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THE SPLITTING OF THE TENSOR PRODUCT OF TWO
MIXED ABELIAN GROUPS OF RANK ONE

LADISLAV BICAN, Praha

(Received May 28, 1980,

Irwin, Khabbaz and Rayna [7] have studied the splitting properties of the tensor
product of mixed abelian groups. They defined the splitting length of a mixed group G
as the infimum of the set of all positive integers n such that the n-th tensor power
G'"=G® G ®"'™*® G splits and they constructed a mixed group of rank one
having the splitting length n for every positive integer n. In my previous paper [3]
I have characterized the mixed abelian groups of rank one having the splitting
length n. The purpose of the present paper is to give a characterization of all pairs
A, B of mixed abelian groups of rank one having the property that the tensor product
A ® B splits. Thus, the paper is devoted to the proof of the following result.

Theorem. The following three conditions are equivalent for mixed groups A, B
of rank one:

a) Any two elements a € ANT(A), b e B\ T(B) have non-zero multiples ma, nb

having the p-property for each prime p.
b) There exist elements a € ANT(A) and be B\T(B) having the p-property
Jfor each prime p.

c) The tensor product A ® B splits.

By the word “‘group” we shall always mean an additively written abelian group.
As in [1], we use the notions “‘characteristic” and ““type” in the broad meaning,
i.e. we deal with these notions in mixed groups. The symbols hj(a), t*(a) and %4(a)
denote respectively the p-height, the characteristic and the type of the element a in
the group A. © will denote the set of all primes. If T'is a torsion group, then T, is the
p-primary component of T and similarly, if [I' < IT then Ty is defined by T =

®
= Y T,. The torsion part of a mixed group 4 is denoted by T(A). If I1' < IT and if 4

pell’

is a mixed group with T(4);. = O then for each subset S < A4 the symbol {S)>j.
denotes the IT’-pure closure of S in A4, the existence of which is easily seen.

For a mixed group 4 we denote by A the factor group 4/T(A) and for ae 4 a is
the element a + T(A) of 4. The symbol |a| means the order of the element a € A.
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The rank of a mixed group A is that of 4. The set of all positive integers is denoted
by N, Ny = N U {0}. The other notation will be essentially the same as in [4].

It was proved in [1; Theorem 2] that a mixed group A of rank one splits if and only
if each element a € A\ T(A) has a non-zero multiple ma such that £4(ma) = 14(a)
and ma has a p-sequence whenever hii(@) = oo (i.e. there exist elements h{” = ma,
B, ... such that ph{?), = h{", n = 0, 1, ...). Recall [3] that the p-height sequence
of an element a € A is the double sequence {k;, I;}i2, of elements of N, U {0}
defined inductively in the following way: Put k; = ko = lo = 0 and I, = h}(a).
If k;, I; are defined and either hji(p*ia) = I, = o0, or I; < co and hj(p***a) = I, + k
for all ke N then put k;,., = k; and I;,, = [;. If I; < oo and there are ke N with
ha(p***a) > I, + k then let k;,, be the smallest positive integer for which
(P ta) = 1wy > 1+ kiy — ke

Definition. Let A, B be mixed groups, a € 4, b € B be elements of infinite orders.
Further, let p be a prime, hi(a) = 1, h5(b) = s and let {k;, I,}Z,, {r., 5}, be the
p-height sequences of a and b in A and B, respectively. If there is a sequence {i,};2,
of positive integers such that i; = 1, the subsequences {i,};%;, {ip—,}i2; are
nondecreasing,

(1) lim k;,, , = limk,, limr,, =limr,
t—w t—w 1= 1=

and the sequence {o,}%,, where

(2) X2e—1 = ll'zt—l - kiu~1 ~ Tige»

Oy =S, — Fi,, — k t=1,2,...,

i2e i2e+1

has non-negative terms, then we say that the elements a, b have the weak p-property.
If, moreover, one of the conditions
(i) I < o0, s < o0,
(ii) I < 0, s = oo and p'b has a p-sequence in B,
(ili) I = oo, s < oo and p*a has a p-sequence in 4,
(iv) I = s = oo and lim o, = c0.

t— o
is satisfied then we say that the elements a, b have the p-property.
Since the exponents are sometimes rather complicated we shall frequently denote
the k-th power of p by [p : k].

We start our investigations with some preliminary lemmas.

Lemma 1. Let p be a prime and let A be a mixed group. If ae ANT(A) is an
arbitrary element, hj(a) = | < oo and if {k;, 1;}{2, is the p-height sequence of a
in A then there is an integer n such that k, =k, , = ..., l,=1,,;, = ... and
I,—k,=1

Proof. From hi(a) = | < oo it follows that there exists an element € T(4) with
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hi(a + 1) = 1. Writing 7 in the form ¢ = 1, + t, where |t,| = p* and (|t21s p)=1
we have hj(p‘a) = hy(p"(a + 1)) = k + 1 = hj(p*a) = hj(p*a), so that ha(p*a) —
— k = I and the assertion follows casily.

Lemma 2. Let p be a prime, A, B mixed groups, ae A\T(A), be BN T(B)'
If the elements a, b have the weak p-property then for all t = 1,2, ... with o1, 0z, -+
e Oy Opppq < 0O We have

3) a®b= [P togy + 5] (A, ® bi,,)
and
(4) a® b= [p D0 Ii2r+1] (aiz:+1 ® bizz)’

where p'ia; = p*ia, p¥b, = p"b, i = 1,2,....

Proof. Obviously, a ® b = p"(a, ® b) = [p:1;, — o] (a;, ® b) = [P 1oy +
+ r,](a;, ® b) = [p:oy+ s;,] (a;, @ by,)-

Using the induction principle let us assume that (3) holds for some ¢t = 1. Then
the hypothesis a,, = s;,, — r;,, — ki,,,, = 0 yields s;,, — r;,, = ky,,,, = ki, and
by the induction hypothesis we have a @ b = [p: 1, _, — ki,,_, — Fie + Sized -
(@, ® b)) =[Pisy, —ro](@®by) =[p:ay + Iy,,,](a,,,, ® by,)- Sim-
ilarly, if we assume, that (4) holds for some 1 = 1 then the hypothesis 05,1 =
Lo = kiyeo . = Ty = 0 yields 1, — k;,,,, = ry,,,, 2 1, and by the in-

duction hypothesis we have a ® b = [p:s,, — ri,, — kiyr, + lier o] (@iner, ®

2t

® bii:) = [p : IIZ:H - kiz:u] (aiz¢+1 ® b) = [p SO + Siz,+z] (a£2g+1 ® bl'2t+2)'

Lemma 3. Let p be a prime, A, B mixed groups, a€ ANT(A), be B\ T(B). If
the elements a, b have the weak p-property, s;,,_, < s, =s;,, = o and &;,, , < ®©

then a ® b = p"*(a,, ® b) for each m = i,,_, 1, — k,, < o, p"a, = pa.

