consequently $a \in B(z)=B(e)$. From this and from the relation $x B_{0}^{\prime} a$ we obtain $x B_{0} a$. We have proved $x B_{0} a B z$. From the relations $z \in C(e), a C_{0}^{\prime} z$ we obtain $a C_{0} z$. Together with the preceding result we have $x \bar{B}_{10} z$ and consequently $x \hat{K} z$ because $\bar{B}_{11}^{\prime}(e)=\bar{B}_{11}(e)$ (see $\left.1.4(4)\right)$. With regard to the relation $\hat{K}^{\prime} \geqq \widehat{K}$ we have (2). From (2) it follows immediately that

$$
\begin{equation*}
x \widehat{K}^{\prime} z \Rightarrow x \hat{K} z \Rightarrow x \bar{K} z \quad(\text { for } z \in \mathfrak{N}) \tag{3}
\end{equation*}
$$

Now, let the suppositions of Lemma be satisfied. Then \hat{K}^{\prime} is a partition which is equal to \bar{K}^{\prime}. From $1.4(4)$ and (6), it follows that every block of the partition \hat{K}^{\prime} meets $\mathfrak{Y}^{\prime}(=\mathfrak{H})$. From the relation $x \hat{K}^{\prime} y$ we conclude the existence of an element $z \in \mathfrak{A}$ with the property $x, y \in \hat{K}^{\prime}(z)$, therefore $x \bar{K} z$ and $y \bar{K} z$ by (3). Hence $x \bar{K} y$ and thus $\hat{K}^{\prime} \subseteq \bar{K}$. Further $\bar{K} \subseteq \bar{K}^{\prime}=\hat{K}^{\prime}$. Consequently $\hat{K}^{\prime}=\bar{K}$.

Finally, we shall prove that the partitions $\mathfrak{A} \sqcap B_{0}$ and $\mathfrak{A} \sqcap C_{0}$ commute. We have

$$
\begin{gathered}
x\left(\mathfrak{H} \sqcap B_{0}\right)\left(\mathfrak{H} \sqcap C_{0}\right) y \Rightarrow x\left(\mathfrak{H} \sqcap B_{0}^{\prime}\right)\left(\mathfrak{H} \sqcap C_{0}^{\prime}\right) y \Rightarrow \\
\Rightarrow x\left(B^{\prime}(e) \sqcap B_{0}^{\prime}\right)\left(B^{\prime}(e) \sqcap C_{0}^{\prime}\right) y \Rightarrow x\left(B^{\prime}(e) \sqcap C_{0}^{\prime}\right)\left(B^{\prime}(e) \sqcap B_{0}^{\prime}\right) y .
\end{gathered}
$$

Thus $x, y \in \mathfrak{H}$ and $x C_{0}^{\prime} a B_{0}^{\prime} y$ for some $a \in \mathfrak{G}$. Relations $x \in C(e)$ and $x C_{0}^{\prime} a$ imply
$x C_{0} a$, consequently $a \in C_{0}(x) \subseteq C(x)=C(e)$. Similarly: $y \in B(e), a B_{0}^{\prime} y \Rightarrow a B_{0} y \Rightarrow$ $\Rightarrow a \in B_{0}(y) \subseteq B(y)=B(e)$. Hence $a \in \mathfrak{H}$, then $x\left(\mathfrak{H} \sqcap C_{0}\right)\left(\mathfrak{H} \sqcap B_{0}\right) y$. We have proved

$$
\left(\mathfrak{H} \sqcap B_{0}\right)\left(\mathfrak{H} \sqcap C_{0}\right) \subseteq\left(\mathfrak{Y} \sqcap C_{0}\right)\left(\mathfrak{H} \sqcap B_{0}\right) .
$$

The reverse inclusion is proved analogously.
Lemma 2.7. Let $(\mathfrak{5}, \Omega)$ be an algebra, B and C partitions in the set \mathfrak{G} and $e \in$ $\in \bigcup B \cap \bigcup C$. Let B_{0} and C_{0} be partitions on $B(e)$ and $C(e)$, respectively. If B_{0} and C_{0} are congruences in the algebra (\mathscr{G}, Ω) then the relations \bar{K} and \bar{L} are congruences on the subalgebras $\bar{B}_{11}(e)$ and $\bar{C}_{11}(e)$, respectively. If \bar{M} is a partition (i.e. if the partitions $\mathfrak{A} \sqcap B_{0}$ and $\mathfrak{M} \sqcap C_{0}$ commute), \bar{M} is a congruence on the subalgebra \mathfrak{N} and the congruences \bar{K}, \bar{L} and \bar{M} are pairwise coupled (as partitions) and therefore isomorphic (as factor algebras).

Proof. By supposition, $\cup B_{0}=B(e)$ and $\cup C_{0}=C(e)$ are subalgebras of (\mathscr{T}, Ω), thus $\mathfrak{N}=B(e) \cap C(e)$ is a subalgebra, too. We shall show that $\bar{B}_{11}(e)$ is a subalgebra. Let $\omega \in \Omega$ be n-ary, $x_{1}, \ldots, x_{n} \in \bar{B}_{11}(e)$. By 1.4(1) $a_{k} \in \mathfrak{H}\left(\subseteq \bar{B}_{11}(e)\right)$ exist such that $x_{k} B_{0} a_{k}(k=1, \ldots, n)$. Since B_{0} is a congruence, we have $x_{1} \ldots x_{n} \omega B_{0} a_{1} \ldots a_{n} \omega$ and because \mathfrak{A} is a subalgebra, we have $a_{1} \ldots a_{n} \omega \in \mathfrak{H}$. Again, by 1.4(1), we have $x_{1} \ldots$ $\ldots x_{n} \omega \in \bar{B}_{11}(e)$, consequently $\bar{B}_{11}(e)$ (and similarly $\bar{C}_{11}(e)$) is a subalgebra. $\bar{B}_{11}(e) \sqcap$ $\sqcap B_{0}$ and $\bar{C}_{11}(e) \sqcap C_{6}$ are therefore congruences in (\tilde{G}, Ω). The partition $\bar{K}=$ $=\left(\bar{B}_{11}(e) \sqcap B_{0}\right) \vee_{\mathscr{P}}\left(\bar{B}_{11}(e) \sqcap C_{0}\right)(1.4(9))$ as the \mathscr{P}-supremum of congruences in (\mathscr{G}, Ω) whose domains are comparable sets (the domain of the first partition is $\bar{B}_{11}(e)$, that of the other one is obtained in $\mathfrak{A}(1.4(1))$, is a congruence on the subalgebra $\bar{B}_{11}(e)$ (2.1). Similarly, \bar{L} is a congruence on the subalgebra $\bar{C}_{11}(e)$. Finally $\bar{M}=\left(\mathfrak{H} \sqcap B_{0}\right)$. . $\left(\mathfrak{H} \sqcap C_{0}\right)$ as the product of two congruences is a stable relation in $(\mathfrak{G}, \Omega)([5] 3.2)$. Hence if \bar{M} is a partition, it is a congruence on the subalgebra \mathfrak{Q}. The rest follows from 1.6.

