Czechoslovak Mathematical Journal

Ladislav Bican

The splitting of the tensor product of two mixed abelian groups of rank one

Czechoslovak Mathematical Journal, Vol. 33 (1983), No. 2, 193-211

Persistent URL:
http://dml.cz/dmlcz/101872

Terms of use:

© Institute of Mathematics AS CR, 1983

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

THE SPLITTING OF THE TENSOR PRODUCT OF TWO MIXED ABELIAN GROUPS OF RANK ONE

Ladislav Bican, Praha

(Received May 28, 1980;

Irwin, Khabbaz and Rayna [7] have studied the splitting properties of the tensor product of mixed abelian groups. They defined the splitting length of a mixed group G as the infimum of the set of all positive integers n such that the n-th tensor power $G^{n}=G \otimes G \otimes^{n-\text { times }} \otimes G$ splits and they constructed a mixed group of rank one having the splitting length n for every positive integer n. In my previous paper [3] I have characterized the mixed abelian groups of rank one having the splitting length n. The purpose of the present paper is to give a characterization of all pairs A, B of mixed abelian groups of rank one having the property that the tensor product $A \otimes B$ splits. Thus, the paper is devoted to the proof of the following result.

Theorem. The following three conditions are equivalent for mixed groups A, B of rank one:
a) Any two elements $a \in A \backslash T(A), b \in B \backslash T(B)$ have non-zero multiples ma, $n b$ having the p-property for each prime p.
b) There exist elements $a \in A \backslash T(A)$ and $b \in B \backslash T(B)$ having the p-property for each prime p.
c) The tensor product $A \otimes B$ splits.

By the word "group" we shall always mean an additively written abelian group. As in [1], we use the notions "characteristic" and "type" in the broad meaning, i.e. we deal with these notions in mixed groups. The symbols $h_{p}^{A}(a), \tau^{A}(a)$ and $\hat{\tau}^{A}(a)$ denote respectively the p-height, the characteristic and the type of the element a in the group A. π will denote the set of all primes. If T is a torsion group, then T_{p} is the p-primary component of T and similarly, if $\Pi^{\prime} \subseteq \Pi$ then $T_{\Pi^{\prime}}$, is defined by $T_{\Pi^{\prime}}=$ $=\sum_{p \in \Pi^{\prime}}^{\oplus} T_{p}$. The torsion part of a mixed group A is denoted by $T(A)$. If $\Pi^{\prime} \subseteq \Pi$ and if A is a mixed group with $T(A)_{\Pi^{\prime}}=0$ then for each subset $S \subseteq A$ the symbol $\langle S\rangle_{\Pi^{\prime}}^{A}$, denotes the Π^{\prime}-pure closure of S in A, the existence of which is easily seen.

For a mixed group A we denote by \bar{A} the factor group $A / T(A)$ and for $a \in A \bar{a}$ is the element $a+T(A)$ of \bar{A}. The symbol $|a|$ means the order of the element $a \in A$.

The rank of a mixed group A is that of \bar{A}. The set of all positive integers is denoted by $\mathbb{N}, \mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. The other notation will be essentially the same as in [4].
It was proved in [1; Theorem 2] that a mixed group A of rank one splits if and only if each element $a \in A \backslash T(A)$ has a non-zero multiple ma such that $\hat{\tau}^{A}(m a)=\hat{\tau}^{\bar{A}}(\bar{a})$ and $m a$ has a p-sequence whenever $h_{p}^{\bar{A}}(\bar{a})=\infty$ (i.e. there exist elements $h_{0}^{(p)}=m a$, $h_{1}^{(p)}, \ldots$ such that $\left.p h_{n+1}^{(p)}=h_{n}^{(p)}, n=0,1, \ldots\right)$. Recall [3] that the p-height sequence of an element $a \in A$ is the double sequence $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ of elements of $\mathbb{N}_{0} \cup\{\infty\}$ defined inductively in the following way: Put $k_{1}=k_{0}=l_{0}=0$ and $l_{1}=h_{p}^{A}(a)$. If k_{i}, l_{i} are defined and either $h_{p}^{A}\left(p^{k_{i}} a\right)=l_{i}=\infty$, or $l_{i}<\infty$ and $h_{p}^{A}\left(p^{k_{i}+k} a\right)=l_{i}+k$ for all $k \in \mathbb{N}$ then put $k_{i+1}=k_{i}$ and $l_{i+1}=l_{i}$. If $l_{i}<\infty$ and there are $k \in \mathbb{N}$ with $h_{p}^{A}\left(p^{k_{i}+k} a\right)>l_{i}+k$ then let k_{i+1} be the smallest positive integer for which $h_{p}^{A}\left(p^{k_{i+1}} a\right)=l_{i+1}>l_{i}+k_{i+1}-k_{i}$.

