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Czechoslovak Mathematical Journal, 33 (108) 1983, Praha 

THE SPLITTING OF THE TENSOR PRODUCT OF TWO 
MIXED ABELIAN GROUPS OF RANK ONE 

LADISLAV BICAN, Praha 

(Received May 28, 1980j 

Irwin, Khabbaz and Rayna [7] have studied the sphtting properties of the tensor 
product of mixed abelian groups. They defined the sphtting length of a mixed group G 
as the infimum of the set of all positive integers n such that the n-th tensor power 
G" = G 0 G (x)"".*\"'f̂ (x) G splits and they constructed a mixed group of rank one 
having the splitting length n for every positive integer n. In my previous paper [3] 
I have characterized the mixed abelian groups of rank one having the splitting 
length n. The purpose of the present paper is to give a characterization of all pairs 
A, В of mixed abehan groups of rank one having the property that the tensor product 
Л 0 Б splits. Thus, the paper is devoted to the proof of the following result. 

Theorem. The following three conditions are equivalent for mixed groups A, В 
of rank one: 

a) Any two elements a e A\ T[A), b e B\ Т ( Б ) have non-zero multiples ma, nb 
having the p-property for each prime p. 

b) There exist elements a e A\ T{Ä) and b e B\ T(B) having the p-property 
for each prime p. 

c) The tensor product A ® В splits. 
By the word "group" we shall always mean an additively written abelian group. 

As in [ l ] , we use the notions "characteristic" and "type" in the broad meaning, 
i.e. we deal with these notions in mixed groups. The symbols hp(a), т'^{а) and ^^{a) 
denote respectively the p-hcight, the characteristic and the type of the element a in 
the group A, n win denote the set of all primes. If Tis a torsion group, then Tp is the 
jp-primary component of T and similarly, if П' Я П then Тц' is defined by Тд/ = 

e 
~ X! ^P' ^^^ torsion part of a mixed group A is denoted by T[A). If IT Я П and if A 

реП' 
is a mixed group with T{A)U' = 0 then for each subset S '^ A the symbol <(S>^. 
denotes the Я'-риге closure of S in A, the existence of which is easily seen. 

For a mixed group A we denote by Ä the factor group AJT^A) and for a e Л ä is 
the element a + T(A) of Ä. The symbol \a\ means the order of the element a e A. 
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The rank of a mixed group Л is that of A. The set of all positive integers is denoted 
by N, NQ = N vj {0}. The other notation will be essentially the same as in [4]. 

It was proved in [ l ; Theorem 2] that a mixed group A of rank one splits if and only 
if each element a e A\ T(A) has a non-zero multiple ma such that f'^(ma) = f^(ä) 
and ma has a |7-sequence whenever /i^(ä) = oo (i.e. there exist elements /ẑ ^̂  = ma, 
h[^\... such that /?/z^^^ = hlf\ n = 0,1,...). Recall [3] that the p-height sequence 
of an element a e A h the double sequence {ki, li}fLo of elements of /VQ U {OO} 
defined inductively in the following way: Put k^ = kQ = IQ = 0 and l^ = hp[a). 
И ki, 11 are defined and either hp{p^'a) = /. = oo, or /̂  < со and hp[p^''^^a) = l^ -{- к 
for all ke N then put /ĉ  + i = ki and li + ^ = /,-. If /̂  < oo and there SLYQ к e N with 
h^p{v^"'^^a) > li + к then let Ä:^+I be the smallest positive integer for which 
/ i ^ ( / - ^ a ) = /,+ 1 > J, + ^,+ i ~ ^ , . 

Definition. Let A, В be mixed groups, a e A, b e В ho elements of infinite orders. 
Further, let p be a prime, h^{ä) = I, /i^(b) = s and let {/<•,-, li}T=o^ [r^, sJ^=o be the 
p-height sequences of a and b in A. and B, respectively. If there is a sequence {it}T=i 
of positive integers such that /̂  = 1, the subsequences [i2t]'^=i, {^2f-i}r=i ^^^ 
nondecreasing, 

(1) lim /Cj2,_j = lim k^, lim г,^, = lim r^, 

and the sequence {ccjj^^i, where 

«2. == s,̂ ^ - r,̂ ^ - /c,.,^^^, r = 1,2, . . . , 

has non-negative terms, then we say that the elements a, b have the weak p-properîy. 

If, moreover, one of the conditions 

(i) I < 00, 5 < 00, 
(ii) I < CO, s = 00 and p^b has a j?-sequence in B, 

(iii) / = 00, 5 < 00 and p^a has a |?-sequence in A, 
(iv) / = s = CO and lim â  = со. 

f->00 

is satisfied then we say that the elements a, b have the p-property. 
Since the exponents are sometimes rather complicated we shall frequently denote 

the /c-th power of p by [p : /c]. 

We start our investigations with some preliminary lemmas. 

Lemma 1. Let p be a prime and let A be a mixed group. If a e A\ T{A) is an 
arbitrary element, hf(^ä) = I < со and if {k^, /JfLo Is the p-height sequence of a 
in A. then there is an integer n such that k^ = /c„ + i = ..., l„ = l„+i = ... and 

Proof. From hp{a) = / < со it follows that there exists an element t e T{A) with 
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hp{a + t) =- J. Writing t in the form t = t^ + t2 where | / i | = / and {\t2\, P) = ^' 
we have /2^(/л) = h^{p\a + t)) ^ к + I = h^ip^'a) ^ h^{p^a), so that IpiP^'a) -
— к = I and the assertion follows easily. 

Lemma 2. L^^ p be a prime. A, В mixed groups, a e A\ T(A), b G B^ T{B)' 
If the elements a, b have the weak p-property then for all t = 1,2, ... with (Xi> «2, ••• 
. . . , 062 ,̂ 0C2t+i < ^ ^"^'^ have 

(3) a(g)b = [p: a2,-i + 5,,J (a,.̂ _̂̂  ® b^J 

and 

(4) fl ® Ь = [p : «2, + /,•....] (a,-,.,. ® b,, ,) , 

where p^'ai = p^'a, p^'bi = p'''b, i = 1, 2, ... . 

Proof. Obviously, a ® b = p^'(a^ ® b) = [p : l^^ - a . J (a^^ ® b) = [p : â  + 

Using the induction principle let us assume that (3) holds for some Г ̂  1. Then 
the hypothesis a2, = s,-,̂  - r^^^ - k^^^^^ ^ 0 yields 5,-̂ ^ - r,-̂ ^ ^ /c,-̂ ^̂ ^ ^ /c,-2,_, and 
by the induction hypothesis we have a ® b =^ [p : li^^_^ — ki^^_^ — r̂ ,̂ + ^/^J • 
• («/..-. ® b,,J = [p : 5,-,, - r , , J (a ® b , , j ^ [p : a2, + /,,,, J (a,, , , , ® b,,J. Sim­
ilarly, if we assume, that (4) holds for some t ^ 1 then the hypothesis 0̂ 2̂  + 1 ~ 
= -^-...i - K... - ^i2..2 è 0 yields J,̂ ,̂̂  - /c,^^,^ ^ r,,^,^ ^ r,^, and by the in­
duction hypothesis we have a ® b = [p : s^^^ - r,̂ ^ - /c,̂ ^^^ + //^t+J (̂ »2t+i ® 
® ^ Ü = [P • ^-^..i - ^̂ /2e. J («/2..1 ® b) = [p : «2,+ ! + 5,,^, J {a:^^,^ ® b , , , , j . 