In the following Theorem 2.8 a generalization of Châtelet's Theorem (see [3] or [7] Theorem 88) will be deduced as a corollary of Theorem 1.6 and Lemmas 2.6 and 2.7. Information in more detail is given in Remark 2.9 below.

Theorem 2.8. Let (\mathfrak{G}, Ω) be an algebra, B and C partitions in the set $\mathfrak{G}, e \in$ $\in \cup B \cap \cup C, B_{0}$ and C_{0} congruences in the algebra $(\mathscr{G}, \Omega), B_{0}$ and C_{0} partitions on $B(e)$ and $C(e)$, respectively, $B_{0}^{\prime}, B^{\prime}, C_{0}^{\prime}$ and C^{\prime} extensions on \mathfrak{F} of the partitions B_{0}, B, C_{0} and C. respectively. If the partitions $B^{\prime}(e) \sqcap B_{0}^{\prime}, B^{\prime}(e) \sqcap C_{0}^{\prime}$ commute and the partitions $C^{\prime}(e) \sqcap B_{0}^{\prime}, C^{\prime}(e) \sqcap C_{0}^{\prime}$ commute, then $\bar{K}^{\prime}=\widehat{K}^{\prime}=\bar{K}, \bar{L}^{\prime}=\hat{L}^{\prime}=\bar{L}, \bar{M}^{\prime}=\bar{M}$, the relations \bar{K}, \bar{L} and \bar{M} are congruences on the subalgebras $\bar{B}_{11}(e), \bar{C}_{11}(e)$ and \mathfrak{M} of the algebra $(\tilde{5}, \Omega)$, respectively, they are pairwise coupled (as partitions) and therefore isomorphic (as factor algebras).
Proof. By $2.6 \bar{K}^{\prime}=\hat{K}^{\prime}=\bar{K}$ and $\bar{L}^{\prime}=\hat{L}^{\prime}=\bar{L}$, by $1.4(7) \bar{M}^{\prime}=\bar{M}$, by 2.6 and 2.7 \bar{K}, \bar{L} and \bar{M} are congruences on the subalgebras $\bar{B}_{11}(e), \bar{C}_{11}(e)$ and \mathfrak{A}, respectively,
of the algebra ((\mathfrak{F}, Ω). By $1.6 \bar{K}, \bar{L}$ and \bar{M} are pairwise coupled (as partitions) and therefore isomorphic (as factor algebras).

Remark 2.9. We shall explain in more detail relations between 2.8 and Châtelet's Theorem ([3], [7] Theorem 88).

1. Denote

$$
B_{2}^{\prime}=\Phi_{i+1}, \quad B_{1}^{\prime}=\Phi_{i}, \quad B_{0}^{\prime}=\Phi_{i-1}, \quad C_{2}^{\prime}=\Psi_{j+1}, \quad C_{1}^{\prime}=\Psi_{j}, \quad C_{0}^{\prime}=\Psi_{j-1}
$$

In Châtelet's Theorem and in Theorem 2.8, it is supposed that $B_{1}^{\prime}(e)$ (denoted by $K\left(\Phi_{i}\right)$ in Theorem 88) is a subalgebra of ((\mathfrak{G}, Ω) and $B_{0}=B_{1}^{\prime}(e) \sqcap B_{0}^{\prime}=K\left(\Phi_{i}\right) \sqcap$ $\sqcap \Phi_{i-1}$ is a congruence on $K\left(\Phi_{i}\right)$. Similarly for Ψ_{j}. Theorem 88 requires the commutativity of the partitions Φ_{i} and Φ_{i-1} with both partitions Ψ_{J} and Ψ_{j-1}. Theorem 2.8 requires only the commutativity of the partitions $B_{1}^{\prime}(e) \sqcap B_{0}^{\prime}=K\left(\Phi_{i}\right) \sqcap \Phi_{i-1}$, $B_{1}^{\prime}(e) \sqcap C_{0}^{\prime}=K\left(\Phi_{i}\right) \sqcap \Psi_{j-1}$ and the commutativity of the partitions $C_{1}^{\prime}(e) \Pi B_{0}^{\prime}=$ $=K\left(\Psi_{j}\right) \sqcap \Phi_{i-1}, C_{1}^{\prime}(e) \sqcap C_{0}^{\prime}=K\left(\Psi_{j}\right) \sqcap \Psi_{j-1}$.

Theorem 88 asserts that the relations (in fact, partitions by hypothesis)

$$
\begin{aligned}
& \Phi_{i j}=\Phi_{i-1} \Psi_{j} \wedge \Phi_{i}=\Phi_{i-1}\left(\Psi_{j} \wedge \Phi_{i}\right)=B_{0}^{\prime}\left(C_{1}^{\prime} \wedge B_{1}^{\prime}\right)=\bar{B}_{11}^{\prime} \\
& \Psi_{j i}=\Psi_{j-1} \Phi_{i} \wedge \Psi_{j}=\Psi_{j-1}\left(\Phi_{i} \wedge \Psi_{j}\right)=C_{0}^{\prime}\left(B_{1}^{\prime} \wedge C_{1}^{\prime}\right)=\bar{C}_{11}^{\prime} \\
& \Phi_{i, j-1}=B_{0}^{\prime} \vee\left(B_{1}^{\prime} \wedge C_{0}^{\prime}\right)=B_{10}^{\prime}, \quad \Psi_{j, i-1}=C_{0}^{\prime} \vee\left(C_{1}^{\prime} \wedge B_{0}^{\prime}\right)=C_{10}^{\prime}
\end{aligned}
$$

have the following properties

$$
K\left(\Phi_{i j}\right) \sqcap \Phi_{i, j-1}=\bar{B}_{11}^{\prime}(e) \sqcap B_{10}^{\prime}=\bar{K}^{\prime}
$$

is a congruence on the subalgebra $K\left(\Phi_{i j}\right)=\bar{B}_{11}^{\prime}(e)$ (similarly for $\left.\Psi\right)$ and

$$
\bar{K}^{\prime}=K\left(\Phi_{i j}\right) \sqcap \Phi_{i, j-1} \cong K\left(\Psi_{j i}\right) \sqcap \Psi_{j, i-1}=\bar{L}^{\prime}
$$