Proof. By the hypothesis there exists an element b’ € B with [p : k,, + r,] b’
=[p:r,]b and by Lemma 2 we have a ® b = [p:oy,_, + 1;,,_,] (2., ®
® b"zt-z) = [p : ll'z:-x - k"zr—r] (aizr—l ® b) = [p : ]l'zr—n - kizt-—-l - rn] (aizz—x ®
O [P ] D) = [ s — Koo, + K] (4, ® b) = [ k] (a @ ) =
=[p:L](@®b)=[p:ly—kn—r,](an®[p:r.]b)=[p:l,— kn]-

.(a, ® b)since I, — k,, —r, =1, —k — rp, =0y 2 0.

i2e-1 i2e-1

Lemma 4 (See [3; Lemma 1].) Let p a prime, A a mixed group and let a;e AN
\NT(A4), i = 0,1, ..., be such elements that p“a;, = p*~‘a;_,, i =1,2,...,50 = 0.

@
If Y (r; = s;) has non-negative partial sums and Y (r; —s;)) = oo then a, has
= i=1
a p-sequence in A.
Proof. Since liminf{ ) (r; — s;)} = oo there exists the greatest integer k, such
i

ki—=1 n-owo

=1 n
that y, = Y (r; —s;) =inf{ ) (r; — s;) | n = 1,2,...}. If the non-negative inte-
i=1 i=1
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gers ky, kay ...y kjy 71,92, -.-, v are defined then let k;,; be the greatest positive
kjr1—1

integer such that y;,, = Z (r; = s)—mf{Z(r —s)|n2k}>yl For
every j = 1,2,... and everyk <m<k1+1 wehaveZ(r s)— (r —s) -
kj—1

- Z (ri — s)) 2 7;+, — 7, and consequently Z (r; — s) (741 —y,) > 0.1In par-

kj+1—1 i=kj
t:cular, for m = k;,; — 1 we have Z (ri = s) — (vj+41 — 7;) = 0. Hence we

obtain [P Sl — (yj+1 VJ)] Ay; = [P S/‘J (rkj - Skj) _(yi+1 - }’,)] A; =
= [P e T ("k, - Sk,) ('}’JH - )] Ay+1 = [P Sg+1 T ("k, - ,-) +

j+l

+(rkj+1_Skj+1)_()’j+1_yj)]ak_,~+l = .. —[P Skjei-1 T Z (r _S)_

i=kj
— (7j+1 = 7)) a,.,-1 = [P i 74,.,] a,.,- Moreover, foreach 1 < m < k, we have

'Zl(ri —5) =y, so that ao = [P;"1;| ay=[pis;+(ry —s)]a,=[p:r,+
+(ry—s)]az=...=[pis,-1 + Zl(ri —s)] ax,-1 =[P : 7, + v1] k- Now

it is easy to see that ag = [p:r, + v ]a, [Pir, + 71— Uax, - [pir, —
=2 =), =[Pir]an [Pirg — Uag, .o[pirg — 0 — 1)) a, =
=[pirglag [pirda[pirng — Uag, o [pirg = e —v)]a, =
=[p:r,..) a,., - is a p-sequence of the element a, in 4.

Lemma 5. Let p be a prime, A, B mixed groups, ae A\T(A), be B\T(B).
If {ki, 1} and {r;, s;}72 are the p-height sequences of the elements a and b in
the groups A and B, respectively, and if l; = ©, s,,_; < s, = 00 then the element
a ® b has a p-sequence in A ® B.

Proof. By the hypothesis there are elements a,, a,, ... € 4, b, b,, ... € B such that
p'*™a; = a, p"*"mb; = p™b,i=1,2,....Obviously, p*?*(a; ® b,) = p*(a; ®
®b)=a®b and p""'"*"(a; @ b)) =pa®b; =p"™(a;-;, ®b) =a;_, ®
® pb=p~'*™a,_; ® b;,_,) foreach i =2,3,.... Now r,, + 2 — (1 + r,) +

+Y((+1+r,)— (i +r,)=n and the element a ® b has a p-sequence in
i=2
A ® B by Lemma 4.

Lemma 6. Let p be a prime, A, B mixed groups, ae A\ T(A), be B\ T(B).
If {ki, 1.} and {r;, s;}i>, are the p-height sequences of the elements a and b
in the groups A and B, respectively, and if s = h,’f(b) =1l =, s, < oo,m=
=1,2,..., then the element a ® b has a p-sequence in A ® B.

Proof. By the hypothesis there are elements ay, a,, ... € 4, by, b,, ... € B such
that p**'a; = a, p*b; = p"b, i = 1,2,.... Then p¥b; = p"'b = p"i "i-1*5i-1p, |
for each i =1,2,... and so a ® b = p"***(a; ® by) and p" " (g, ®
® bi—y) = p’(ai—; ® b)) = p**'(a; @ b;). However, s; + s, — (r; — ry + 51) +
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+ 2 (Sivy = (Fivs — 70+ 8)) = Sax1 — T4y and it suffices to use Lemma 4 owing
i=2
to the fact that lim (s,41 — F,yy) = 5 = 0.

n— o0

Lemma 7. Let p be a prime, A, B mixed groups, ae AN T(A), be BN\ T(B).
If {k; I,-}}";O and {r;, s,~}}’°=0 are the p-height sequences of the elements a and b in
the groups A and B, respectively, the elements a, b have the p-property and if
hf(&) =]l=5= 11'3(5) =, I, <o, s,<w, n=1,2,..., then the element
a ® b has a p-sequence in A @ B.

Proof. Puty, = [;, + s;, —ri,and x5,y = 1, + ki, — ki, X200 = 85, +
+ Tigers = Tioo V2e = lizesrs Yaes1 = Siy,,, for each 1 =1,2,.... Then [p:y].
a;, ® b,)=[p:1;](a;, ® b) = a ® b (since o, = I;, — r,, ; 0) and [p:y,.]-

* (aizxu ® bizc) = [p : kl'znx] (a ® biZt) = [p : x21*1] (aiz(_l ® bi;,)a [p : y2t+1] .
. (aizr-n ® bizr+z) = [p : r"zu»z] (aizc+1 ® b) = [P : xzt] (ai2:+1 ® biz:) for each t =
2n

=1,2, ";,;,NOW zl(y, —x) =1l + s, —r, — ( k”) + Z(ylt _
=52+ D 0nis = %) =5 = 7 = ;uw, S = T+ T)
¥ 2 s = ey = K ) = e~ B o = e
T T
- xz,H) =5, =1y, — ki, + Z(l,2t+1 — St = Fivees + 1)) +;l(3imz _

=l = Kips F k'ztn) = Siy, — iy, — kiy,,, = 0y, for each n =1,2,... and

the element a ® b has a p-sequence in A ® B by the hypothesis and Lemma 4.