Lemma 3. Let p be a prime, A, В mixed groups, a e A\ Т(Л), b e B\ Т(^В). If 
the elements a, b have the weak p-property, Si^^__^ < s„ = s^^^ = GO and cf^i^^^^ < ^ 
then a ® b = p^"'~^'''{a^ ® b) for each m ^ /'2 -̂1? Im ~ Kn < ^ ' P^'^^m =" P "'̂ • 

Proof. By the hypothesis there exists an element b' e В with \_p : k^ -^ r„] b' = 
= ^ : r j b and by Lemma 2 we have a ® b = [p : ̂ 2t-i + ^ы-А i^ht~i ® 
® Ы_,) = [P : /.•,,_. - /c,,̂ . J («,,̂ _, ®b) = [p: /,,,_̂  - ,̂,,_̂  - r„] («,,,_, ® 
® t '^J b) = [p ' h,r-r - K.-. + ^̂ J («.-..-. ® b') = b • M (̂  ® '̂) = 
= [ P • ^m] (^m ® b') = [p:lm- km- ' ^ J («m ® [P ' ^n] Ь) = [p I l^ - /c^] . 
. (a^ ® b) since /„, - /c„, - r„ ^ /,.̂ _̂, - /c,.̂ _̂̂  - r,-̂ ^ = «2,-1 ^ 0. 

Lemma 4 (See [З; Lemma 1].) Let p a prime, A a mixed group and let aiG A\ 
\ T(A), i = 0, 1, ..., be such elements that p^'^ai = р^^'^а.^^, i = 1,2, ..., SQ = 0. 

00 00 

/ / YJ {^i ~ ^i) ^^^^ non-negative partial sums and ^ (r^ — Si) = со then a^ has 
1 = 1 i = i 

a p-sequence in A. 
n 

Proof. Since liminf { Yuifi ~~ ^i)] — ^ there exists the greatest integer k^ such 
fei — 1 M->oo i = l n 

that 7i = YJ i^i ~ ^i) =" iî f { Z (^i ~ ^i) I '̂  ^ 1? 2, . . . } . If the non-negative mte-
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gers /cj, /c2, ..., kj, y^, y2, ..., yj are defined then let /c^+i be the greatest positive 

integer such that 7̂  + ^ = YJ {^t " ^i) ^ ^"^ { Z {^i ~ ^i) I " = ^j] ^ У]- ^^^ 
i = 1 i—1 m m 

every 7 = 1,2,. . . and every kj ^ m < kj+^ we have ^ (r,- — 5,) = Z ( /̂ "~ •̂O "" 
kj— I m i = kj i = 1 

- Y i^i- ^i) = yj+i ~ 7y and consequently ^ (r^ - 5̂ ) - (yj+i -Уу) ^ 0. In par-
i= 1 kj+i — l i = kj 

ticular, for m = kj+i — 1 we have ^ (r^ — ŝ ) — (Ту+i — 7y) = 0. Hence we 
i^kj 

obtain [p : r̂ .̂ - (ŷ .+ i - 7,.)] a,,. = [p : 5̂ ,̂ + (r^, - Sj,) -(7,4-1 - 7j)] f̂c, = 
= [P ' % + i + {rkj - 5,,) - (7y+i - 7y)] öfc,+ i = [P ' %+i + ( ît, - hj) + 

fcy+1-1 

+ {ruj+i - hj+i) - (7i+i - У])] cikj+i = ... = [p: 5;t, + i - i + Z (^/ - ^0 -
i = kj 

- {У]+1 — 7j)] öftj + j - i = [p • ''fcj + J ö/cj + i-Moreover, for each 1 ^ m < /ĉ  we have 
m 

E i^i - ^i) ^ Ti, so that ßfo = [ r : r j а^ = [p : 5̂  + (r^ - 5^)] a^ = [p : Г2 + 
i = l ki-1 

+ {ri - 5i)] «2 = ••• = b • ^k,-i + Z i^i- ^i)] ^k,-i = [P ' Ч, + ?i] ^kc Now 

it is easy to see that a^y = [> : r̂ t̂  + 7 J â ^̂ , [p : r̂ -.̂  + 7i ~ 1] «fĉ  •••. [l' • ̂ k, -
- (72 - T l ) ] «iti = b • ^fca] «fc2' [l^ • f̂c2 - 1 ] ^кг^ • .- . b : Г;̂ , - (Уз - 72)] «fc2 = 

= Ь • пА /̂сз' •••' Ь • Ос,] % , Ь : f̂c, - 1] % , •••, [Р : ''̂ t, - (7;+1 - 7у)] «^, = 
= [р • О +,] <̂Ä +1? ••• is а p-sequence of the element «о in A, 

Lemma 5. Let p be a prime. A, В mixed groups, ae A\ T{Ä), b e B\ Т(В). 
и {^h ^i\T=o ^^^ {^h ^i}T=o ^^^ ^^^ p-height sequences of the elements a and b in 
the groups A and B, respectively, and if l^ = 00, s^^-i < s^ = со then the element 
a ® b has a p-sequence in A (S) B. 

Proof. By the hypothesis there are elements a^, a2,... e A, b^, b2,... e В such that 
p^+'-^ai = a, p'^'-'bi = / - b , Ï = 1, 2, ... . Obviously, p^'-'^^a^ ® b^) = р'''^''\а^^ ® 
® b) = a ® b and р'+^+'"'^(а^ ® b,) = pa ® b^ = р'"^'"^(а^_1 ® b,) = a^.^ ® 
® / - b = p'""^""''4^/-i ® b,._i) for each i = 2, 3, ... . Now r^ + 2 - (1 + r,„) + 

n 

+ Z ((^ + 1 + '̂ m) — (̂  + O ) "̂  ^ ^^^ ^^^ element a ® Ь has a p-sequence in 
1 = 2 

Л ® ß by Lemma 4. 

Lemma 6. Let p be a prime. A, В mixed groups, ae A\T{A), b e В\Т{В). 
и {^ь ĵ}r=o ^^^ {^hS^f^Q are the p-height sequences of the elements a and b 
in the groups A and B, respectively, and if s = h^(b) = /̂  = 00, 5^ < 00,m = 
= 1, 2, ..., then the element a ® b has a p-sequence in A ® B. 

Proof. By the hypothesis there are elements a^, a2, ... E A, b^, ^2, ... e ß such 
that p'^'-'ai = a, p'^b^ - / ' b , i = 1, 2, ... . Then p'^b^ - p'^b = /^~'' '-^ + ̂ '-'Ь^_l 
for each / = 1,2, ... and so a ® b = р'''^^''{а^ ® b^) and p''*~'''~^^*'"'(ö(^_i ® 
® b,_;,) = / ' ( a ^ - i ® bi) = p''^'{ai ® bi). However, s^ + S2 - (̂ 2 - r^ + s^) + 
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+ Z (-̂ i+i ~" O'i+1 — ^i + Si)) = s„+i — 7',,̂  J and it suffices to use Lemma 4 owing 
i = 2 

to the fact that Hm (s„ + i ~ ^n+i) = ^ = oo-

Lemma 7. Ler p be a prime, A, В mixed groups, aeA\T{A), ЬеВ\Т{Ву 
и {^h h}T=o ̂ ^^ {^*h Si]T=o ^^e the p-height sequences of the elements a and b in 
the groups A and B, respectively, the elements a, b have the p-property and if 
hp{ä) = I = s = /i^(b) = 0 0 , l„ < 00, s„ < 00, n = I, 2, ..., then the element 
a ® b has a p-sequence in A ® B. 