All these assertions follow from Theorem 2.8.
2. Theorem 2.8 gives a strengthened version of the (essential) part of Chatelet's Theorem (as to the whole Theorem - see 3.4). It supposes instead of the commutativity of the partitions Φ_{i-1}, Ψ_{j-1} only the commutativity of intersections of these partitions with $K\left(\Phi_{i}\right)$ and the commutativity of intersections of these pattitions with $K\left(\Psi_{j}\right)$, which is a weaker requirement as we shall show further (point 4). The assertion of Theorem 2.8 is stronger because it proves that the corresponding partitions are coupled.
3. Zassenhaus Lemma (in the formulation of Corollary 2.5) is easily obtained from Theorem 2.8. Using the notation of Corollary 2.5 let us define: $e=0=$ the zero element of the group \mathfrak{G},

$$
\begin{array}{llll}
B_{0}=\mathfrak{B} / \mathfrak{B}_{0}, & B=\mathfrak{B} / \mathfrak{B}, & C_{0}=\mathfrak{C} / \mathfrak{C}_{0}, & C=\mathfrak{C} / \mathfrak{C} \\
B_{0}^{\prime}=\mathfrak{F} / \mathfrak{B}_{0}, & B^{\prime}=\mathfrak{F} / \mathfrak{B}, & C_{0}^{\prime}=\mathfrak{F} / \mathfrak{C}_{0}, & C^{\prime}=\mathfrak{F} / \mathfrak{C}
\end{array}
$$

(all decompositions will be understood, e.g. the right sided ones). The partitions B_{0}, B, C_{0} and C are congruences in $(\mathscr{5}, \Omega), B_{0}^{\prime}, B^{\prime}, C_{0}^{\prime}$ and C^{\prime} their extensions on $(\mathfrak{G}$.

The partitions $B^{\prime}(e) \sqcap B_{0}^{\prime}=\mathfrak{B} \sqcap \mathfrak{F} / \mathfrak{B}_{0}=\mathfrak{B} / \mathfrak{B}_{0}$ and $B^{\prime}(e) \sqcap C_{0}^{\prime}=\mathfrak{B} \sqcap \mathfrak{F} / \mathfrak{C}_{0}=$ $=\mathfrak{B} / \mathfrak{B} \cap \mathfrak{C}_{0}$ as congruences on the Ω-group \mathfrak{B} commute (2.3). $C_{1}^{\prime}(e) \sqcap B_{0}^{\prime}$ and $C_{1}^{\prime}(e) \sqcap C_{0}^{\prime}$ commute for similar reasons. Thus the suppositions of Theorem 2.8 are fulfilled.

Let us change the formulation of the assertion of Theorem 2.8 for our situation. By 1.4(4) and [5] 3.5.5 we have

$$
\begin{gathered}
\bar{B}_{11}^{\prime}(0)=\bar{B}_{11}(0)=\left[B_{0}(B \wedge C)\right](0)= \\
=B_{0}(0)+\bigcup B_{0} \cap B(0) \cap C(0)=\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C} .
\end{gathered}
$$

By $2.6 \bar{K}^{\prime}=\hat{K}^{\prime}=\bar{K}$. Thus

$$
\begin{gathered}
\bar{K}=\bar{K}^{\prime}=\bar{B}_{11}^{\prime}(0) \\
\sqcap B_{10}^{\prime}=\left(\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}\right) \sqcap\left[\mathfrak{G} / \mathfrak{B}_{0} \vee\left(\mathfrak{G} / \mathfrak{B} \wedge\left(\mathfrak{G} / \mathfrak{C}_{0}\right)\right]=\right. \\
=\left(\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}\right) \sqcap\left(\mathfrak{G} /\left(\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}_{0}\right)\right.
\end{gathered}
$$

(by $2.3(a \Rightarrow b, d)-$ since \mathfrak{B}_{0} is an ideal of $\left.\mathfrak{B}\right)$. Hence

$$
\bar{K}=\mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C} / \mathfrak{B}_{0}+\mathfrak{B} \cap \mathfrak{C}_{0} .
$$

Similarly we obtain \bar{L} and \bar{M}. Now, the assertions of the Zassenhaus Lemma (in the formulation of Corollary 2.5) follow from 2.8.
4. Example for which the suppositions of Theorem 2.8 are fulfilled and the commutativity of the partitions $B_{0}^{\prime}, C_{0}^{\prime}$ (supposed in Theorem 88) fails.

Let (\mathfrak{G}, Ω) be an Ω-group and let the Ω-subgroups $\mathfrak{B}_{0}, \mathfrak{B}, \mathfrak{C}_{0}$ and \mathfrak{C} be chosen as in point 3. If \mathfrak{B}_{0} and \mathfrak{C}_{0} do not commute the partitions $B_{0}^{\prime}=\mathfrak{G} / \mathfrak{B}_{0}$ and $C_{0}^{\prime}=$ $=\mathfrak{G} / \mathfrak{C}_{0}$ do not commute (2.3). On the other hand, by 2.3 and [4] III 4.1, the partitions $B^{\prime}(0) \sqcap B_{0}^{\prime}=\mathfrak{B} \sqcap \mathfrak{W} / \mathfrak{B}_{0}=\mathfrak{B} / \mathfrak{B}_{0}$ and $B^{\prime}(0) \sqcap C_{0}^{\prime}=\mathfrak{B} \sqcap \mathfrak{G} / \mathfrak{C}_{0}=\mathfrak{B} / \mathfrak{B} \cap \mathfrak{C}_{0}$ commute and the partitions $C^{\prime}(0) \Pi B_{0}^{\prime}=\mathfrak{C} / \mathbb{C} \cap \mathfrak{B}_{0}$ and $C^{\prime}(0) \Pi C_{0}^{\prime}=\mathbb{C} / \mathbb{C}_{0}$ commute as well.

Another consequence of Theorem 1.6 and Lemmas 2.6 and 2.7 is Theorem [1] 10.8 or its algebra version 17.6.