Lemma 8. Let p be a prime and A a mixed group with a p-primary torsion
part T. Further, let a€ ANT be an arbitrary element and let {k;, I;}{o be its
p-height sequence. If n is a positive integer such that I, <1, < ... <1, < o0,
pla;=p¥a, i=1,2,....n, and if U = {1, ..., 1,> where

(5) L= pli"ki_li—l+k1—lai —a;_,, i=2,..,n
then
(6) U=Y%ty and T=U@V

i=2

for a suitable subgroup V of T.

Proof. In the proof of [3; Lemma 4] it has been proved that

(7 |ti| = plimrthhimn i =2,
and
(8) WPty =j, i=2..,n, 05j<]|.
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If n = 2 then U is a bounded pure subgroup of T'and we are through. With respect
n—1

to the induction principle we can suppose that {t,, ..., t,_,> = Z‘B {t;» is a direct
i=2

summand of T and it suffices to show that {t,,...,t,_;) n<t,» = 0 and that U

n—1

is pure in T. If 0 # p’t, = ¥ Ait; then by (8) and the induction hypothesis we have
i=2
A; = p’u; for suitable integers p;, i = 2,...,n — 1. Further, by (7) we have 0 +

n—1 n—1

+ pln—1+kn-kn-1—1tn — pln—x'*'kn'kn—l—l—jZliti — Zpln—1+kn—kn—1—1#iti =0 (since
i=2 i=2

by the definition of the p-height sequence, [, + k, — k,_, —12=1,_, >
>1;_y + k; — k;_, for each i =2,...,n— 1) — a contradiction showing that
{tyy o ty_y> O (> = 0. Now let the equation p’x =) A;t; be solvable in T.
i=2
If J,t, = O then p | A, i =2,...,n — 1, by the induction hypothesis. If 4,¢t, % O,
A = D"t (s p) = 1, then for m > j, p’| A, i =2,...,n — 1, by the induction
hypothesis. The case m < j is impossible, since then p™ | A i=2,..,n—1, and
plrathnmithnammtiy o plicatkn-i=ke-2y 4 together with (8) gives j < m and we
are through.

Lemma 9. Let p be a prime and A a mixed group with a p-primary torsion
part T. Further, let ae ANT be an arbitrary element and let {k; I;}{~, be its
p-height sequence such that I,_, <1, = oo for some meN. If p'a; = pta,
i=1,2,...,n — 1, then there are elements a,, a1, --- in G\ T such that:

(i) If t;, i = 1,2,...,m — 1 are elements (5),

(9) by = plm_'+km_km_lam — Ay

and U = <{t,, ..., t,> then

(10) U=5Y%<t> and T=U®V
i=2

where V' is a suitable subgroup of T such that
(11) T,y = e[ 1€ Ny S V.

(ii) If A is of rank one and if we denote H = (VU {@p, Ay 1, -} iy then
(12) A=U®H.

Pr0m0f- With respect to [3; Lemmas 6, 7] and their proofs it remains to show that
U= ;ea {t;>- By the preceding Lemma we have U = {t,, ..., t,_1) ="§::® -

i=2

: E . . ’
The hypothesis hy(p*a) = oo yields the existence of an element a/, € A\ T'such that
B L A T — pim=t+km—km=1 7
p m=Dpma=p a,-1-Putt,=p

. Apm — Qp—1q-
If p’t,, = 0 for some j < lp—1+ k,, — k,,—; then we can clearly assume that j =1, _;.
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No we have p'm-ithm=km-stig! — pit + pla,_, = p’~"*km-14 which contra-
dicts the definition of the p-height sequence. Thus

(13) |tm| — p’m-1+km—k,,,_1 )

Suppose now that for some 0 < j < I,,- + k,, — k,,—; we have h/(p’t,) > j Without
loss of generality we can assume that j > I, _,. Then phm-t*km=km-1tigr _ pit
= pla,_, = p’"'mt**m1q which contradicts the definition of the p- helght

sequence and consequently hi(p’t,) =j, 0 <j <Il,_y + k, — kn-;. Suppose

m—1

now that 0 # p’t,, = ). A;t;. Then there are integers pu; with A; = pip;, i =2, ...
i=2

.,m — 1, U being a direct summand of T. By the definition of the p-height sequence

m—1
and by (13) and (8) we have 0 4 plw=i o km=1=1p . phu-ithm—kn-1 i1y g
m=—1 m i=2
=Y phmoitkmmkm=1=l,1, = 0 — a contradiction showing that U = Y ® (t,> is a

i=2 i=2
subgroup of T. With respect to the proof of [3; Lemma 6] we have t,, = p'm=t*km=km-1,

.da,, — a,_, and the proof is complete.

m

Lemma 10. Let p be a prime and A a mixed group of rank one with a p-
primary torsion part T. Further, let a€ ANT be an arbitrary element and let

{ki, 1.0 be its p-height sequence, I; < oo, p'a; = p*a, i =0,1,.... If n =2
is positive integer, t;, i =2,..., are the elements (5), U= Z@ {t; and A =
= {ag, ay, ...y then =2

(14) A=U @ <am Apt1s '-‘>;:\(p} .

Proof. For the sake of brevity we shall use the notations C = <{a,, a, 41, ...>‘:\m
and D =<a,, a,41,...p. f ceU N Cis an arbitrary element then gce U n D for

some integer ¢ with (g, p) = 1. Hence oc = Zi Zy,a for some m = n.
=2

Multiplying by p" we get p' Zy, i = (P, + phm T bm- - Yoy + -

ot pmThtRey Y a and pm Zit, = 0 owing to the fact that [, > 1, > I,_; +

+ ki —kiy = |t, i=2,...,n. Thus p'gc =0 and la| = o yields p*p,, +

4ophn ety p’"*"'"*"",u = 0. However, for each n < i < m we

have I, — I; + k; = I, — l,—; + k,-1 > k,, and consequently p, =
= p"“""'““‘"‘""‘"‘ for some integer v,. So, gc = Yy (pim T ime Rt

- 1)'*‘2#“ + (tm- 1+vm)am 1= Valm +Zﬂa + (M- 1+v,,,)a,,,_.