Proof. Put У1 = li^ + s;̂  - r,.^andx2,-i = //,,_, + ki,,,, - /c,-,,_^,X2, = s,^^ + 
+ »̂2t+2 - ^/2t' yit = t̂2t4-i' Уи+1 = St2t+2 for each t = 1,2,... . Then [p : y^] . 
• {^i, ® b.J = [p : /f J {üi^ ® b) = a® b (since â  = /,.̂  - r,-̂  ^ 0) and [p : УгЛ • 
• (ß.2t.i ® bf,,) = [p : /c,,,, J (a ® bij = [p : X2,-,] (a,,^_^ ® b^^J, [p : j 2 r . i ] • 
• («.2..1 ® b,^^,,) = р : r,^^,J (a,^^,^ ®b) = [p: X2,] («, , , , , ® b,.,J for each t = 

= 1, 2 , . . . . Now f (v, - X,) = /,, + 5,̂  - r,̂  - {U^ + ^,3 - / c j + t{y2t ~ 
n - l f = l n t = l 

- ^lO + 1(3^2Г.1 - ^2t^l) = Si, - r,^ - /C,3 + Z0^2e.i ~ S-m - ^i2t.2 + -̂2.) + 
n - l f = l 

+ Z ( ^ ' 2 t + 2 ~ ^ 2 t + l ~ ^ i 2 t + 3 + ^ Ï 2 t + l ) "= ^J2n+1 
f = l 

In-I 

r = l 

/ ^ h » . . -

n - 1 

^i2n + 2 ~ ^ 2 n + l ; 

n - l 

I {Уг - ^r) = h, + 5,.̂  - r,^ - (/,^ + /С̂ з - ki) + X (У2г - ^It) + Z 0^2t4-i -
f = 1 n - l f= 1 n - 1 f = 1 

— Х 2 Г + 1 ) = Sf2 ~ Г^2 — /C,-3 + Z ( ^ i 2 t + l ~ ^ht ~ ^/2t + 2 + ^ i2 t ) + Z ( ^ i 2 t + 2 ~ 
f = l f = l 

- ^^t.i - .̂-2̂ +3 + ^iit^) = ^hn ~ ^im ~ ^im.i = ^2n for ^ach п = 1,2, ... and 
the element a ® b has a p-sequence in Л ® ß by the hypothesis and Lemma 4. 

Lemma 8. Let p be a prime and A a mixed group with a p-primary torsion 
part T. Further, let a e A\T be an arbitrary element and let {/ĉ ,/;}f==o ^^ ^̂ ^ 
p-height sequence. If n is a positive integer such that /̂  < /2 < . . . < / „ < oo,. 
p^'ai = p^'a, i = 1, 2, ..., n, and if U = <̂ 2> •••> ^n) ^here 

(5) ti = p^'-^'-^'-^-'^'-'ai - ai_^ , i = 2 , . . . , n , 

then 

(6) u = f^®{tiy and T=V®V 
i = 2 

for a suitable subgroup VofT. 

Proof. In the proof of [3; Lemma 4] it has been proved that 

(7) |r.| = p^^-^+^^-^^-, / = 2, . . . , / 1 , 

and 

(8) hf{pJti)=j, i = 2,,..,n, 0 ^ ; < l r , l . 
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и n = 2 then и is a bounded pure subgroup of T and we are through. With respect 
n-l 

to the induction principle we can suppose that (^t2, ..., t„_ii> = ^® < ,̂> is a direct 
i = 2 

summand of T and it suffices to show that {t2, -.., ^n-i> n <r„> = 0 and that U 
n-l 

is pure in T. If 0 ф p-^t^ = У] Aj/̂  then by (8) and the induction hypothesis we have 

Aj = P^ßi for suitable integers /Zf, / = 2, ..., n — 1. Further, by (7) we have 0 ф 

Ф y«-.-b/c.-^v.-,-i^^^ ^ yn-,4-^n-fc.-.-i-y"^'^.^. =УрЬ^-+^- / с . - . -1^ .^ . _ 0 (since 
i = 2 i = 2 

by the definition of the p-height sequence, l^-i + k„ — /c„_i — 1 ^ /„_i > 
> /j_i + /Cf — ̂ ,_i for each г = 2, ..., /i -- l) — a contradiction showing that 

n 

<̂ 2̂  •••» ^Ai-i> ^ On) == Ö- N ^ ^ ^ t̂ the equation p-^x = Y^^itt be solvable in T. 
i = 2 

If ÀJ„ = 0 then У I Я̂ , i = 2, ...,n — 1, by the induction hypothesis. If ÀJ^ ф О, 
i^ = р'^/Лп, (̂ û , p) = 1, then for m ^ j , p-^ | Я ,̂ / = 2, ..., n — 1, by the induction 
hypothesis. The case m < j is impossible, since then p"* | Я̂ , / = 2, ..., n — 1, and 
pin-2+kn-i-k,,-2-m+j^ ^ pin-2+kn-i-k„-2^j^ together with (8) gives ; ^ m and we 
are through. 

Lemma 9. Let p be a prime and A a mixed group with a p-primary torsion 
part T. Further, let a e A\T be an arbitrary element and let {/ĉ , /J^=o ^e its 
p-height sequence such that /,„_i < /,„ = oo for some m e/V. / / p^'ai = p^'a, 
i = 1, 2, ..., П — 1, then there are elements a^, ^m+i> ••• ^̂  ^ ^ Tsuch that: 

(i) If ti, г = 1, 2, ..., m — 1 are elements [5), 

(9) t,^ = p'-'^'--'-'a.--a^-, 

and и = <^2' •••? ^m) ^^^^^ 
m 

(10) и = J]® Oi} and T=U @V 
i = 2 

where V is a suitable subgroup of T such that 

(11) < p ' - - ^ ^ ' - - ' - - ^ ^ . ^ / . i - a^,, I iE No) ^ V. 

(ii) If A is of rank one and if we denote Я = < F u (a^, a^ + j , ...}>^\{p} then 

(12) Л = C/ ® Я . 

Proof. With respect to [3; Lemmas 6, 7] and their proofs it remains to show that 

^ = Z < î>- % the preceding Lemma we have Ü = (t2, ..., t^.;^} = У® <Г̂ >. 

The hypothesis /ï^(p'^-'a) = oo yields the existence of an element a'^eA\ Tsuch that 
p2ii..-.-^k^-k^-0^^^^ = p'-a = y - - ^ ^ - - ^ - - a , _ i . Put r , = pim-.+k^-k^.,^.^ __ ^^_^^ 
If р-Ч^ = 0 for some ; x: /^_ ̂  + /<:̂  - /c^_ ^ then we can clearly assume that j è /„,-1-
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No we have p^"'-i+^- '̂—^̂ -̂ 'a;̂  = ph^ + fa^^-i = У ^--^+^^-1^ which contra­
dicts the definition of the p-height sequence. Thus 

(13) |g = p'"--''--''".-. 
Suppose now that for some 0 ^ j < /^_ ^ + /:,„ — A:„,_ ^ we have hp{ph^) > j . Without 
loss of generality we can assume that ; ^ Im-i- Then p '̂"~i+ '̂'"~*"»-i+-''a^^^ — pj't^ = 
= p^a^^i = y~^"'~^"^^"'~^fl, which contradicts the definition of the p-height 
sequence and consequently hp(phj„) — j , 0 ^ j < l^_^ + k^n ~ Kx-v Suppose 

m - l 

now that 0 Ф ph,n = YJ ^iU- Then there are integers ^i with 1̂  = p^jii, i = 2, ... 
i = 2 

..., m ~ 1,Ü being a direct summand of Г. By the definition of the p-height sequence 
m - l 

and by (13) and (8) we have 0 Ф р'^п~1+к.п~к„г-,-1^^ ^ y^-i+fc.-fc..-i-i-i ^ д.^. ^ 
m — 1 m i = 2 

^ ^ pim-i+km-k,n-i--i^^^^ ^ Q _ ^ contradiction showing that L/ = ^® <̂ >̂ is a 
i = 2 i = 2 

subgroupofT. With respect to the proof of [3; Lemma 6] we have t^ = p̂ m-i+fcm~fcm-î  
.a^ — a^_i and the proof is complete. 

Lemma 10. Let p be a prime and A a mixed group of rank one with a p-
primary torsion part T. Further, let a e A\T be an arbitrary element and let 
{/Cj, li}f=o b^ ^^^ p-height sequence, li < oo, p^'ai — p^'a, i — 0,1, .... If n '^1 

n 

is positive integer, ti, i = 2, ..., are the elements (5), U = J]® <r,> and A = 
= iao,ai, ...>;J\(p) then '^^ 
(14) A = и @(a„a,^„...yi^^p^. 

Proof. For the sake of brevity we shall use the notations С = (^a^, cin+u •••)î?\{p} 
and D = <fl„, a„ + i, ...>. If с G C/ n С is an arbitrary element then QceU ел D ïov 

n m 

some integer Q with {Q, p) = 1. Hence QC = ^ Aĵ j = Yul^i^i ^^^ some m ^ n. 
m i = 2 i = n 

Multiplying by p'- we get p'^Y.^i'^i = (^''"^m + p' '"~'-^^' '--^/x,_i + ... 