Definition. Let A, B be mixed groups, $a \in A, b \in B$ be elements of infinite orders. Further, let p be a prime, $h_{p}^{\bar{A}}(\bar{a})=l, h_{p}^{\bar{B}}(\bar{b})=s$ and let $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty},\left\{r_{i}, s_{i}\right\}_{i=0}^{\infty}$ be the p-height sequences of a and b in A and B, respectively. If there is a sequence $\left\{i_{t}\right\}_{t=1}^{\infty}$ of positive integers such that $i_{1}=1$, the subsequences $\left\{i_{2 t}\right\}_{t=1}^{\infty},\left\{i_{2 t-1}\right\}_{t=1}^{\infty}$ are nondecreasing,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} k_{i_{2 t-1}}=\lim _{t \rightarrow \infty} k_{t}, \quad \lim _{t \rightarrow \infty} r_{i_{2 t}}=\lim _{t \rightarrow \infty} r_{t}, \tag{1}
\end{equation*}
$$

and the sequence $\left\{\alpha_{t}\right\}_{t=1}^{\infty}$, where

$$
\begin{align*}
\alpha_{2 t-1} & =l_{i_{2 t-1}}-k_{i_{2 t-1}}-r_{i_{2 t}} \tag{2}\\
\alpha_{2 t} & =s_{i_{2 t}}-r_{i_{2 t}}-k_{i_{2 t+1}}, \quad t=1,2, \ldots
\end{align*}
$$

has non-negative terms, then we say that the elements a, b have the weak p-property.
If, moreover, one of the conditions
(i) $l<\infty, s<\infty$,
(ii) $l<\infty, s=\infty$ and $p^{l} b$ has a p-sequence in B,
(iii) $l=\infty, s<\infty$ and $p^{s} a$ has a p-sequence in A,
(iv) $l=s=\infty$ and $\lim _{t \rightarrow \infty} \alpha_{t}=\infty$.
is satisfied then we say that the elements a, b have the p-property.
Since the exponents are sometimes rather complicated we shall frequently denote the k-th power of p by $[p: k]$.

We start our investigations with some preliminary lemmas.
Lemma 1. Let p be a prime and let A be a mixed group. If $a \in A \backslash T(A)$ is an arbitrary element, $h_{p}^{\bar{A}}(\bar{a})=l<\infty$ and if $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ is the p-height sequence of a in A then there is an integer n such that $k_{n}=k_{n+1}=\ldots, l_{n}=l_{n+1}=\ldots$ and $l_{n}-k_{n}=l$.

Proof. From $h_{p}^{\bar{A}}(\bar{a})=l<\infty$ it follows that there exists an element $t \in T(A)$ with
$h_{p}^{A}(a+t)=l$. Writing t in the form $t=t_{1}+t_{2}$ where $\left|t_{1}\right|=p^{k}$ and $\left(\left|t_{2}\right|, p\right)=1$, we have $h_{p}^{A}\left(p^{k} a\right)=h_{p}^{A}\left(p^{k}(a+t)\right) \geqq k+1=h_{p}^{\bar{A}}\left(p^{k} \bar{a}\right) \geqq h_{p}^{A}\left(p^{k} a\right)$, so that $h_{p}^{A}\left(p^{k} a\right)-$ $-k=l$ and the assertion follows easily.

Lemma 2. Let p be a prime, A, B mixed groups, $a \in A \backslash T(A), b \in B \backslash T(B)$. If the elements a, b have the weak p-property then for all $t=1,2, \ldots$ with $\alpha_{1}, \alpha_{2}, \ldots$ $\ldots, \alpha_{2 t}, \alpha_{2 t+1}<\infty$ we have

$$
\begin{equation*}
a \otimes b=\left[p: \alpha_{2 t-1}+s_{i_{2 t}}\right]\left(a_{i_{2 t-1}} \otimes b_{i_{2} t}\right) \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
a \otimes b=\left[p: \alpha_{2 t}+l_{i_{2 t+1}}\right]\left(a_{i_{2 t+1}} \otimes b_{i_{2} t}\right), \tag{4}
\end{equation*}
$$