Using the 1nduct10n principle we easily obtain the equahty goc = Z vit; + v,a,

m i=n+1
for suitable integers vy, Vps1» --- Ym- HOWeVEr, v,a, = gc — Y. vit;e Tn<a,) =
m i=n+1
=0, thus v, = 0 and gce U n ¥, <t;> = 0. Consequently, by Lemma 8, ¢ = 0,
i=nt1
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T being p-primary and g relatively prime to p. We have shown that U n C = 0 and
we proceed to U v C = A. Let be A be arbitrary. By the hypothesis we have gb =

= Z Aa; for some integer g, (o, p) = 1, and without loss of generahty we can assume

i=0 n—1
that m = n. Putting ¢; = [; — k,,z—Ol mwehavegb—zlta—z}la +
n—1 m i=0

# 3 hia = T A0, — L (Va1 + 3 =

n 1 i=n

—‘Z}-(PQ" ¢a, -—ZP(" Q'(pw” Ya;, . — aj))-}-z,l,a =
n 1n-1

=-3 ZPQ’ a"“;ﬂ'l'ZPg" ®la, + Z Aa; =t + ¢, teU, ceC. However,
i=0 j=i i=n+1

t is divisible by g, U being p-primary, and the assertion follows easily.

Lemma 11. Let p be a prime and A, B mixed groups of rank one with p-primary
torsion parts T, S, respectively Suppose that ae€ ANT, be B\S are arbitrary

elements, {ki, I.}i0, {ri Si}izo are the p-height sequences of the elements a, b
in A, B, respectively, and k,,,_1 <kn=kpii=..0, Pyot <ty ="y =... for
some m,ne Ny If h3®%a ® b) = hgm(a ® b) then for each i =2,..,m, j =
= 2, ..., n at least one of the following two inequalities is satisfied:

(15) Sjoy — rjoy — ki 20,

(16) licg —kiey —1; 20.

Moreover, for i = m + 1, j = n + 1 both these inequalities hold.

Proof. Assume first, that I, < co, s, < 0. By Lemma 8 and [3; Lemma 8]
we have A=U®V® <am>n\“,), B=X®Y®b)h, UdV=T, X®Y=

=S U= Ze ud, X = Z‘B X0, u; = plkiTliztkicig g,y x; =
_PS’_"_S’ e 'b; — b, v pla;=pYa, i=1,2,....m, p’b; = pb, j =

=1,2,...,n.Itis easy to see that a = p"~*q,, — Z pli-t %y and b = p™™b, —
n i=2

— Y P77 x; where 1, — k,, = | = hj(a@) and 5, — 1, =5 = hB(b). Now for
j=2

each i =2,...,m, j=2,.. n the element g;; = p'"~'7M-17%=17"-1y, @ x; lies

in a direct summand of A ® B and from the equality a®b=p*a,®b, —

_ZpHs, i (a,, ® x;) — th imki-i¥sy @ b, + Z Zgu it follows that

J= i=2 j=2
hAM( p)zl+s= hA@B(a ® b) However, if g;; % O then the p-height of the ele-
ment g;; is obviously [,_, — k,_, + Sji—y — rj-1 <1+ s and so necessarily
g = 0. Since (by (7)) |u, ® x;| = min {Ju], lel} = min {pl-+Thikios,
pY=1FITr= L we get the desired result for each i = 2, ..., m, j = 2, ..., n. Consider

now the elements p'*sn-1=rn-1 (3 @ x) and p'm=tTHm- ’“(u ® b) Suppose that
hy(p'an) = k >j for a positive integer j. Then hi(p'*'a,) 2k + I, > j +
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+ I,. On the other hand, hi(p’*'a,) = hp(p’**"a) = j + 1,, by the definition of
the p-height sequence — a contradiction showing the p-purity of <a,> in 4. By
[5; Corollary 60.5] the natural mapping <4,y ® {x,> »* A ® <{x,> is monic and
by [5; Theorem 60.4] the natural mapping 4 ® {x,> > 4 ® B is also monic
(¢x,> is pure in B). Composing these monomorphisms with the natural isomorphisms
{x,y =<a,y @ <{x,> we see that ]am ® x,,| = |x,| = p™~ "™ ™"t from which it
similarly as above follows the inequality I, — k,, — r, = 0. The inequality (15)
for j=n+ 1, i = m, is proved similarly.

Assume now that [, < o0, s, = 0. By Lemma 9 we have B=X @® (YU

n
B ® —rj—Sj-1+rj-
U {b", b’l+1,..,}>n\{”’ XeoY=S8 X= Z <xj>, X; = pHTTITsIm b lbj - bj—l'
=
! Sn—1+rn—rn-1

j=2,..,n—1, x,=pS-ttmm-tp b x| =p It is easy to
n

see that b = p?Gn-17rm=0¥rap %" p%i-177isixand the same arguments as in
i=2
the preceding case yield the desired result for each i = 2,...,m, j = 2,...,n and
the validity of (16) for i = m + 1, j = n. The inequality (15) for j = n + 1 s trivial.
Finally, if ,, = r, = oo then similar treatments as above yield the result.

Lemma 12. Let A be a mixed group of rank one with a p-primary torsion part T
and let Bbe a mixed group with a p-primary torsion partSand B p-divisible. Further,
lei {ki, 1} be the p-height sequence of an element ay € ANT such that I; < w0,
i=1,2,....1f p'a; = pYay, i =1,2,...,and A ® B splits then {ay, a,, ...),’:\(p} ®
® B splits as well.

Proof. By Lemma 8 and [3; Lemmas 4, 5] there exists a basic subgroup P of T
such that P=U @V, H = (P U {ag, ay, ...} )i HNT=P and H=V@®
@ {aqg, ay, ... )y It is easy to see that for each g € A there are integers ¢, 6, m
such that ¢g = oa,, (g, p) = 1. Then o9 = 0a,, +t, teT, and so A =H v T.
Hence A/T=H v T[T~ H/H T = H|P.

The sequences 0 > P — T— T/P - 0 and 0 - S —» B — B[S — 0 are pure exact,
so that by [5; Theorem 60.4] we have the commutative diagram

0 0 0

! ! !
0-P®S—TQRS——TP®S—0

I ! 1
0—>P®B——>T®B————>T/P®B~——>0

l ! l
0—>P®B/S—>T®B/S—>T/P®‘B/S—>0

! i i

0 0 0

with exact rows and columns and natural homomorphisms. By the hypothesis, S and
T|Pare p-primary and T/P, B[S are p-divisible, hence T/P ® S = T/P ® B[S = 0 and
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consequently T/B® B = 0. Thus P ® B =~ T ® B. Further, in the commutative
diagram
0-P®B-H®B->HP®B—0
lo % 1%
0-T®B—->AQB—->AT®B-0

with exact rows and natural homomorphisms, the homomorphisms o« and y are
isomorphisms by the preceding part and f is therefore an isomorphism by ‘Five
Lemma”. We sce that H ® B = (V® B) @ (ag, ay, ...)A(» ® B splits and the
assertion immediately follows.