... + p^^-^^+^^Ja and p^'-Y^i^i = ^ ^wing to the fact that l^^li> h-x + 
i = 2 

+ ki - /c^_i = \ti\, i = 2, ...,n. Thus p^'^gc = 0 and ja| = oo yields p^^'fim + 
_,_ p^^-^---^+^rn-i^^_^ _,_ ̂ ^̂  _̂  p^rn-in-^kn^^ ^ Q̂  However, for each л ^ i < m we 
have /^ - /̂  + /Ci ̂  /^ - /^- i + fc^-i > A:̂  and consequently /x^ = 
^ ^/m-im-i+fe^-i-fc^^^ l̂ ĵ. gQĵ g integer v„,. So, ^c = yj^p^'^~^^-'^^^"~^^a,^ -

m - 2 ^«-2 

i=n i=2 m 
Using the induction principle we easily obtain the equality Qc = Y, ^lU + n̂«« 

m i = n + l 

for suitable integers v„, v„+i, ..., Vm- However, v„a„ = QC - Y "^tU ^Tn <«„> = 
гп i = n+x 

= 0, thus v„ = 0 and QCEU n ^ <^> = 0. Consequently, by Lemma 8, с = 0, 

199 



T being p-primary and g relatively prime to p. We have shown that U n С = 0 and 
we proceed to (7 v С = A. LQI b e A Ы arbitrary. By the hypothesis we have^b = 

m 

= ^ Я,а^ for some integer Q, {Q, p) = 1, and without loss of generality we can assume 
i = 0 m n - 1 

that m ^ n. Putting Qi = h - ki, i = 0, 1, ..., m, we have Qb = Y, ̂ i^t = E "^i^i + 
m И - 1 n~l m i=0 i=0 

i = fi i = 0 j= i i = n 
/ 1 - 1 n - 1 m 

i = О J = i / = n 
л— 1 n - 1 n m 

= - Z E / '"" ' '^ /0+1 + Z /""" '^^A + Z ^f«t = t + c,teU,ceC. However, 
i = 0 j = i i = 0 i = / i + l 

^ is divisible by Q, U being jp-primary, and the assertion follows easily. 

Lemma 11. Let p be a prime and A, В mixed groups of rank one with p-primary 
torsion parts T, S, respectively. Suppose that aEA\T, beB\S are arbitrary 
elements, {/Cj, / J ^ o ' {̂ 'i? ^i]T=o ^^^ ^he p-height sequences of the elements a, b 
in A, B, respectively, and /c^_i < k^ = /c^+i = ..., r„_i < r„ = r„ + i = ... for 
some т,пЕ NQ. If h^®^{a ® b) = hJ®^{ä~Wb) then for each i = 2, ..., m, j == 
= 2, ..., n at least one of the following two inequalities is satisfied: 

(15) s , _ i - r , _ i - k , ^ 0 , 

(16) /._^ _ / c ^ _ ^ _ , . ^ 0 . 

Moreover, for i = m + l, j — n-\-l both these inequalities hold. 

Proof. Assume first, that /„, < oo, 5„ < oo. By Lemma 8 and [3; Lemma 8] 
we have A = U@V® <a,>;f^^^j, B = X®Y@ <Ь„>^^ ,̂̂ , U@V=T, X®Y = 

m n 

= S, C/ = E® <«<•>. X = E® <x,>, Щ = p^^-^''-^'-^^"-'a, - a,^„ x, = 

= f^-'J-'^-'+'J->bj - ь Д , p^% = p^'a, i = 1, 2 , . . . , m, p^'bj = f'b,j = 
m 

= 1,2, ...,n.Itiseasy toseethat a = у-~^'Хт - Z P^'"'"^'~'w/and b = p'^'^^b^ -
n i = 2 

- Z /'"""'"^j where l^~ k^= 1 = h^{ä) and s, - r„ = s = //^(5). Now for 
j = 2 

each i = 2, ...,m, j = 2, .,.,n the element 0̂ ,7 = jE^^'-i-^-i+^^-i-'-j-^t^. 0 ^^ lies 
in a direct summand of Л ® Б and from the equahty a ® b = p^^^a^ ® b^ — 

n Yn m n 

- Е ; ' ' ^ ' ' " ' " ' ' " ( « т ® Х ; ) - Е У ' - ' " ' ' - ' ^ ' " , ® ^ » + Е E ^ u it follows that 
J = 2 i=2 i=2]=2 

h^®\gij) ^ / + s = /г^®«(а ® ь). However, if é̂ u + 0 then the p-height of the ele­
ment Çij is obviously /j_i — /C(_i + Sj_i — ?•;-! < I + s and so necessarily 
5,.; = 0. Since (by (7)) \u, ® Xj\ = min {|M,.J, |X,.|} = min {p ' ' - '+ ' " -* ' - , 

P''"'"""' • • ' " } , we get the desired result for each / = 2 , . . . , m,} = 2,...,n. Consider 
now the elements p'+»n-.-rn-, (^^^ ^ ^ j and p'—'"'"'-'"""(«„ ® b„). Suppose that 
KiP'^m) =k>j for a positive integer ; . Then й^(у-""'а„) ^ fc + /^ > ; + 
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+ /,„. On the other hand, h^{p''^^'''a„) = /ip(p^'^^'"a) = j -\- l^ by the definition of 
the p-height ^equence — a contradiction showing the p-purity of <Ö,„> in A, By 
[5; Corollary 60.5] the natural mapping {a^} ® <x„> ->'' Л (x) <x„> is monic and 
by [5; Theorem 60.4] the natural mapping A ® <x„> -^^ A ® В is also monic 
(<x„> is pure in B). Composing these monomorphisms with the natural isomorphisms 
<x„> = <ö^> ® <x„> we see that |a^ ® x„| = |x„| = р^п-^+гп-п,-! -pj.̂ ^̂ ^ which it 
similarly as above follows the inequality /„, — fc,„ — r„ ^ 0. The inequality (15) 
for j = n + 1, i = m, is proved similarly. 

Assume now that /^ < oo, 5„ = oo. By Lemma 9 we have В = X ® {YKJ 

u {b„, b„^„ ...}>^ч(,,, X@Y=S,X = t^ <x,>, xj = / ^ - / - ^ - . + o - . b . _ b,_„ 

j = 2, ..., и - 1, x„ = p^'-'+'•••-'•"-'fc„ - fo„_„ |x„| = /"-•+'•" -•"-'. It is easy to 
n 

see that b = p^^^''~^~''"~'-^'^''''b„ — Y, p"'''''"''xj and the same arguments as in 
j = 2 

the preceding case yield the desired result for each i = 2, .... m, j = 2, ..., n and 
the validity of (16) for i = m + l,j = n. The inequality (15) forj = n + 1 is trivial. 

Finally, if /^ = r„ = 00 then similar treatments as above yield the result. 

Lemma 12. Let A be a mixed group of rank one with a p-primary torsion part T 
andletBbe a mixed group with a p-primary torsion part S and В p-divisible. Further, 
let {ki, /j}^o ^^ ^^^ p-height sequence of an element aQE A\ T such that li < GO, 
i = 1, 2, ... ,Jf p^'ai = p^'aQ, i = 1, 2, ..., and A ® В splits then <ao, a^, ...y^^^p^ ® 
®B splits as well. 

Proof. By Lemma 8 and [3; Lemmas 4, 5] there exists a basic subgroup P of T 
such that P = и ® V, Я = < Р и {a^, a^, ...,}>;^\^р^, Я п Т = Р and Я = К е 
© <ao5 ci^, ...>;f\|p}. It is easy to see that for each g e A there are integers Q, G, m 
such that Qg = aâ^,, {Q, p) = I. Then Qg = aa^ -\- t, t e T, and so Л = Я v T. 
Hence AlT= H V TJT ^ HjH пТ= HJP. 