Corollary 2.10. Let $B_{0}^{\prime} \leqq B^{\prime}$ and $C_{0}^{\prime} \leqq C^{\prime}$ be partitions on a set $\mathfrak{G}, e \in \mathfrak{G}$, let the partitions $B^{\prime}(e) \sqcap B_{0}^{\prime}$ and $B^{\prime}(e) \sqcap C_{0}^{\prime}$ commute and let the partitions $C^{\prime}(e) \sqcap B_{0}^{\prime}$ and $C^{\prime}(e) \Pi C_{0}^{\prime}$ commute. Denote by B and C partitions with the unique block $B^{\prime}(e)$ and $C^{\prime}(e)$, respectively, $B_{0}=B^{\prime}(e) \sqcap B_{0}^{\prime}$ and $C_{0}=B^{\prime}(e) \sqcap C_{0}^{\prime}$. Then the partitions $\bar{K}^{\prime}, \bar{L}^{\prime}$ and \bar{M}^{\prime} are pairwise coupled and satisfy $\bar{K}^{\prime}=\widehat{K}^{\prime}=\bar{K}, \bar{L}^{\prime}=\hat{L}^{\prime}=$ $=\bar{L}, \bar{M}^{\prime}=\bar{M}$.
If (\mathscr{G}, Ω) is an algebra and if the partitions $B_{0}^{\prime}, B^{\prime}, C_{0}^{\prime}$ and C^{\prime} are congruences on (\mathfrak{G}, Ω) then $\bar{K}^{\prime}, \bar{L}^{\prime}$ and \bar{M}^{\prime} are isomorphic congruences on (\mathfrak{G}, Ω).

Proof. The conditions of Lemma 2.6 are fulfilled so that $\bar{K}^{\prime}=\hat{K}^{\prime}=\bar{K}, \bar{L}^{\prime}=$ $=\hat{L}^{\prime}=\bar{L}$ and by $1.4(7) \bar{M}^{\prime}=\bar{M}$. In virtue of 2.6 one can use Theorem 1.6 , therefore the partitions $\bar{K}, \bar{L}, \bar{M}$ and thus even the partitions $\bar{K}^{\prime}, \bar{L}^{\prime}, \bar{M}^{\prime}$ are pairwise coupled. Hence the algebra version follows trivially.

Remark 2.11. If we suppose the conditions of 2.10 to be satisfied for every $e \in \mathbb{5}$, we obtain from 2.10 the essential part of Theorem 10.8 [1] (as to the whole Theorem - see Remark 3.3). In more detail: Let

$$
B_{1} \leqq B_{2} \leqq \ldots \leqq B_{r}, \quad C_{1} \leqq C_{2} \leqq \ldots \leqq C_{s}
$$

be two partition series on a set \mathbb{G} (see Definition 3.1 below). In Theorem 10.8 [1], under the supposition of commutativity of every partition B_{i} with every C_{j}, refinements of these series are constructed which are co-basally joint; this result can be formulated in the following way. Partitions

$$
\begin{align*}
& {\left[B_{i-1}\left(B_{i} \wedge C_{j}\right)\right](e) \sqcap\left[B_{i-1}\left(B_{i} \wedge C_{j-1}\right)\right] \quad \text { and }} \tag{1}\\
& {\left[C_{j-1}\left(C_{j} \wedge B_{i}\right)\right](e) \sqcap\left[C_{j-1}\left(C_{j} \wedge B_{i-1}\right)\right] \quad \text { are coupled. }}
\end{align*}
$$

This is, however, the assertion of 2.10 if we put

$$
B_{0}^{\prime}=B_{i-1}, \quad B^{\prime}=B_{i}, \quad C_{0}^{\prime}=C_{j-1}, \quad C^{\prime}=C_{j} .
$$

Using this notation the assertion (1) reads as follows
\hat{K}^{\prime} and \hat{L}^{\prime} are coupled partitions.
With regard to the commutativity of B_{0}^{\prime} and B^{\prime} with both the partitions C_{0}^{\prime} and C^{\prime} we have (see point 2)

$$
\hat{K}^{\prime}=\bar{K}^{\prime}, \quad \hat{L}^{\prime}=\bar{L}^{\prime},
$$

so that (1) is the assertion of Corollary 2.10.
2. Let us compare the conditions of Theorem 10.8 [1] and those of Corollary 2.10:

The commutativity of B_{0}^{\prime} and C_{0}^{\prime} implies the commutativity of the partitions $B^{\prime}(e) \sqcap B_{0}^{\prime}$ and $B^{\prime}(e) \sqcap C_{0}^{\prime}$ and the commutativity of the partitions $C^{\prime}(e) \sqcap B_{0}^{\prime}$ and $C^{\prime}(e) \sqcap C_{0}^{\prime}$ for every $e \in \mathfrak{F}$. (This is true since $\left(B^{\prime}(e) \sqcap B_{0}^{\prime}\right)\left(B^{\prime}(e) \sqcap C_{0}^{\prime}\right)=$ $=\left(B^{\prime}(e) \sqcap B_{0}^{\prime}\right)\left(B^{\prime}(e) \sqcap\left(B^{\prime} \wedge C_{0}^{\prime}\right)\right)=B^{\prime}(e) \sqcap\left[B_{0}^{\prime}\left(B^{\prime} \wedge C_{0}^{\prime}\right)\right]=B^{\prime}(e) \sqcap\left(B_{0}^{\prime} C_{0}^{\prime}\right)-$ see 1.1. We obtain the last equality as follows. Evidently $B^{\prime}(e) \sqcap\left(B_{0}^{\prime} C_{0}^{\prime}\right) \geqq B^{\prime}(e) \sqcap$ $\sqcap\left[B_{0}^{\prime}\left(B^{\prime} \wedge C_{0}^{\prime}\right)\right]$. To obtain the converse inequality, put $x B^{\prime}(e) \sqcap\left(B_{0}^{\prime} C_{0}^{\prime}\right) y$. Then $x, y \in B^{\prime}(e), x B_{0}^{\prime} a C_{0}^{\prime} y$ for an $a \in \mathbf{G}$. It suffices to prove $a B^{\prime} y$. Indeed, $x \in B^{\prime}(e)$ and $x B_{0}^{\prime} a$ implies $e B^{\prime} x B_{0}^{\prime} a$, and $B_{0}^{\prime} \leqq B^{\prime}$ implies $e B^{\prime} x B^{\prime} a$, i.e. $a \in B^{\prime}(e)$. Then the relations $a, y \in B^{\prime}(e)$ give $a B^{\prime} y$.)