where $p^{l_{i}} a_{i}=p^{k_{i}} a, p^{s_{i}} b_{i}=p^{r_{i}} b, i=1,2, \ldots$.
Proof. Obviously, $a \otimes b=p^{l_{1}}\left(a_{1} \otimes b\right)=\left[p: l_{i_{1}}-\alpha_{i_{1}}\right]\left(a_{i_{1}} \otimes b\right)=\left[p: \alpha_{1}+\right.$ $\left.+r_{i_{2}}\right]\left(a_{i_{1}} \otimes b\right)=\left[p: \alpha_{1}+s_{i_{2}}\right]\left(a_{i_{1}} \otimes b_{i_{2}}\right)$.
Using the induction principle let us assume that (3) holds for some $t \geqq 1$. Then the hypothesis $\alpha_{2 t}=s_{i_{2 t}}-r_{i_{2 t}}-k_{i_{2 t+1}} \geqq 0$ yields $s_{i_{2 t}}-r_{i_{2 t}} \geqq k_{i_{2 t+1}} \geqq k_{i_{2 t-1}}$, and by the induction hypothesis we have $a \otimes b=\left[p: l_{i_{2 t-1}}-k_{i_{2 t-1}}-r_{i_{2 t}}+s_{i_{2} t}\right]$. $\cdot\left(a_{i_{2 t-1}} \otimes b_{i_{2 t}}\right)=\left[p: s_{i_{2 t}}-r_{i_{2} t}\right]\left(a \otimes b_{i_{2} t}\right)=\left[p: \alpha_{2 t}+l_{i_{2 t+1}}\right]\left(a_{i_{2 t+1}} \otimes b_{i_{2 t}}\right)$. Similarly, if we assume, that (4) holds for some $t \geqq 1$ then the hypothesis $\alpha_{2 t+1}=$ $=l_{i_{2 t+1}}-k_{i_{2 t+1}}-r_{i_{2 t+2}} \geqq 0$ yields $l_{i_{2 t+1}}-k_{i_{2 t+1}} \geqq r_{i_{2 t+2}} \geqq r_{i_{2 t}}$ and by the induction hypothesis we have $a \otimes b=\left[p: s_{i_{2 t}}-r_{i_{2 t}}-k_{i_{2 t+1}}+l_{i_{2 t+1}}\right]\left(a_{i_{2 t+1}} \otimes\right.$ $\left.\otimes b_{i_{2 t}}\right)=\left[p: l_{i_{2 t+1}}-k_{i_{2 t+1}}\right]\left(a_{i_{2 t+1}} \otimes b\right)=\left[p: \alpha_{2 t+1}+s_{i_{2 t+2}}\right]\left(a_{i_{2 t+1}} \otimes b_{i_{2 t+2}}\right)$.

Lemma 3. Let p be a prime, A, B mixed groups, $a \in A \backslash T(A), b \in B \backslash T(B)$. If the elements a, b have the weak p-property, $s_{i_{2 t-2}}<s_{n}=s_{i_{2 t}}=\infty$ and $\alpha_{i_{2 t-1}}<\infty$ then $a \otimes b=p^{l_{m}-k_{m}}\left(a_{m} \otimes b\right)$ for each $m \geqq i_{2 t-1}, l_{m}-k_{m}<\infty, p^{l_{m}} a_{m}=p^{k_{m}} a$.

Proof. By the hypothesis there exists an element $b^{\prime} \in B$ with $\left[p: k_{m}+r_{n}\right] b^{\prime}=$ $=\left[p: r_{n}\right] b$ and by Lemma 2 we have $a \otimes b=\left[p: \alpha_{2 t-2}+l_{i_{2 t-1}}\right]\left(a_{i_{2 t-1}} \otimes\right.$ $\left.\otimes b_{i_{2 t-2}}\right)=\left[p: l_{i_{2 t-1}}-k_{i_{2 t-1}}\right]\left(a_{i_{2 t-1}} \otimes b\right)=\left[p: l_{i_{2 t-1}}-k_{i_{2 t-1}}-r_{n}\right]\left(a_{i_{2 t-1}} \otimes\right.$ $\left.\otimes\left[p: r_{n}\right] b\right)=\left[p: l_{i_{2 t-1}}-k_{i_{2 t-1}}+k_{m}\right]\left(a_{i_{2 t-1}} \otimes b^{\prime}\right)=\left[p: k_{m}\right]\left(a \otimes b^{\prime}\right)=$ $=\left[p: l_{m}\right]\left(a_{m} \otimes b^{\prime}\right)=\left[p: l_{m}-k_{m}-r_{n}\right]\left(a_{m} \otimes\left[p: r_{n}\right] b\right)=\left[p: l_{m}-k_{m}\right]$. - $\left(a_{m} \otimes b\right)$ since $l_{m}-k_{m}-r_{n} \geqq l_{i_{2 t-1}}-k_{i_{2 t-1}}-r_{i_{2 t}}=\alpha_{2 t-1} \geqq 0$.