The sequences 0 -> P -> Г -^ T/P -^ 0 and 0 -> 5 -> Б -> B/5 -> 0 are pure exact, 
so that by [5; Theorem 60.4] we have the commutative diagram 

0 0 0 
i i i 

0 -> P (X) 5 > T® S > TJP ® S > 0 
i i i 

0^ P ® в T® в ^ TJP ® в >0 
i i i 

0-^ P ® BJS -^T® BJS -> TjP ® BJS -^0 
I i i' 
0 0 0 

with exact rows and columns and natural homomorphisms. By the hypothesis, S and 
T/P are p-primary and TJP, Б/5аге p-divisible, hence TjP ® S= TjP ® BJS = 0 and 
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consequently TJB ® В = 0. Thus P ® В ^ T ® B. Further, in the commutative 
diagram 

0-^P®B-^H®B-^ HJP ® B-^0 
i^ iß ir 

0-^ T® В -^ Ä ® B-^ AJT ® В -^0 

with exact rows and natural homomorphisms, the homomorphisms a and у are 
isomorphisms by the preceding part and ß is therefore an isomorphism by "Five 
Lemma". We see that H ® В = {V® B)@ «^o, a^, ...>^\{p} ® В splits and the 
assertion immediately follows. 

Lemma 13, Let p be a prime and let A, В be mixed groups of rank one with p-primary 
torsion parts T, 5, respectively, Ä, В p-divisible. Further, let {ki, /J^^O' {^P ^i]T=o 
be the P'height sequences of elements age Ä\T, bo e Б \ S, respectively, and 
/. < 00, f = 1, 2, ..., ŝ _ 1 < 5„ = 00 for some neN. If A = {a^, a^,.. .>^\{p}, 
p^4ii = p^'aQ, i = 1, 2, ..., hp®^{a ® b) = сю and me N is such that /^ - /c,„ -
— r„ ^ 0 then for each i = 2, ..., m, j = 2, ..., n, at least one of the inequalities 
(15), (16) /5 satisfied, 

m 
Pr О О f. By Lemma 10 we have Л = ^® {Uiy@{a^, a„,+i, ...>^\(p} where Ui, i=2, . . . 

i = 2 n 
..., m, are the elements (5) corresponding to Л and by Lemma 9 we have Б = ^® <х^> © 

i = 2 

® <Уи {b„, b„ + i, ...}>f\(p}, where Y я S, Xt, i = 2, ...,n - 1, are the elements 
(5) corresponding to В and x„ = p'^-^ + 'n-rn-ij^^ _ 5^_^, Now the proof runs along 
the same lines as that of Lemma 11. 

Lemma 14. Let p be a prime, A a mixed group with a p-primary torsion part T 
and let {ki,li}f^Qbe the p-height sequence of an element а^еА\Т. If p^'a^ = p^'a^, 

00 

li <li^^< ОЭ, i = 1, 2, ..., and A = ^a^, a^,...yi\^p} then T = J]® <^.>, where t^ 
are the elements (5). 

Proof. With respect to Lemma 8 and [3; Lemma 4] it suffices to show that T == 
00 n 

= Y, <^>- If t e Tis an arbitrary element then mt = J^ Х-.а-, for some me N, (m, p) = 
1 = 2 i = 0 00 

= 1. For П = 0 we have AQOO ^ T, hence Яо = 0 and ^ = 0 G ^ <^̂ >. For n > 0 it is 

p^t = {tp^''~''^'%)aoeT,sothat Е У - ' ^ ' ^ - ' и , = O a n d ^ = ^"-'«-1-^^"+^^-!^ 
i=0 i=0 n-2 

. À'„ for a suitable integer À'„, Thus mt = À'„t„ + (Я̂  + ^ - i ) ß„-i + X! ^i^i ^^^ ^^^ 
assertion follows by induction. 

Lemma 15. Let p be a prime and A, В mixed groups of rank one with p-primary 
torsion parts T, S, respectively, Ä, В p-divisible. Further, let {/Cj, li}T=o^ {^h ^i}T=o 
be the P'height sequences of the elements aQeA\T, bQeB\S, respectively, and 
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li < со, Si < со, i = 1,2, .... If Ä = iaQ,a^, ...>;^\(;,), p^'a^ = p^'a^, i = 1,2, ..., 
В - <Ьо, bi, ...>f^^^j, f^bi = f%, i = 1, 2, ..., and h^p®\a ® b) ^ со then for 
each i = 2, 3, ..., j = 2, 3, ... we have 

(17 ) 5j._i - r^._i - ki ^ / i _ i - /c,._i - r̂ . 

and 

(18) 5,_i - r,._i - /c,. ^ 0 

provided |wJ ^ |x -̂| аиб/ 

(19) //-1 - ^^r-i - О = ^j-i - 0 - 1 - ^^i 
and 

(20) / , . _ 1 - / с , . _ 1 - г , ^ 0 

provided \xj\ ^ IwJ, where u^, Xj are the elements (5) corresponding to the groups 
A, B, respectively. 

Proof. If \ui\ = /,_i ~ /с^_1 + ki ^ 5j_i — 7'y_i + rj then the inequality (17) 
i 

is obvious. Further, by Lemma 10 we have^l = ^® <w,„> © <(̂ ;, «, + 1, ..•>^\fp} î̂ d̂ 
J »J = 2 

^ "̂  Z ^ ^^«) ® "v^j' ^i+1' •••>f\{p}- Continuing as in the proof of Lemma 11 we 
n = 2 

see that p^i-i-'^i-^'^'j-^~''j-^Ui ® Xj = 0, and this, for |w,-| g |х^|, yields the ine­
quality (18). The inequalities (19) and (20) are proved dually. 

Lemma 16. Let p be a prime and A a mixed group with a p-primary torsion 
part T. Suppose that A contains elements ag, a^, ... e A\T such that A = 

00 00 

i = 1, 2, ..., and T=Y.® < / ' " ' ' " ' ^ / - «/-!>• Further, let U = J]® U^, where U^, 
i = 2 i = 0 

i = 0, 1, ... , be a p-reduced torsionfree group of rank one, the p-divisible closure 
of which is isomorphic to A. Then for each i = 0, 1, ... there exists an element 
CiE и I such that A ^ UJV, where V = {p'''Ci — 2?̂ '"̂ Cj-_i | / e f^}n\{p} ^̂ ^̂ ^ ^̂ ^̂  
element aQ is mapped onto CQ + V. 

Proof. For each i = 0, 1, ... choose an element Cj e Ui such that h^(ci) = 0 
and h^{ci) = hq{ai) for each prime q =¥ p- Now it is easy to see that there exists 
a homomorphism cp :U -^ A with (p{ci) = a^, i = 0, 1, ... . If a e Л is an arbitrary 
element then rä = SUQ for some integers r, s, (r, s) = 1. If r = p^r', (r', p) = 1, 
then from r̂  > 5^_i it easily follows the existence of j , leN with UQ = p^^^äj. 

n 

Clearly, r'a = p^saj + r '^andsor ' j ; = p ŝcy for some v e Uj. 1ft = X! ^iP'^'~^'~^^i "" 
n 1 = 2 

- aj_i) then (p{y 4- ^ ^i{p''~''~^Ci — с^.^) = a, cpis an epimorphism and obviously 
V^KQXcp. '^^ 
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Show that each element a = Y, ^i^i ^ T'can be written in the form 
i = 0 

n 

(21) a = X / i i ( / ' " " " ' « i - « i - i ) 
1=2 

where 
(22) Я„ = / " - ' " - ' / ! „ . 