The converse assertion about the commutativity is not true as the following example shows.
3. Example where the conditions of Theorem 2.10 are satisfied (even the conditions of Theorem 2.8) for every $e \in \mathscr{G}$, and in spite of this B_{0}^{\prime} and C_{0}^{\prime} do not commute. This example is presented by an arbitrary Ω-group (\mathfrak{G}, Ω) in which noncommuting Ω-subgroups \mathfrak{B} and \mathfrak{C} and their ideals \mathfrak{B}_{0} and \mathfrak{C}_{0}, respectively, are given.

If we denote the (e.g. right sided) decompositions $\mathfrak{F} / \mathfrak{B}, \mathfrak{W} / \mathfrak{C}, \mathfrak{W} / \mathfrak{B}_{0}$ and $\mathfrak{F} / \mathfrak{C}_{0}$ by $B^{\prime}, C^{\prime}, B_{0}^{\prime}$ and C_{0}^{\prime}, respectively, then the partitions B_{0}^{\prime} and C_{0}^{\prime} do not commute since
the subgroups \mathfrak{B}_{0} and \mathfrak{C}_{0} do not commute (2.3), while the partitions

$$
\begin{gathered}
B^{\prime}(e) \sqcap B_{0}^{\prime}=(\mathfrak{B}+e) \sqcap \mathfrak{G} / \mathfrak{B}_{0} \quad \text { and } \\
B^{\prime}(e) \sqcap C_{0}^{\prime}=(\mathfrak{B}+e) \sqcap \mathfrak{W} / \mathfrak{C}_{0}=(\mathfrak{B}+e) \sqcap \mathfrak{W} / \mathfrak{B} \cap \mathfrak{C}_{0}
\end{gathered}
$$

commute. To prove it we consider first the following:

$$
\begin{gathered}
\left(B^{\prime}(e) \sqcap B_{0}^{\prime}\right) \vee\left(B^{\prime}(e) \sqcap C_{0}^{\prime}\right)={ }^{(1)}\left[(\mathfrak{B}+e) \sqcap \mathfrak{(} / \mathfrak{B}_{0}\right] \vee \\
\vee\left[(\mathfrak{B}+e) \sqcap \mathfrak{G} / \mathfrak{B} \cap \mathfrak{C}_{0}\right]={ }^{(2)}(\mathfrak{B}+e) \sqcap\left(\mathfrak{5} / \mathfrak{B}_{0} \vee \mathfrak{F} / \mathfrak{B} \cap \mathfrak{C}_{0}\right)={ }^{(3)} \\
={ }^{(3)}(\mathfrak{B}+e) \sqcap\left[\left(\mathfrak{5} / \mathfrak{B}_{0}\right)\left(\mathfrak{G} / \mathfrak{B} \cap \mathfrak{C}_{0}\right)\right]={ }^{(4)}\left[(\mathfrak{B}+e) \sqcap \mathfrak{F} / \mathfrak{B}_{0}\right] . \\
\cdot\left[(\mathfrak{B}+e) \sqcap \mathfrak{G} / \mathfrak{B} \cap \mathfrak{C}_{0}\right]={ }^{(5)}\left(B^{\prime}(e) \sqcap B_{0}^{\prime}\right)\left(B^{\prime}(e) \sqcap C_{0}^{\prime}\right) .
\end{gathered}
$$

The second and fourth equalities are true since $\mathfrak{B}+e$ respects the partitions $\mathfrak{G} / \mathfrak{B}_{0}$ and $\mathfrak{G} / \mathfrak{B} \cap \mathfrak{C}_{0}(1.1)$. The third equality follows from 2.3 (since \mathfrak{B}_{0} and $\mathfrak{B} \cap \mathfrak{C}_{0}$ commute). The obtained result says that the supremum of partitions is their product; consequently, the partitions commute. Similarly it can be proved that the partitions $C^{\prime}(e) \Pi B_{0}^{\prime}$ and $C^{\prime}(e) \Pi C_{0}^{\prime}$ commute.

Lemma 2.12. Let $B_{0}^{\prime} \leqq B^{\prime}$ and $C_{0}^{\prime} \leqq C^{\prime}$ be partitions on a set $\mathfrak{5}$ and $e \in(\mathfrak{5}$. Let the partitions $B^{\prime}(e) \sqcap B_{0}^{\prime}$ and $B^{\prime}(e) \sqcap C^{\prime}$ commute. Then $\bar{B}_{11}^{\prime}(e)=B_{11}^{\prime}(e)$.

Proof. Let $x B_{11}^{\prime} e$. Since evidently $B_{11}^{\prime}(e) \subseteq B^{\prime}(e)$ we have $x=x_{0} A_{1} x_{1} \ldots$ $\ldots x_{n-1} A_{n} x_{n}=e$ for some $x_{1}, \ldots, x_{n-1} \in B^{\prime}(e)$, where A_{1}, \ldots, A_{n} are alternately equal to B_{0}^{\prime} and $B^{\prime} \wedge C^{\prime}$. By supposition the partitions $B^{\prime}(e) \sqcap B_{0}^{\prime}$ and $B^{\prime}(e) \sqcap$ $\Pi\left(B^{\prime} \wedge C^{\prime}\right)=B^{\prime}(e) \sqcap C^{\prime}$ commute, therefore $x_{k-1} A_{k} A_{k+1} x_{k+1} \Rightarrow x_{k-1}\left(B^{\prime}(e) \sqcap\right.$ $\left.\sqcap A_{k}\right)\left(B^{\prime}(e) \sqcap A_{k+1}\right) x_{k+1} \Rightarrow x_{k-1}\left(B^{\prime}(e) \prod A_{k+1}\right)\left(B^{\prime}(e) \sqcap A_{k}\right) x_{k+1} \Rightarrow x_{k-1} A_{k+1}$. . $A_{k} \chi_{k+1}$. Hence $x \bar{B}_{11}^{\prime} e$ and consequently $\bar{B}_{11}^{\prime}(e)=B_{11}^{\prime}(e)$.

3.