Lemma 13. Let p be a prime and let A, B be mixed groups of rank one with p-primary
torsion parts T, S, respectively, A, B p-divisible. Further, let {k;, 1.}, {ri si} 320
be the p-height sequences of elements aye ANT, bye B\S, respectively, and

<o, i=1,2.. 5_,<8,=00 for some neN. If A=<ag,ay,..Dngm
pla; = plag, i=1,2,..., h}®¥(a ® b) = 0 and me N is such that I, — k, —
— 1, = 0 then for each i = 2,...,m, j = 2,...,n, at least one of the inequalities

(15), (16) is satisfied.

Proof.By Lemma 10 wehave 4 = Zea u ) @<L, Ops1s - )ﬁ\m where u,, i=2,.

, m, are the elements (5) correspondmg to Aand by Lemma9 we have B = Ze XD @
i=2

@YU b, by, ... }>5 g Where YE S, x;, i =2,...,n — 1, are the elements
(5) corresponding to B and x, = p™~'*"""™"'b, — b,_;. Now the proof runs along
the same lines as that of Lemma 11.

Lémma 14. Let p be a prime, A a mixed group with a p-primary torsion part T
and let {k;,1;} ., be the p-height sequence of an element ag€ ANT. If pa; = pta,,

h<1H1<d%i=L2puﬂmdA=<%Jm“>ﬂthnT=z®00ﬂMwen
are the elements (5). i=2

Proof With respect to Lemma 8 and [3; Lemma 4] it suffices to show that T =

= Y <t;>.If t € Tis an arbitrary element then mt = Z Aa; for some me N, (m, p) =
i=2
= 1. For n = 0 we have Aqa, € T, hence/lo Oandt— Oez<t> Forn > 0itis

pirmt = (Zp"'"‘”") ;) a0 € T, so that Zp"'"’ thip = Oandl = plrmlin-1=kntkn-1
n—2

. A, for a SUItabIC integer A,. Thus mt = /1’t + (g 4 Aney) Gueg + 2/1 a; and the
assertion follows by induction.

Lemma 15. Let p be a prime and A, B mixed groups of rank one with p-primary
torsion parts T, S, respectively, A, B p-divisible. Further, let {k;, I}, {r:, si} %0

be the p-height sequences of the elements ao€ ANT, by € B\ S, respectively, and
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i< o0, 8 <00, i=1,2...If A=<ag ay, ... 00N P'a, = pPag, i = 1,2,...,
B = (bo, by, .05 PPby = p"bg, i =1,2,..., and h}®*(a ® b) = o then for
each i =2,3,...,j=2,3,... we have

(17) Sj—1 — Fj—1 — kizlioy — k-, — rj
and

(18) Sj-1 = Tji-1— ki 20
provided lu,-| < |ij and

(19) Licy —kioy =152 5851 — Ty — ki
and

(20) licy = kicy =71;20

provided |xj| = I“il’ where u;, x; are the elements (5) corresponding to the groups
A, B, respectively.

Proof. If [u,| =1y —ki_y + k; < s;_y —rj_; + r; then the inequality (17)

is obvious. Further, by Lemma 10 we have A = ) © (u,> @ <a;, d;4q, ...y, and

m=2

J
B = ZG) {x,» @ <bj, bjsys ...>f\(p). Continuing as in the proof of Lemma (1 we
n=2

see that p'i-17ki-i¥si-i7roiy, @ x; =0, and this, for [u;| < |x;|, yields the ine-
quality (18). The inequalities (19) and (20) are proved dually.

Lemma 16. Let p be a prime and A a mixed group with a p-primary torsion
part T. Suppose that A contains elements ay, a;, ... € ANT such that A =
A i i- " — iTSi- — pli-
= o> Ays oo Dpnipp P70 = PP TA 1, T > 51,80 = 0, |PTT a; — a,~_1[ = p*,
0 o0
i=1,2...,and T=Y®p" "% a; — a;_;). Further, let U = Y ® U,, where U,,
i=2 i=0
i=0,1,..., be a p-reduced torsionfree group of rank one, the p-divisible closure
of which is isomorphic to A. Then for each i = 0,1, ... there exists an element
c;eU; such that A = UV, where V= {p"c; — p"~'c;_y | ie N)X, and the
element a, is mapped onto ¢4 + V.

Proof. For each i =0, 1, ... choose an element ¢; e U; such that hj(c;) = 0
and h{(c;) = h{(a;) for each prime g # p. Now it is easy to see that there exists
a homomorphism ¢ : U — A with (p(ci) =a;,i=0,1,....If ae 4 is an arbitrary
element then ra = sa, for some integers r,s, (r,s) = 1. If r = p*', (', p) = 1,
then from r; > 5;_; it easily follows the existence of j, le N with @, = p**'a;.

n
Clearly,r’a = p'sa; + r'tandsor'y = p'sc;forsome y e U;. If t = Y A,p"i™si=1q; —
n i=2
— a;_y)then o(y + Y 2(p" "% '¢; — ¢;—4) = a, ¢ is an epimorphism and obviously
V = Ker ¢. i=2
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Show that each element a = 2 A;a; € T can be written in the form

i=

M:o

(1) a =3 m(p " = aiy)

where

(22) D = DT

Ifn g 1 then for sufﬁmently large r e Nwe have [p:r + r, + Z (r; = s;)] Z Aa; =
= (Z dpir,+ Z (r s;) — Z (ri=s)) PageT, from which the vahdlty
of (22) lmmedlately follows owing to the fact thzat ri> sy, i=1,2,...,n Thus

a=p(pr " ta, — ay_q) + (A + ) ay-y + Z J;a; and we can use the induction
principle, the case n = 0 bemg trivial.

II

]fueKequthenmu ——Zic f0r°omemel\/ (m, p) = 1.S0, p(mu) = Zla
=0

i=0

= 0e T, hence O~Z/1a —Zu(p" %-'q; — a;,) by (21) and p"‘ Y, = Uy

owing to the hypothesis T = Z@ (PN 'a; — a;_y)y and [piT ey - apy| =
=2

= p*~'. With respect to (22) we now have mu = v,(p™c, — p™ 'c,=q) + (-1

+

+ P ) eyoy + Z Aic; and we can continue by induction.
i=0

Proof of Theorem. a) implies b) trivially.

b) implies ¢). With respect to [1; Theorem 2] it suffices to show that
®5(a ® b) = 14®3(a ® b) and that a @ b has a p-sequence in 4 ® B whenever
hi®%a ® b) = oo.