П— 1 n 

If « ^ 1 then for sufficiently large r e N WQ have l_P '- ^ + r„ + J] (TJ — Sj)] ^ Я̂ <з,. = 
n n-l i - l j = l 1 = 0 

= ( Z ^i[P • ̂ « + E (O " ^;) - ^i-Tj (O "" ^j)]) / ^ 0 e T, from which the validity 
1=0 j=l j = l 

of (22) immediately follows owing to the fact that r̂  > 5j_i, i = 1, 2, ..., n. Thus 

^̂  = /̂ м(р'̂ "~*"~̂ <̂ п ~ ^n-i) + ( ^ + f^n) ^n-i + Z ^i^i ^^^ ^^ ^^^ ^^^ ^^^ induction 
principle, the case n = 0 being trivial. "̂̂ ^ 

« и 

If w G Ker (p then mu = Yi ^fi ^^^ ^ome me N, (m, p) = 1. So, (p(mu) = ^ А̂ а̂  = 
и i = 0 П i = 0 

= OG Г, hence 0 = Y^i^i = Z/^^( / ' " ' ' " '^^ - ^^-i) by (21) and p'"'X = f^n 
i=0 i=2 

00 

owing to the hypothesis T = ^® (/ '"^'"^«i - ^i- i> and \p'''~^'~^ai - a i - i | = 
i = 2 

= p^'-K With respect to (22) we now have mu = v (̂p''"c„ — p'""^c^,_i) + (/In-i + 
n - 2 

+ v„p^""^) c„_i + YJ ^i^i ^^^ w^ ^^^ continue by induction. 
i = 0 

Proof of Theorem, a) implies b) trivially. 
b) implies c). With respect to [ l ; Theorem 2] it suffices to show that 

T^®^(a ® b) = x^®\a ® b) and that a ® Ь has a p-sequence in Л ® Б whenever 
/ î p ® > ® Ь) = 00. 

Assume (i). By Lemma 1 there exists an integer n such that k„ = /c„ + i = ..., 
'л = 'и+1 = ••• ? ^n — '^n + i ~ •'- i ^n — ^n + i — '•• a n d I = l„ — k„, s = s„ — r„. 
From the definition of the /7-height sequence we obtain the existence of elements 
ßj , 02? '.-, a„E A, Ъ^, ^2, . . . , b„eВ such that jô 'â - = p^'a, p^'bi = f'b, i — 1,2, . . . 
..., n. Further, the relations (l) yield the existence of an integer t with /Cĵ +̂i = К 
and r,-,̂  = r„. By Lemma 2 we now have a ® b = [p \ ^ + _ ^ - м ] {^iit^i ® ^'2t) = 
= V^'^\^i2t^i ® ^iit) ^^^ consequently / + s = h^®\a ® b) ^ /2^®^(Ö ® Ь) ^ 
^ / + 5. 

Assume (ii). By Lemma 1 there exists an integer m such that Ä;̂  = /c^+i = ..., 
m̂ = ^m+i = ••• and I = Im — ^m- % hypothcsis, h^{p^b) = 00 and hence there 

exists an integer n with / ^ r„ and r,, = r„ + ĵ  = ,. . , s„ = 5„+i = ... = oo. By (l) 
there exists an integer t with r^^,,^ < r^^^ = r„. Now by Lemma 3 we have a ® b = 
= ^m ® P^b and the element a ® b has a p-sequence in Л ® Б by the hypothesis. 

Assume (iii). The proof is similar as in the preceding part. 
Assume (iv). If /„ < oo, 5„ < oo for each n = 1, 2, ... then it suffices to use 

Lemma 7. 
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Suppose now that 5„ = oo for an integer n. With respect to Lemmas 5 and 6 we 
can suppose that n > 1, The relations (1) yield the existence of an integer / such that 
'^ht-2 < /̂2t = ^n' If «2,-1 < 00 then, by Lemma 3, a ® b = [p : /,.,̂ _̂  - /c,-̂ _̂ J . 
• i^iit-i ® ^)- However, «2^-1 ^ 0, a ® b = [p : a2f-i] («r-̂ e-i ® / " ^ the element 
^iit-i ® P"^"^ h^^ ^ /7-sequence in Л ® ß by Lemma 5 or 6 and consequently a ® b 
has a jf7-sequence in Л ® i5. 

It remains now to consider the case а2,_1 = oo = //^..i- If /1 = 00 then it suffices 
to use Lemma 5. If /̂  < 00 then the relations (l) yield the existence of an integer 
n < /suchthat//,^_ J < Ii^^^^ = 00. In this case we have 0 ^ a2„ < 00 so that Lemma 
3 gives a ® b = [p : 5,-̂ ^ - r^^J (a ® b,-^J = / ' " ( [ p • ̂ /2п-ы] « ® /̂2«) ^^^ î  suf­
fices to use Lemma 5. 

c) implies a). Assume that the tensor product A ® В spHts and let a' e A\ T(A), 
b' e B\ T(B) be arbitrary elements. By [ l ; Theorem 2] and [ l ; Lemma 3] there are 
non-zero integers m, n such that for the element a ® Ь = ma '® nb'wehaveT^®^(a ® 
® b) = T^®^(a ® b) and a ® b has a /^-sequence in Л ® Б for every prime p with 
^ ® ^ p-divisible. 

Let i? be a prime. Denote V = Т(Л)^\^РР S' = T(J5)^\^^,} and let a : Л -^ AJT\ 
ß : В — BjS' be the canonical projections. By [5; Corollary 60.3] Ker a ® ^ is 
a homomorphic image of (Г' ® 5) © (Л ® 5') and it is consequently a torsion 
group. So AjT' ® BJS' splits and we can assume that T[A) and T{B) are p-primary 
groups. 

(i) We shall assume that / < 00, 5 < 00 and we shall construct inductively the 
sequence {it]T=i satisfying conditions (l) and (2). By Lemma 1 there are m,neN 
such that fc,„_i <k^ = fe,„ + i = ..., r„_i < r„ = r„ + i = ..., l^- k^ = /, 5„ -
— r„ = 5. If m = 1 then we put /̂  = 1*3 = ... = 1 and /2 = û = ••• = "• Iî  this 
case (1) is obviously satisfied and (X2t-i = m̂ ~ m̂ ~ «̂ = 0, 0L2t = 5„ — r„ — fc,„ ^ 
^ 0 for each ^ = 1, 2, ... by Lemma И. 

For m > 1 we put i^ = 1. Suppose now that we have constructed the integers 
'1 , Ï2? •••5 ht-i^ r ^ 1, in such a way that г\ < Ь < ••• < ht-i < w» '̂2 < /4 < . . . 
. . . < /2^-2 < n, ccj ̂  0 for each; = 1, 2, . . . ,2^ - 2 and /̂ .̂_̂  - /c,-̂ ._^ - r,-̂ .̂+ i < 
< 0, Si^. - Vi^. - ki^.^^ < 0 for each j = 1, 2, ..., t - L From Lemma 11 and 
/̂2t-2 - ^̂ /2̂ -2 - ^ /̂2t-i + i < Ö it follows that /,-,̂ _̂  - /с,.̂ _̂̂  - ^2^-2 + 1 ^ 0 so that 

there exists an integer i2f > ^2^-2 such that a2t-i = hit-i " ^iit-i ~ ^tit = ^ ^^^ 
either Î2( = m or Ẑ ^̂ ,.̂  - ki^^_^ - r̂ .̂+ i < 0. Similarly, let us suppose that we have 
constructed the integers z'l, 12, ..., /2̂ ? t ^ 1, in such a way that г\ < х'з < ... 
. . . < i2t-i < m, /2 < /4 < ... < /2f < «, ocj ^ 0 for each j = 1, 2, ..., 2? - 1 
and U^._^ - /c,^._^ - r,^.+i < 0, 5,,. - r,^_. - /c,.,,,, + i < 0 for each j = 1, 2, ... 
•••'^ - I'^/2t-i - Kt-i - ^i2t + i < 0. By Lemma 11 we have Si,, - r.^^ - к^^^_^ + ^ ^ 
^ 0 so that there exists an integer 1*2̂ +1 > ht-i such that «2? = s,^, - r^^^ — 
- ^/2t+i = Ö and either /2^+1 = m or s,-,̂  - r,-̂ ^ - fef,,^, + i < 0. 

It is easy to see that there exists an integer t such that either izt+i = m or 1*2̂  = "• 
In the former case we put J2t+i = '̂2̂ +3 = ... = m, /'2^+2 = ht+4 = ... = n and by 
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0 
i 

A 0 S-
iß 

A® B-
i 

0 
i 

- - ^ / < a , „ > ® S -
i 

—^Al(a^y®B~-
i 

— 0 

--^0 

Lemma 11 we obtain a2j+i = Im ~ Кг - ^̂  ^ 0, (X2J+2 = ^n - ^n - k^ ^ 0 for 
each j = t, t + 1, ... . In the latter we put /2^ == ht + i = ••• = «, /2^+1 = 
= ht+ъ = ... = m and by Lemma 11 we again get <X2j+i = hn ~ Kn ~ „̂ è 0, 
^2j = -̂n — ''n — ш̂ = 0 for each J = r, Г + 1 , . . . . 