Definition 3.1. ([1] I 10.1) A finite chain

$$
\begin{equation*}
A_{1} \leqq A_{2} \leqq \ldots \leqq A_{n} \tag{*}
\end{equation*}
$$

of partitions in a set $\mathfrak{5}$ is said to be a partition series $\left(\right.$ from A_{1} to $\left.A_{n}\right)$ in the set $(\mathfrak{5}$.
([1] I 10.2) Let $e \in \bigcup A_{1}$. A local chain of a partition series $(*)$ is the partition chain $\left\{A_{1}(e)\right\} \leqq A_{2}(e) \sqcap A_{1} \leqq A_{3}(e) \sqcap A_{2} \leqq \ldots \leqq A_{n}(e) \sqcap A_{n-1}$. We speak also about the e-chain.
([1] I 10.6) We say that two partition series are e-joint if there exists a bijection of the e-chain of one series on the e-chain of the other one such that the corresponding partitions are coupled.

Let

$$
B_{1}^{\prime} \leqq B_{2}^{\prime} \leqq \ldots \leqq B_{r}^{\prime}, \quad C_{1}^{\prime} \leqq C_{2}^{\prime} \leqq \ldots \leqq C_{s}^{\prime}
$$

be two partition series on a set \mathfrak{G} and $e \in \mathbb{F}$.

Define

$$
\begin{align*}
& \bar{B}_{i j}^{\prime}=B_{i-1}^{\prime}\left(B_{i}^{\prime} \wedge C_{j}^{\prime}\right), \quad B_{i j}^{\prime}=B_{i-1}^{\prime} \vee\left(B_{i}^{\prime} \wedge C_{j}^{\prime}\right), \tag{1}\\
& \bar{K}_{i j}^{\prime}=\bar{B}_{i j}^{\prime}(e) \sqcap B_{i, j-1}^{\prime}, \quad \hat{K}_{i j}^{\prime}=\bar{B}_{i j}^{\prime}(e) \sqcap \bar{B}_{i, j-1}^{\prime}, \\
& \bar{M}_{i j}=\left(C_{j}(e) \sqcap B_{i-1}\right)\left(B_{i}(e) \sqcap C_{j-1}\right), \quad \bar{K}_{i j}=\bar{B}_{i j}(e) \sqcap B_{i, j-1},
\end{align*}
$$

where

$$
B_{i-1}=B_{i}^{\prime}(e) \sqcap B_{i-1}^{\prime}, \quad C_{j-1}=C_{j}^{\prime}(e) \sqcap C_{j-1}^{\prime}
$$

Relations $\bar{C}_{j i}^{\prime}, C_{j i}^{\prime}, \bar{L}_{j i}^{\prime}, \hat{L}_{j i}^{\prime}, \bar{L}_{j i}, \bar{N}_{j i}$ are defined symmetrically (by interchanging B and C).

Theorem 3.2. I. Let

$$
\begin{equation*}
B_{1}^{\prime} \leqq B_{2}^{\prime} \leqq \ldots \leqq B_{r}^{\prime}, \quad C_{1}^{\prime} \leqq C_{2}^{\prime} \leqq \ldots \leqq C_{s}^{\prime} \tag{a}
\end{equation*}
$$

be two partition series on a set $\mathfrak{6}$ and $e \in \mathfrak{G}$. Put

$$
B_{r+1}^{\prime}=B_{r}^{\prime} \vee C_{s}^{\prime}=C_{s+1}^{\prime} \text { and } B_{0}^{\prime}=B_{1}^{\prime} \wedge C_{1}^{\prime}=C_{0}^{\prime} .
$$

If for $2 \leqq i \leqq r+1,2 \leqq j \leqq s+1$

$$
\begin{array}{llll}
B_{i}^{\prime}(e) \sqcap B_{i-1}^{\prime} & \text { and } & B_{i}^{\prime}(e) \sqcap C_{j-1}^{\prime} & \text { commute, and } \tag{b}\\
C_{j}^{\prime}(e) \sqcap C_{j-1}^{\prime} & \text { and } & C_{j}^{\prime}(e) \sqcap B_{i-1}^{\prime} & \text { commute }
\end{array}
$$

then there exist e-joint refinements of the series (a).
These refinements are (2) and (3) (see proof) and do not depend on the element \boldsymbol{e}; the members $\bar{K}_{i j}^{\prime}$ and $\bar{L}_{j i}^{\prime}$ of the e-chains (4) and (5), respectively, of these refinements are coupled.
II. Let (\mathfrak{G}, Ω) be an algebra. Define as in (1) B_{i-1} and C_{j-1} for $2 \leqq i \leqq r+1$, $2 \leqq j \leqq s+1$. If for some pair $(i, j) B_{i-1}$ and C_{j-1} are congruences in $(\mathscr{5}, \Omega)$ then $\bar{K}_{i j}, \bar{L}_{j i}$ and $\bar{M}_{i j}$ (defined in (1)) are congruences on the subalgebras $B_{i j}(e)$, $C_{j i}(e)$ and $B_{i}(e) \cap C_{j}(e)$ of the algebra (\tilde{G}, Ω), respectively, they are pairwise coupled (as partitions) and hence isomorphic (as factor algebras).

Note. Since for $i=1,1 \leqq j \leqq s+2$ and $2 \leqq i \leqq r+1, j=1, s+2, B_{i}^{\prime}(e) \sqcap$ $\sqcap B_{i-1}^{\prime}$ and $B_{i}^{\prime}(e) \sqcap C_{j-1}^{\prime}$ as comparable partitions commute (and symmetrically), then (b) implies
($\left.\mathrm{b}^{\prime}\right) \quad B_{i}^{\prime}(e) \sqcap B_{i-1}^{\prime} \quad$ and $\quad B_{i}^{\prime}(e) \sqcap C_{j-1}^{\prime} \quad$ commute for $\quad 1 \leqq i \leqq r+1$,

$$
1 \leqq j \leqq s+2,
$$

$$
\begin{gathered}
C_{j}^{\prime}(e) \sqcap C_{j-1}^{\prime} \quad \text { and } \quad C_{j}^{\prime}(e) \sqcap B_{i-1}^{\prime} \quad \text { commute for } \quad 1 \leqq i \leqq r+2, \\
1 \leqq i \leqq s+1
\end{gathered}
$$