Assume (i). By Lemma 1 there exists an integer n such that k, = ky4q = -.-
Lh=ly,=. .., r,=ryp1=v.., S =S4y =-...and Il=1,—k,, s=s,— 7,
From the definition of the p-height sequence we obtain the existence of elements
@y, Gz, ..., a4y € A, by, by, ..., b, € B such that p'a, = p*ia, p*b, = p"b, i = 1,2, ...

, n. Further, the relations (1) yield the existence of an integer ¢ with ki,,,, = k,
and Tip, = Ty By Lemma 2 we now have a ® b = [p 1oy, + 1,,,, ] (a,,,, ® bi,,) =
= p'"*(a;,,,, ® b,,) and consequently I+ s =h*®5(a @ b)= hy®*(a®b) =
=1+s.

Assume (ii). By Lemma 1 there exists an integer m such that k,, = Kpy+1 = -.-

ly=1ly+y=... and I =1, — k,. By hypothesis, h5(p'b) = o and hence there
exists an integer n with [ 2 7, and r, = 1,4y = .., 8, = 5,41 = ... = 0. By (1)
there exists an integer ¢ with r,,_, < r;,, = r,. Now by Lemma 3 we have a ® b =

= a,, ® p'b and the element a ® b has a p-sequence in A ® B by the hypothesis.
Assume (iii). The proof is similar as in the preceding part.
Assume (iv). If I, < o0, s, < oo for each n = 1,2,... then it suffices to use
Lemma 7.
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Suppose now that s, = 00 for an integer n. With respect to Lemmas 5 and 6 we
can suppose that n > 1. The relations (1) yield the existence of an integer ¢ such that
Sive_s < Siy, = Sy If 03—y < o0 then, by Lemma 3, a® b= [p:1l,,_, — k;,_,].
(as,,_, ® b). However, 03,1 2 0,a ® b = [p -] (a;,., ® p™b), the element
a;,,_, ® p™b has a p-sequence in 4 ® B by Lemma 5 or 6 and consequently a ® b
has a p-sequence in 4 ® B.

It remains now to consider the case a;,_; = 0 = [;,, . If I; = oo then it suffices
to use Lemma 5. If [; < oo then the relations (1) yield the existence of an integer
n < tsuchthatl;, , <1, ,, = oo.Inthiscase we have 0 < «,, < oo so that Lemma
3givesa®b=[p:s;, —r,](a®b;,)=p"*"(p:ky, ]a®b;,) and it suf-
fices to use Lemma 5.

c) implies a). Assume that the tensor product A ® B splits and let a’ € A\ T(4),
b" € B\ T(B) be arbitrary elements. By [1; Theorem 2] and [1; Lemma 3] there are
non-zero integers m, n such that for the element a ® b = ma’ @ nb’ wehave t*®%*(a ®
® b) = 1®3(a ® b) and a ® b has a p-sequence in A @ B for every prime p with
A ® B p-divisible.

Let p be a prime. Denote T’ = T(A),gy S’ = T(B)pny and let o : 4 > AT,
f: B — B[S" be the canonical projections. By [5; Corollary 60.3] Kera ® f is
a homomorphic image of (T' @ B) ® (4 ® S’) and it is consequently a torsion
group. So 4/T" ® B|S’ splits and we can assume that T(4) and T(B) are p-primary
groups.

(i) We shall assume that | < 0, s < o0 and we shall construct inductively the
sequence {i,};~, satisfying conditions (1) and (2). By Lemma 1 there are m,ne N
such that k,_; <k, =Kk,i1 = .oy Tyoy <Ty=Tpso1 =0y Iy—kn=1, s, —
—r,=s. If m=1then we put i; =iy =...=1and i, =i, =... = n. In this
case (1) is obviously satisfied and oy, = I, — ky, — 7, = 0, 05, = 5, — 7, — Ky =
= 0foreacht=1,2,... by Lemma 11.

For m > 1 we put i; = 1. Suppose now that we have constructed the integers
iy, 02, .0 031, t 2 1, in such a way that i; < iy < ... <iy_q <m, i, <i, <...
oo <lgmp < myo;20foreachj=1,2,..,2t —2and [;,, , — k;,, ., — 7,41 <
<0, s;,, — 1y, — k,-“+l <0 for each j =1,2,...,t — 1. From Lemma 11 and
Siyecs — Tigeey — Kiyeoy+1 < 0 it follows that [, | — k;,,_, — ri,,_,+; = 0 so that
there exists an integer i, > i,,_, such that o,y = 1I;,,_, — k;,,_, — r;,, 2 0 and
either i, = mor I, — k;,,_, — 7,4+ < 0. Similarly, let us suppose that we have
constructed the integers iy, i,,..., 15, t = 1, in such a way that i, <i; < ...

i2j
—-r

o <lgeg <m, i <ig<..<ipy<n a;=0 for each j=1,2,...,2t -1
and [, — ki, —Tiy01 <0, 55, — 1y, — ki, o +1 <0 for each j=1,2,...
vt = L1y, — kiy,_, — Tipq < 0.By Lemma 11 we have si,, — 7y, — kip, 41
= 0 so that there exists an integer i,y > i5,—4 Such that oy, =35, — 7,
— ki,,,, = 0 and either izsq = m or s;,, — ri,, — kipoy 4q <0

It is easy to see that there exXists an integer ¢ such that either i2;+1 = m or i, = n.
Inthe former case we put izesq = igp43 = -.- = M, izp42 = ize+4 = ... = n and by

izj

v
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Lemma 11 we obtain ayjyy =1, —k, — 7,20, ay;1,=5,—71,—k, =0 for
each j =1t t+1,.... In the latter we put i, =iy = ... =n, i, =
= iz43 =...=m and by Lemma 11 we again get oy;,y = L, — k,, — 1, 20,
oy; =8, —r,—k,=0foreachj=t1+1,....

We have shown that in this case the elements a, b have the p-property.