We have shown that in this case the elements a, b have the p-property. 
(ii) Assume now that / < 00, s = 00 and show that the elements a, b have the 

p-property. By Lemma 8 and [3; Lemma 8] we have A = U @ V @ <a„j>^\(p), 

1 = 2 

= 1,2, ..., m, and I = Im — k^ > ^m-i ~ /^m-i-It has been mentioned in the proof of 
Lemma 11 that <a^> is a p-pure subgroup of Л. Thus the exact sequence 0 -> <a,„> -> 
-> Л -^ Aj{a„j} -> 0 is p-pure and the exact sequence 0 -> 5 -^ Б -> BJS -^ 0, 
where S = T[B), is pure. Let us consider the following commutative diagram 

0 
i 

Ч 
(23) 0 - ^ < O ® ^ — 

i 
0 -> <a,,} ®BlS-^ A® BJS -^ АЦа^у ® Б/5 -> 0 

0 0 0 

with natural homomorphisms, where all three columns are exact by [5; Theorem 
60.4], the first row is exact by [5; Cotollary 60.5] and the third row is exact by [5; 
Theorem 60.6]. Using [5; Theorem 60.2] one easily obtain the exactness of the 
second row. 

Since A is of rank one and <a,„> is p-pure in A, the factor-group Aj^a^,} is 
(n \ {p})-primary. Further, S is p-primary by the hypothesis, so that ^ / < Ö ^ > ® S = 0 
and a is an isomorphism. If we denote T = T(A) then the sequence 0 -^ T ® BJS -> 
-^ A® BJS -^ AJT® BjS -> 0 is exact by [5; Theorem 60.4] and T® BJS = 0, 
Tbeing p-primary and BjS being p-divisible. Thus A ® BJS ^ AJT® BjS is torsion-
free, hence Im j5 = T{A ® B) and the middle column splits. lfe:A®B-^A®S 
is the splitting map, sß = 1^^^, then for >̂  = a~^sy : <a„,> ®Б-> <Ö^> ® 5 we have 
rjô = a'^syô = a~^8ßa == l<a,̂ >®s showing that // is the splitting map for the first 
column. Consequently, В ^ <a^> ® В splits. By [1; Theorem 2], b has a multiple 
p^'b having a jp-sequence in B, S being p-primary. Thus 5„_i < 5„ = 00 for some 
integer n. 

By Lemma 9 we now have B = X @ <Уи {Ь„, b„ + i, •••}>f\(p}. X @Y= T(ß), 

X = t^ <x;>, xj = p^^-^-i-^+o-ifo. - bj_,, j := 2, ..., « - h X, = 

= /-'"-'--'-'b^ ~ b„_i, p^%j = f% j = 1, 2, ..., П, |x„| = Z ^ ' - ^ ^ ' ' — . It is 
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easy to see that a = p'™-*"4„ - Z / ' ' ' " ' ' ' ' " ' " i and b = p'^'"-'''-"-'^*"'l 
i = 2 

j = 2 

Usmg Lemma 11 and the method from part (i) we can construct the sequence 
{it]T=i such that the elements a, b have the weak p-property. Now it remains to show 
that p^b has a /^-sequence in B. The factor-group Aj{a„,y is ( T \ [p]) -primary, 
<a,„> being p-pure in A and A being of rank one. Consequently, in the middle row 
of the (;iiagram (23) the group ^/<fl,„> ® В has zero p-primary part. Moreover, 
a ® b = p\a^ ® b)e {a„,} ® В by Lemma 3, from which it easily follows that the 
element a ® b has a p-sequence in <а,„> ® В (a ® b has a j^-sequence in Л ® Б 
by the hypothesis). Thus, in view of the natural isomorphism В ^ <a,„> ® B, the 
element p^b has a ]7-sequence in B. 

(iii) The case / = oo, s < oo is similar to the preceding one. 
(iv) Assume, finally, that I = s = со. We shal distinguish four cases. 
oc) Suppose that /,„_i < /„̂  = oo, s„^^ < s„ = oj for some m, neN. Using 

Lemma 11 and the method from part (i) we can construct the sequence {it]T=i 
such that the elements a, b have the weak /^property. However, in this case, the 
elements a, b have in fact the-p-property. 

ß) Suppose now that /,• < oo, i = 1, 2, ..., and .s„_i < ,s„ = oo for some n e N. 
With respect to Lemma 12 we can restrict ourselves to the case A = (^QQ, a^, .. .>n\(p}-
Obviously, there exists me N such that I„, - /c,„ ^ f\. Jf u^, i = 2, ..., are elements 

m 

(5) corresponding to A and U = ^® <Wj> then A == U @ {a^, ^m + u •••>я\(р} 
i = 2 

by Lemma 10. By Lemma 13 and the method used in part (i) one can construct the 
integers i^, /2, ..., 12^ ht+i such that г\ < /3 < ... < i2t-u /'2 < ù < ••• < ht^ 
aj ^ 0, J = 1, 2, ..., 2r + 1, and either i2t-i < ht+i = ^^ ht ^ ^̂ ' ^^ ht-i = 
= 2̂̂ +1 = "̂ ? 2̂f = ^- lïi both cases we put /2, = /2̂  + 2 =-'••• " ^ ^^^ h(t+i) + i = 
= m + i, i == 0, 1, ... .Thena2j = s„ ~ r„ - /c,„ = oo,a2y+i = 'm+j-t - Ki+j-t-
- r„, j = t, t + 1, ..., hm â - = cx) and the elements a, b have the p-property. 

j->oo 

Y) The case /^_i < /̂ ^ = 00 for some me N and 5̂  < 00, ; = 1, 2, ..., is similar 
to the preceding one. 

Ô) Finally, let us suppose that /̂  < сю, ŝ  < o), / = 1, 2, ... . Using Lemma 12 
twice we can suppose that A = {ÛQ, a^, ...>;^\гр), В = (bo, Ь^, •••>я\{р}» <̂o = ^y 
bo = b. 

During this part of the proof we shall use the notation Qt = h — ki, Oi = 5̂  — r ,̂ 
/ = 0, 1, ..., . Let Wi, Xi, i - 2, 3, ..., be the elements (5) corresponding to A, B, 
respectively. Put /̂  = 1. If i^, /'2, ..., /2^-1 ^^^ constructed let /2? be the smallest 
positive integer such that [wî t-i + il < |̂ i2t + i| ^^^ ht+i ^^ ^^^ smallest positive 
integer such that |xj2,+ i| < [w/̂ t+i + il- The sequence {/Jjli obviously satisfies rela­
tions (1). Further, [xĵ J S \^i2t~i + i\^ \^i2t + i\ ^ |^i2t+i| ^^ ^^^^ Lemma 15 gives 
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«2.-1 = Qi2t-i - ^iit ^ Ö' ^2t = ^iit - ^i,,^, ^ 0, r = 1, 2, ... , and the elements 
a, b have the weak p-property. It remains to show that hm a, = oo. 

f->00 

Let geA, heBhQ arbitrary elements. By the hypothesis there are Q, a, m, n e N 
and integers À^, Я2, ..., Л„, ^i, /^2, •.-, fin such that {Q, p) = (tx, p) = 1 and gg = 

m n m n 

= Y, Àiui, ah = Y. f^j^j' Then gaa ® b == Y, ^ Д.̂ .̂ (a^ ® b̂ .) and so 
ï = 0 7 = 0 i=oj=0 

(24) Л ® Б ^ <a,. ® b,. I f, j G /Vo>i®,̂ ^ . 