Proof. I. The refinements of the series (a) can be chosen as follows:

$$
\begin{gather*}
B_{0}^{\prime}\left(=B_{10}^{\prime}\right) \leqq B_{11}^{\prime} \leqq \ldots \leqq B_{1, s+1}^{\prime}\left(=B_{1}^{\prime}=B_{20}^{\prime}\right) \leqq \tag{2}\\
\leqq B_{21}^{\prime} \leqq \ldots \leqq B_{r, s+1}^{\prime}\left(=B_{r}^{\prime}=B_{r+1,0}^{\prime}\right) \leqq B_{r+1,1}^{\prime} \leqq \ldots \leqq B_{r+1, s+1}^{\prime}\left(=B_{r+1}^{\prime}\right), \\
C_{0}^{\prime}\left(=C_{10}^{\prime}\right) \leqq C_{11}^{\prime} \leqq \ldots \leqq C_{1, r+1}^{\prime}\left(=C_{1}^{\prime}=C_{20}^{\prime}\right) \leqq \tag{3}\\
\leqq C_{21}^{\prime} \leqq \ldots \leqq C_{s, r+1}^{\prime}\left(=C_{s}^{\prime}=C_{s+1,0}^{\prime}\right) \leqq C_{s+1,1}^{\prime} \leqq \ldots \leqq C_{s+1, r+1}^{\prime}\left(=C_{s+1}^{\prime}\right) .
\end{gather*}
$$

The equalities are evident since

$$
\begin{aligned}
& B_{i 0}^{\prime}=B_{i-1}^{\prime} \vee\left(B_{i}^{\prime} \wedge C_{0}^{\prime}\right)=B_{i-1}^{\prime} \vee B_{0}^{\prime}=B_{i-1}^{\prime} \\
& B_{i, s+1}^{\prime}=B_{i-1}^{\prime} \vee\left(B_{i}^{\prime} \wedge C_{s+1}^{\prime}\right)=B_{i-1}^{\prime} \vee B_{i}^{\prime}=B_{i}^{\prime}
\end{aligned}
$$

and analogously for $C_{j 0}^{\prime}$ and $C_{j, r+1}^{\prime}$. The inequalities are clear.
The e-chains are the following ones (see also (7) and (8))

$$
\begin{align*}
& \left\{B_{0}^{\prime}(e)\right\} \leqq K_{11}^{\prime} \leqq \ldots \leqq K_{1, s+1}^{\prime} \leqq K_{21}^{\prime} \leqq \ldots \leqq K_{r+1,1}^{\prime} \leqq \ldots \leqq K_{r+1, s+1}^{\prime} \tag{4}\\
& \left\{C^{\prime}(e)\right\} \leqq L_{11}^{\prime} \leqq \ldots \leqq L_{1, r+1}^{\prime} \leqq L_{21}^{\prime} \leqq \ldots \leqq L_{s+1,1}^{\prime} \leqq \ldots \leqq L_{s+1, r+1}^{\prime}
\end{align*}
$$

All inequalities are evident up to $K_{i, s+1}^{\prime} \leqq K_{i+1,1}^{\prime}$:

$$
\begin{gathered}
K_{i, s+1}^{\prime}=B_{i, s+1}^{\prime}(e) \sqcap B_{i, s}^{\prime}=B_{i+1,0}^{\prime}(e) \sqcap B_{i, s}^{\prime} \leqq B_{i+1,1}^{\prime}(e) \sqcap B_{i, s+1}^{\prime}= \\
=B_{i+1,1}^{\prime}(e) \sqcap B_{i+1,0}^{\prime}=K_{i+1,1}^{\prime} .
\end{gathered}
$$

By 2.12, $K_{i j}^{\prime}=\bar{K}_{i j}^{\prime}$ if $B_{i}^{\prime}(e) \sqcap B_{i-1}^{\prime}$ and $B_{i}^{\prime}(e) \sqcap C_{j}^{\prime}$ commute. Then by the first part of (b) (see also (b') in Note), we have

$$
\begin{equation*}
K_{i j}^{\prime}=\bar{K}_{i j}^{\prime} \text { for all } K_{i j}^{\prime} \text { from (4) and } L_{j i}^{\prime}=\bar{L}_{j i}^{\prime} \text { for all } L_{j i}^{\prime} \text { from (5) } \tag{7}
\end{equation*}
$$

Define as in (1)

$$
\begin{gathered}
B_{i-1}=B_{i}^{\prime}(e) \sqcap B_{i-1}^{\prime} \quad \text { and } \quad C_{j-1}=C_{j}^{\prime}(e) \sqcap C_{j-1}^{\prime} \quad \text { for } \\
1 \leqq i \leqq r+1, \quad 1 \leqq j \leqq s+1
\end{gathered}
$$

Then B_{i-1}^{\prime} and C_{j-1}^{\prime} are extensions on \mathfrak{G} of B_{i-1} and C_{j-1}, and also, B_{i-1} and C_{j-1} are partitions on $B_{i}(e)$ and $C_{j}(e)$, respectively. By 2.6

$$
\begin{equation*}
\bar{K}_{i j}^{\prime}=\bar{K}_{i j} \text { and } \bar{L}_{j i}^{\prime}=\bar{L}_{j i} \text { for all } \bar{K}_{i j}^{\prime} \text { and } \bar{L}_{j i}^{\prime} \text { from (7) } \tag{8}
\end{equation*}
$$

and the partitions $\cup C_{j-1} \sqcap B_{i-1}$ and $\cup B_{i-1} \sqcap C_{j-1}$ commute for $1 \leqq i \leqq r+1$, $1 \leqq j \leqq s+1$. By $1.6 \bar{K}_{i j}, \bar{L}_{j i}$ and $\bar{M}_{i j}$ are pairwise coupled partitions for $1 \leqq$ $\leqq i \leqq r+1,1 \leqq j \leqq s+1$. Thus the chains (4) and (5) are e-joint.
II. Now, if for some $(i, j)(2 \leqq i \leqq r+1,2 \leqq j \leqq s+1)$ the partitions B_{i-1} and C_{j-1} (defined above) are congruences in an algebra ((\mathscr{G}, Ω) then the partitions B_{0} and C_{0} are also congruences in $(\tilde{\sigma}, \Omega)$ and by Theorem 2.8, $\bar{K}_{i j}, \bar{L}_{j i}$ and $\bar{M}_{i j}$ are congruences on the subalgebras $B_{i j}(e), C_{j i}(e)$ and $B_{i}(e) \cap C_{j}(e)$ of the algebra $(\mathscr{5}, \Omega)$,
respectively $(1 \leqq i \leqq r+1,1 \leqq j \leqq s+1)$, they are pairwise coupled (as partitions) and hence isomorphic (as factor algebras). This completes the proof of Theorem.

Remark 3.3. As consequences of Theorem 3.2 we obtain Theorems 10.8 and 17.6[1] having the following form.