(ii) Assume now that [ < o0, s = o0 and show that the elements a, b have the
p-property. By Lemma 8 and [3; Lemma 8] we have 4 = U @ V@® <a,>i,,

UevV= T(A), U = Z@ <ui>? u; = pli—k.‘—h-—1+k:—1ai —-a;_y, Plia; — pk.'a’ i =
i=2

=1,2,...myand !l =1, — k,, > I, — k,,_;. It has been mentioned in the proof of
Lemma 11 that <{a,,» is a p-pure subgroup of A. Thus the exact sequence 0 - {a,,> —

— A — A[{a,» » 0 is p-pure and the exact sequence 0 — S — B — B[S — 0,
where S = T(B), is pure. Let us consider the following commutative diagram

0 0 0
Lo, !
0-<y®S—A4A®S—Aa,) @ S—-0
s 1B !
(23) 0 - <a,> ® B——~A® B—— Al{a,> ® B——0
! ) I
0~ <a,> ® BS > A ® B|S - A[{a,» ® B|S - 0
! ! !
0 0 0

with natural homomorphisms, where all three columns are exact by [5; Theorem
60.4], the first row is exact by [5; Cotollary 60.5] and the third row is exact by [5;
Theorem 60.6]. Using [5; Theorem 60.2] one easily obtain the exactness of the
second row.

Since A is of rank one and {a,) is p-pure in A, the factor-group A[<a,> is
(n\{p})-primary. Further, S is p-primary by the hypothesis, so that 4/{a,» ® S = 0
and « is an isomorphism. If we denote T = T(A) then the sequence 0 - T ® B[S —
- AQ® B|S » A|T® B|S — 0 is exact by [5; Theorem 60.4] and T® B|S = 0,
Tbeing p-primary and B[S being p-divisible. Thus A @ B[S = A/T ® B/S is torsion-
free, hence Im = T(A ® B) and the middle column splits. If e: 4 ® B> A ® S
is the splitting map, &f = 1,45, then forn = o~ ¢y : {a,» ® B—<a,> ® S we have
nd = o 'eys = a”efu = 1., s showing that 5 is the splitting map for the first
column. Consequently, B = <a,,> ® B splits. By [1; Theorem 2], b has a multiple
p"b having a p-sequence in B, S being p-primary. Thus s,_; < s, = o0 for some
integer n.

By Lemma 9 we now have B =X @ (Y u {b,,, b1 -~}>f\(p), XY= T(B)’

n

® j=Fi—Sj- . —

X = Z Xy, xj = pHTriT 1+r1-1bj —b; g, j=2,n = 1, x, =
j=2

= pheitraTmeip b,_,, pb; = pb, j=1,2,...,n, [xﬂl = pfotteTieet gt s
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m
- liy—kij- 2 i =Fn=1)*+ra
casy to see that a = p™ *na, — Y pli-t™Ki-1y, and b = p*n-iTm DFrmp —
i=2

— Z ij—l—"j—lxj'

Jj=2

Using Lemma 11 and the method from part (i) we can construct the sequence
{i}? | such that the elements a, b have the weak p-property. Now it remains to show
that p'b has a p-sequence in B. The factor-group A/{a,> is (T\{p})-primary,
{a,,y being p-pure in 4 and A being of rank one. Consequently, in the middle row
of the diagram (23) the group 4/{a,» ® B has zero p-primary part. Moreover,
a® b= p'(am ® b) e{a,y ® B by Lemma 3, from which it easily follows that the
element a ® b has a p-sequence in <a,» ® B (¢ ® b has a p-sequence in 4 ® B
by the hypothesis). Thus, in view of the natural isomorphism B = {a,> ® B, the
element p'b has a p-sequence in B.

(iii) The case | = o0, s < o0 is similar to the preceding one.

(iv) Assume, finally, that [ = s = o0. We shal distinguish four cases.

o) Suppose that [, ; <1, = o0, s,_; <5, = o for some m, neN. Using
Lemma 11 and the method from part (i) we can construct the sequence {i};%,
such that the elements a, b have the weak p-property. However, in this case, the
elements a, b have in fact the-p-property.

B) Suppose now that [; < o0, i =1,2,..., and 5,, < s, = o0 for some neN.
With respect to Lemma 12 we can restrict ourselves to the case A = <{aq, ay, ..)ﬁ\m.
Obviously, there exists m € N such that I,, — k,, = r,. If u;, i = 2, ..., are elements

(5) corresponding to 4 and U =Y®<u; then A = U @ {@p> dpi1> D)
i=2

by Lemma 10. By Lemma 13 and the method used in part (\) one can construct the
INtegers iy, iz, «.or ingp ingqq such that iy < iy < ... < iy_y, @y <ig < ... <y,
a; 20, j=1,2,...,2t + 1, and either iy, < iyq = m, iy =N, OF ip_y =

=iy = m, i, = n. In both cases we put iy = iy, =...=nand i iy =
=m+ii= 09 19 .... Then Opj = Sy — Iy — km = 00, 0j+1 = [m—ij—t - km+j~t_
—rp,j=tt+1,...,lima; = o and the elements a, b have the p-property.

j=oo

y) The case I,,_y < I,, = oo for some me N and s; < w0, j = 1,2, ..., is similar
to the preceding one.

3) Finally, let us suppose that I; < o0, s; < o, i = I,2,.... Using Lemma 12
twice we can suppose that A = {ag, dy, ... > B = {bos by, R do = 4,
by = b.

During this part of the proof we shall use the notation ¢; = I; — k;, 6, = s; — 1},
i=0,1,...,. Let u;, x;, i =2,3,..., be the elements (5) corresponding to A, B,
respectively. Put iy = 1. If iy, iy, ..., 1,,_; are constructed let i,, be the smallest
positive integer such that ]uin_lﬂl < [x,-nJrl and i,,,, be the smallest positive
integer such that [xin“[ < fu,-zmﬂ . The sequence {i,}“’:l obviously satisfies rela-
tions (1). Further, |x;, | < |us,_,41|s [ui, | < [%i44| 50 that Lemma 15 gives

e =
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OUppoy = Qipey — iy, 20, 03y =0y, — k., =20, t=1,2,.., and the elements
a, b have the weak p-property. It remains to show that lim «, = o0.
=0

Let g € A, h € B be arbitrary elements. By the hypothesis there are o, o, m, ne N
and integers A, /lz, <> Amy fis g5 -5ty such that (o, p) = (o, p) = 1 and ¢g =

._Zla,, ah—zujb, Thengoa®b~z Zl,u a; ® bj) and so

i=0j=0
(24) A® B = (a; ® b;|i, je No)p&p, .

By [3; Lemma 1I(ii)] we have T(4 ® B)= T® S and therefore Lemma 14
yields

(25) TA®B)=TQ®S = 26 z@ Cud ® <x;) -

i=2 j=
Let M = 3% ((Cttiy_ 41> ® {x1,,0) ® (Cuy,, > ® (X1,,41))) and let Lbe the com-
t=1

plementary direct summand of T(4 ® B) from the decomposition (25).