By [3; Lemma ll(ii)] we have T(Ä ® B) = T ® S and therefore Lemma 14 
yields 

00 00 

(25) Т(Л ® B) = T (X) S = ^Ф X * <«.> ® <^y> • 
j = 2 J = 2 

00 

Let M = X® («"i2.-, + i> ® <^b,» ® (<",-,,.,> ® <^;.,+ i » ) and let Lbe the com-
t= 1 

plementary direct summand of Т(Л ® B) from the decomposition (25). 
Now for each r = 1,2, ... put z^.-i = О,.̂ ^_^ ® b^^^^^, z^, = «/,,^,-1 ® ^tit 

and show that 

(26) (A ® Б)/Ь = <z, + LI r e /Vo>l<f,f/^ 

where ZQ = a ® b. For each /, j e /V^ choose an integer t such that г ^ i2t + i - 1̂  
j g hv Then 

(27) [p :^ / .e^ i - i ~ ui + ^/2. - ^ J^2 r " of® b̂ . = m + / , m e M , / e b , 

owing to the fact that \p : / , , , , , -1] a, , , , ,_i = [p : K,,,~^ + h - k^] a, and 

iv ' ^/aJ b/2t == Ь ' n^t + ^̂ i - 0 ] ^ - Now we set 

(28 ) i ^ 2 t - l = ^ / . e - l ~ ^1г.-2 + ^r-,,-, + /c,-,.-i ^ 

^ 2 t = ^ / 2 , - M - l ~ Qi2t-, + ^f2t + ^i2t ' 

- ^ 2 . = ^'^^ût+i + ^ lit-, 1-1 

and we are going to show that 

(29) [p : R,] z, + L - [p : S,_,] z,_, + L 

for each Г = 1 , 2 , . . . (^0 = 0). Since a =:: p^'a^, Ь == [p : Ö-̂ _̂ J ^/2-1 -
12 - 1 1 2 - 1 

- Z b • ^fc-i] %' we have a ® Ь = p^'z^ - ^ Z^+^'^-^ai ® x,. However, 
fc=2 fc=2 

Lemma 15 and |x;̂ | < |w/, + il = [мг]. /с = 2, ..., 1*2 - 1, У̂ ^М ^i ^ /c;- W^^ce 
12 - 1 

Y, p^''^'''^-' ai®x„ = 0 and (29) holds for t = 1. Further, an,_, = [p : Qht^i-i -
k = 2 iit+i-1 -J , 
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- л-,2,, hence 

(30) z2,-i = IP : e,-„,,_i - вь.-, + о-,-.. - <^i2.-i] ^2, -

- T [p-.Qj^i- e,-,.-, + «̂ h, - ö".-2.-i] «у ® ^b. + 

Choosing integers ji,./2 such that QJ^ - е,̂ _̂̂  ^ [xĵ J and (TJ^ — о-.-^,-! ^ |и,-2,н.,-]| 
we get [p : е,-,,^,-! - e,„_,] a,-^,^,_i ® x,-,, = {[p : QJ^ - e,-,,_,] â -. -

Ji 7*1 

and [JP : QJ^, - оь.- , + (т^, - (^ы-i] Uj ® b,^, = [p : e.-^i - еь , - . + «̂ h. " 

- ffb.-i] " j ® [P • ""^2 ~ <^ij bj, - I [p : (г,_1 - ff,„] X,) = 

=-- - Z [p : ^j-1 - {?/2t-i + 0-̂ -1 - ^/2t-i] Uj ® x^E L, From this and from 

(30) we easily get 

(31) ^2r-l + Ь = [p : Qi^^^^_, - Q,^^_^ + (7,,̂  - a,.^^_i] Z2, + 

+ W/2t-l + l ® ^/2t + ^ • 

F i n a l l y , Z2t = ( [ ] ? ; Ö/2. . , - ^ ^ 2 t . i - l ] ^f2t . i - " f 2 . . t ) ® {b • ^ / 2 . . 2 - 1 -
i2t + 2~ 1 

•~ ^i2t] ^/2t+2-i " Z [JP • ö"/c-i - cr̂ Ĵ X;t), from which it similarly as above 
follows that <̂=̂ '2t+i 

(32) ^2, + L = [p : .̂̂ ^̂ ^ - ^ , , , , ,_i + (T,,,,,-i - ^,,,1 Z2,+i + 

+ W/2t-M ® ^ / 2 . + i + ^ • 

The inequalities [xĵ J â |wi2t-i + i| ^^^ ht-2t+i| = |^i2t+il together with (31) and (32) 
prove the validity of (29) for each t = 1, 2, ... . Moreover, the formulas (31) and (32) 
together with (27) prove (26). 

By (26), (29), (31), (32) and Lemma 16 the factor-group {A ® B)/L can be repre­
sented as UJV. Since a ® Ь + L is mapped onto CQ + V, the element CQ + F has 

00 

a p-sequence in t / /F and consequently the series YJ {^i ~" ^t) ^^^ nonnegative 
00 i = l 2/1 

partial sums and J]{Ri - S^) = 00 by [З; Lemma 16]. However, ^ (JR̂  - Si) = 
n i = l П i = l 

< = i ( = 1 

= ""hn - fc,-2„.. = «2„, S (̂ ?i - S,.) = i;(i?2,+ l - S2, + i - i?2, - S2,) + R,-
n i=l t = l 

~ -^1 = Z (^/2. .1 - ^^2.-1 - ^•2t.2 + ^-2^) + Qh + ^h ~ ^-2 = Qiln., - ^i2n.2 = 

=" °̂ 2n+i and the proof is complete. 
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Сого1Ыгу1, Let Ä, в be mixed groups of rank one and letP, Q be non-torsion pure 
subgroups of the groups Ä, B, respectively. Then P ® Q splits if and only if A ® В 
splits. 

Proof. Each element ae P\ T(P) has in P the same p-height sequence as in A 
and it suffices to apply Theorem. 

Corollary 2. Let P, Q be pure subgroups of a splitting mixed group A of rank 
one.Then P®Q splits. In particular, each pure subgroup of a splitting mixed group 
of rank one has the splitting length at most 2. 

Proof. It follows immediately from Corollary 1. 

Corollary 3. Let A be a torsionfree group of rank one and В a mixed group of 
rank one. Then A ® В splits if and only if for each 0 ф a e Л there exists b e B\ 
\T[B) with the p-height sequence {?̂ ,-, s j ^ o ^^^^^ that for each prime p with A 

p-r educed we have h^[a) ^ r„ = r„+i = ... for some n e N and [p : hp[aj] b has a 
p-sequence in В whenever 5„ = oo. 

Proof. If p is any prime and {/ĉ -, /J^=o ̂ s the p-height sequence of a in A then l^ = 
= /̂  = ... = hp[a), /C|̂  = /c2 = ... = 0 and it suffices to apply Theorem. 

As a final application of our results we shall present a new proof of a special case 
of [3; Theorem] characterizing mixed abehan groups of rank one having the splitting 
length 2. 

Corollary 4, A non-splitting mixed abelian group A of rank one has the splitting 
length 2 if and only if it contains an element a eA\ T{A)such that for each prime p 
the p-height sequence {k^, //}^о ^/ ^ ^^^ the following two properties: 

(33) I,- k i - /c, + i ^ 0 , i = 0 , 1 , . . . , 

(34) lim {li - ki- /c,. + i) = 2hf(ä) - lim /^, 
f -> 00 J ->• 00 

where we put oo — m = oo for every m e A/Q u (GO). 

Proof. Assume first that A^ — A ® A splits. If p is a prime and A is p-reduced 
then li — ki — ki+i ^ 0, z = 0, 1, ..., by Lemma 11 and (34) obviously holds by 
Lemma 1. If Л is p-divisible and /„ = oo for some ne N then Lemma 11 proves (33) 
while (34) is obvious. Finally, if Л is p-divisible and /̂  < oo, i = 1,2,..., then Lemma 
15 proves (33) and (34) is true by the proof of Theorem, since in this case i^ = t, 
t= 1 ,2 , . . . . 

Conversely, if the conditions (33) and (34) are satisfied then the elements a, a 
have the p-propety for г\ = t and Л^ splits by Theorem. 
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