Let
(c)

$$
B_{1}^{\prime} \leqq B_{2}^{\prime} \leqq \ldots \leqq B_{r}^{\prime}, \quad C_{1}^{\prime} \leqq C_{2}^{\prime} \leqq \ldots \leqq C_{s}^{\prime}
$$

be two partition (congruence) series on a set \mathfrak{G} (on an algebra (\mathfrak{G}, Ω)). Let

$$
B_{i}^{\prime} \text { and } C_{j}^{\prime} \text { commute for } 1 \leqq i \leqq r, \quad 1 \leqq j \leqq s
$$

Then refinements of the series (c) exist such that for arbitrary $e \in \mathfrak{5}$ these refinements are e-joint. In the algebra case, elements of the refinements are congruences in ($(5, \Omega)$ and the corresponding congruences of these (e-joint) refinements are isomorphic (as factor algebras).

Proof. We prove that the condition (b) of Theorem 3.2 is satisfied. It is seen that

$$
(A=) B_{i}^{\prime}(e) \sqcap B_{i-1}^{\prime} \quad \text { and } \quad(D=) B_{i}^{\prime}(e) \sqcap C_{j-1}^{\prime}
$$

commute for $2 \leqq i \leqq r+1,2 \leqq j \leqq s+1$ and symmetrically (where $B_{r+1}^{\prime}=$ $\left.=B_{r}^{\prime} \vee C_{s}^{\prime}=C_{s+1}^{\prime}\right)$.

Indeed, we have $x A D y \Rightarrow x B_{i-1}^{\prime} C_{j-1}^{\prime} y \Rightarrow x C_{j-1}^{\prime} a B_{i-1}^{\prime} y$ for some $a \in \mathbb{F}$. We have also $y \in B_{i}^{\prime}(e)$, consequently $B_{i}^{\prime}(y)=B_{i}^{\prime}(e)$ and further $a \in B_{i-1}^{\prime}(y) \subseteq B_{i}^{\prime}(y)=B_{i}^{\prime}(e)$ and $x \in B_{i}^{\prime}(e)$, therefore $x D A y$. This completes the proof.

In Remark 2.11 it has been proved that the conditions of Theorem 3.2 are weaker than the conditions of Theorem 10.8 [1].

The following generalization of Châtelet's Theorem ([7] Theorem 88) is another corollary of Theorem 3.2.

Corollary 3.4. Let (\mathfrak{G}, Ω) be an algebra, $e \in \mathfrak{G}$, and let

$$
\begin{equation*}
B_{1}^{\prime} \leqq B_{2}^{\prime} \leqq \ldots \leqq B_{r}^{\prime}, \quad C_{1}^{\prime} \leqq C_{2}^{\prime} \leqq \ldots \leqq C_{s}^{\prime} \tag{1}
\end{equation*}
$$

be two partition series on a set $\mathbf{6}$. Let the partitions belonging to the e-chains of these series be congruences in the algebra $(\mathfrak{5}, \Omega)$.

If for $2 \leqq i \leqq r, 2 \leqq j \leqq s$

$$
\begin{equation*}
\text { the partitions } \quad B_{i}^{\prime}(e) \sqcap B_{i-1}^{\prime}, \quad B_{i}^{\prime}(e) \sqcap C_{j-1}^{\prime} \quad \text { commute, and } \tag{2}
\end{equation*}
$$

the partitions $\quad C_{j}^{\prime}(e) \sqcap C_{j-1}^{\prime}, \quad C_{j}^{\prime}(e) \Pi B_{i-1}^{\prime} \quad$ commute,
then there exist e-joint refinements of the series (1) and the partitions belonging to their e-chains are congruences in the algebra $(\mathscr{5}, \Omega)$. Indeed, the coupled members of the e-chains are isomorphic algebras.

Note 3.5. The results of the present paper suggest a simple sufficient condition under which Theorem 3.5 [9$]$ is true. This condition reads
(*) $\bigcup B_{i} \sqcap C_{j-1}$ and $\bigcup C_{j-1} \sqcap B_{i}$ commute for $1 \leqq i \leqq r, \quad 1 \leqq j \leqq s$,

$$
\cup C_{J} \sqcap B_{i-1} \quad \text { and } \quad \bigcup B_{i-1} \sqcap C_{j} \text { commute for } \quad 1 \leqq i \leqq r, \quad 1 \leqq j \leqq s
$$

This follows from Proposition 1.8 [9]. With respect to the supposition $B_{0}=C_{0}$ and $B_{r}=C_{s}$ of Theorem 3.5 [9], the partitions $\cup B_{i} \sqcap C_{0}, \cup C_{0} \sqcap B_{i}$ commute for $1 \leqq i \leqq r$ and the partitions $\cup C, \sqcap B_{0}, \cup B_{0} \sqcap C$, commute for $1 \leqq j \leqq s$, thus condition (*) is equivalent to the following one

$$
\begin{gather*}
\bigcup B_{i} \sqcap C_{j} \text { and } \quad \begin{array}{c}
\cup C_{j} \sqcap B_{i} \text { commute for } \quad 1 \leqq i \leqq r-1, \\
\\
1 \leqq j \leqq s-1 .
\end{array} . \tag{**}
\end{gather*}
$$

References

[1] O. Borủvka: Foundations of the Theory of Groupoids and Groups. Berlin 1974 (Berlin 1960 in German, Praha 1962 in Czech).
[2] O. Borůvka: Über Ketten von Faktoroiden. Math. Ann. 118 (1941), 41-64.
[3] A. Châtelet: Algèbre des relations de congruence. Annales Sci. École Norm. Sup. 64 (1947), 339-368.
[4] A. G. Kuroš: Lekcii po obščej algebre. Moskva 1962.
[5] T. D. Mai. Partitions and congruences in algebras I-IV. Archivum Math. (Brno), 10 (1974); I 111-122; II 159-172; III 173-187; IV 231-253.
[6] O. Ore: Theory of equivalence relations. Duke Math. J. 3 (1937), 573-627.
[7] G. Szász: Théorie des treillis. Budapest 1971.
[8] F. Šik: Über Charakterisierung kommutativer Zerlegungen. Publ. Fac. Sci. Univ. Masaryk, No. 354 (1954), 1-6.
[9] F. Šik: Schreier-Zassenhaus Theorem for Algebras I. Czech. Math. J. 30 (105), 1980, 313-331.
Author's address: 66295 Brno, Janáčkovo n. 2a, ČSSR (Přírodovědecká fakulta UJEP).