Now for each t=1,2,... put z,_; =a,,  ® by,,_y, 2= a;,,,-1 ® by,
and show that
(26) (A ®B)[L= <z, + L|te NyyQdey-

where z, = a ® b. For each i, j € N, choose an integer ¢ such that i < iz+1 — L,
j < i Then

(27) [p:0ue,-1 — 0 +a,u—aj]zz,—a‘.®bj=m+l, meM, leL,

owing to the fact that [p:1,,, ,—]as,, .-y = [p:ki,,-1 + 1 — ki]a and
[p lzr] blzg - [p rJZ, S' - rj] bj~ NOW we set

(28) R2x—1 = Oige-1 ~ Oiy,y + Qize—y + kiz:—l >

SZt—I = Tig, + Oiye~1>

Ryt = Qiyy=1 = Qipeey + 04y, + 74y,

Sy = ki, Tt Q-1
and we are going to show that
(29) [p:Rlz,+L=[p:S-]z-y + L
for each ¢=1,2,... (So=0). Since a=pa,, b= [p:o, 1] biu-1—
—uil [p:ow_i] %, we have a ® b = p¥iz, ——izil Pt la, ® x,. However,
Lemma 15 and Pl < Juses| = Jush k=2 ..y — 1. yield g, = ky- Hence
uzlp‘-"”" 'a, ® x, = 0and (29) holds for t = 1. Further, di,,_, = [P : Qizers=1

Qu:—x] "‘7:2:1[1’ 101 = Qi Juy by = [P5 0, — o1l i =
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— x._, hence
12¢

(30) Zy-1 [p $Qiriyy—1 — Qi + iy — Gl’z:-l] Z2t T
- [p ler+| 1 Ql 2¢- 1] aizr+1_1 ® xiz: -
iger1—1
- Z [(p:oj-1 = @iy + i = Oiyemr] 4y ® by, +
Jmizettlo
+ Z [p “Qj-1 QiZt—l] uj ® Xige
J=i2e-1+1

Choosing integers Ji, J2 such that o, — @i,,_, 2 |xi,,| and o, — 05,1 = fu;,,,, -]
we get_ [p FQiyey -1 T Qiz:~1] Aiyerr—1 ® Xize : ([p S0 Qilt—l] aj, —
J1 J1
- Y e~ Ju®x,=- ¥ [pre-s — 0, ] ®xp €L
r=ize+1 r=ize+

and [p PQj-1 T Qize-y + Oipe — aizz"l]_uj ® biz: = [p $0j-1 7 Qiyey + Oiye —
J2
Tiye— 1] uj ® [p % — aiz:] bjz - Z [p FO0p—q T oizt] x") =

r=ize+1
= — Z [p 0j-1 = Qip,_, + Op—y — Oip—y | 4; ® x, € L. From this and from
r=ize+1
(30) we easily get
(31) Z2t-1 + L= [p:Qith—l — Qiyy + Oiye — aizc"l] Z Tt

+ uin—1+1 ® Xiye + L.

Fina]]y, Z2t = ([p Qi-’-‘+l - Qilt+l_1] Aizery — uiz:+1) ® ([p 0050421

— 05, biyersoa ——mi—][p 10y, — 0,,,] %), from which it similarly as above
follows that k=it
(32) Zae+ L=[p:0i,, = Ciesr=t + Oirera1 = Oin] Z2ee1 +
+ U, ® X410 + L.
The inequalities |x;,,| < |uy,,_, .| and ]u,zm < [%iy,4+1| together with (31) and (32)

prove the validity of (29) for each ¢ = 1, 2, ... . Moreover, the formulas (31) and (32)
together with (27) prove (26).

By (26), (29), (31), (32) and Lemma 16 the factor-group (A ® B)/L can be repre-
sented as U/V Since a ® b + L is mapped onto ¢, + V, the eilement ¢, + V has

a p-sequence in U/V and consequently the series Z(R - S) has nonnegative

partlal sums and Z(R S) = oo by [3; Lemma 16] However, Z(R S)) =

- Z(Rzl - SZI + RZt 1 Slt—l) = Z (O-lzg - lz:-z - klzt+1 + klzt 1)

2n+1
=04, =~ ki, = 0o Z (R - S) = Z(R21+1 Sree1 — Ry — Szx) + Ry —
n i=1
-5 = Zl(gl'znx = Qiyeey T Ty t rlzr) + Qi + k Piy, = Qizpsy — Tizpsr =
t=

= 0,41 and the proof is complete.
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Corollary 1. Let A, B be mixed groups of rank one and let P, Q be non-torsion pure
subgroups of the groups A, B, respectively. Then P ® Q splits if and only if A ® B
splits.

Proof. Each element a € P\ T(P) has in P the same p-height sequence as in A4
and it suffices to apply Theorem.

Corollary 2. Let P, Q be pure subgroups of a splitting mixed group A of rank
one.Then P® Q splits. In particular, each pure subgroup of a splitting mixed group
of rank one has the splitting length at most 2.

Proof. It follows immediately from Corollary 1.

Corollary 3. Let A be a torsionfree group of rank one and B a mixed group of
rank one. Then A ® B splits if and only if for each 0 & a € A there exists be B\
\T(B) with the p-height sequence {r;, s;}i~, such that for each prime p with A
p-reduced we have hjy(a) Z r, = 1,4, = ... for some ne N and [p : h}(a)] b has a
p-sequence in B whenever s, = .

Proof. If pis any prime and {k;, 1;}7 ¢ is the p-height sequence of a in A then I, =
=1, = ... = hi(a), ky = k, = ... = 0 and it suffices to apply Theorem.

As a final application of our results we shall present a new proof of a special case
of [3; Theorem] characterizing mixed abelian groups of rank one having the splitting
length 2.

Corollary 4. A non-splitting mixed abelian group A of rank one has the splitting
length 2 if and only if it contains an element a € A\ T(A) such that for each prime p
the p-height sequence {k;, I} of a has the following two properties:

(33) li—ki—kiy;, 20, 1=0,1,...,
(34) lim (; = k; = kiyy) = 2hp(a) — lim I;,

where we put ©0 — m = oo for every me Ny U {0}.

Proof. Assume first that A> = A ® A splits. If p is a prime and 4 is p-reduced
then I; — k; — k;yy 20,i=0,1,..., by Lemma 11 and (34) obviously holds by
Lemma 1. If A4 is p-divisible and I, = oo for some n e N then Lemma 11 proves (33)
while (34) is obvious. Finally, if 4 is p-divisible and I; < 00, i = 1, 2, ..., then Lemma
15 proves (33) and (34) is true by the proof of Theorem, since in this case i, = f,
t=1,2,....

Conversely, if the conditions (33) and (34) are satisfied then the elements a, a
have the p-propety for i, = t and 42 splits by Theorem.
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