Lemma 4 (See [3; Lemma 1].) Let p a prime, A a mixed group and let $a_{i} \in A \backslash$ $\backslash T(A), i=0,1, \ldots$, be such elements that $p^{r_{i}} a_{i}=p^{s_{i-1}} a_{i-1}, i=1,2, \ldots, s_{0}=0$. If $\sum_{i=1}^{\infty}\left(r_{i}-s_{i}\right)$ has non-negative partial sums and $\sum_{i=1}^{\infty}\left(r_{i}-s_{i}\right)=\infty$ then a_{0} has a p-sequence in A.
Proof. Since $\liminf _{k_{1}-\infty}\left\{\sum_{i=1}^{n}\left(r_{i}-s_{i}\right)\right\}=\infty$ there exists the greatest integer k_{1} such that $\gamma_{1}=\sum_{i=1}^{k_{1}-1}\left(r_{i}^{n \rightarrow \infty}-s_{i}\right)=\inf \left\{\sum_{i=1}^{n}\left(r_{i}-s_{i}\right) \mid n=1,2, \ldots\right\}$. If the non-negative inte-
gers $k_{1}, k_{2}, \ldots, k_{j}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{j}$ are defined then let k_{j+1} be the greatest positive integer such that $\gamma_{j+1}=\sum_{i=1}^{k_{j+1}-1}\left(r_{i}-s_{i}\right)=\inf \left\{\sum_{i=1}^{n}\left(r_{m}-s_{i}\right) \mid n \geqq \underset{m}{\left.k_{j}\right\}} \gg \gamma_{j}\right.$. For $\underset{k_{j}-1}{\text { every }} j=1,2, \ldots$ and every $k_{j} \leqq m<k_{j+1}$ we have $\sum_{i=k_{j}}^{m}\left(r_{i}-s_{i}\right)=\sum_{i=1}^{m}\left(r_{i}-s_{i}\right)-$ $-\sum_{i=1}^{k_{j}-1}\left(r_{i}-s_{i}\right) \geqq \gamma_{j+1}-\gamma_{j}$ and consequently $\sum_{k_{j+1}-1}^{m}\left(r_{i=k_{j}}-s_{i}\right)^{i=k_{j}}-\left(\gamma_{j+1}-\gamma_{j}\right) \geqq 0$. In par-
 obtain $\left[p: r_{k_{j}}-\left(\gamma_{j+1}-\gamma_{j}\right)\right] a_{k_{j}}=\left[p: s_{k_{j}}+\left(r_{k_{j}}-s_{k_{j}}\right)-\left(\gamma_{j+1}-\gamma_{j}\right)\right] a_{k_{j}}=$ $=\left[p: r_{k_{j}+1}+\left(r_{k_{j}}-s_{k_{j}}\right)-\left(\gamma_{j+1}-\gamma_{j}\right)\right] a_{k_{j}+1}=\left[p: s_{k_{j}+1}+\underset{k_{j+1}-1}{\left(r_{k_{j}}-s_{k_{j}}\right)+}\right.$ $\left.+\left(r_{k_{j}+1}-s_{k_{j}+1}\right)-\left(\gamma_{j+1}-\gamma_{j}\right)\right] a_{k_{j}+1}=\ldots=\left[p: s_{k_{j+1}-1}+\sum_{i=k_{j}}^{k_{j+1}-1}\left(r_{i}-s_{i}\right)-\right.$ $\left.-\left(\gamma_{j+1}-\gamma_{j}\right)\right] a_{k_{j+1}-1}=\left[p: r_{k_{j+1}}\right] a_{k_{j+1}}$. Moreover, for each $1 \leqq m<k_{1}$ we have $\sum_{i=1}^{m}\left(r_{i}-s_{i}\right) \geqq \gamma_{1}$, so that $a_{0}=\left[\begin{array}{c}\left.p: r_{1}\right] \\ k_{1}-1\end{array} a_{1}=\left[p: s_{1}+\left(r_{1}-s_{1}\right)\right] a_{1}=\left[p: r_{2}+\right.\right.$ $\left.+\left(r_{1}-s_{1}\right)\right] a_{2}=\ldots=\left[p: s_{k_{1}-1}+\sum_{i=1}^{k_{1}-1}\left(r_{i}-s_{i}\right)\right] a_{k_{1}-1}=\left[p: r_{k_{1}}+\gamma_{1}\right] a_{k_{1}}$. Now it is easy to see that $a_{0}=\left[p: r_{k_{1}}+\gamma_{1}\right] a_{k_{1}},\left[p: r_{k_{1}}+\gamma_{1}-1\right] a_{k_{1}}, \ldots,\left[p: r_{k_{1}}-\right.$ $\left.-\left(\gamma_{2}-\gamma_{1}\right)\right] a_{k_{1}}=\left[p: r_{k_{2}}\right] a_{k_{2}},\left[p: r_{k_{2}}-1\right] a_{k_{2}}, \ldots,\left[p: r_{k_{2}}-\left(\gamma_{3}-\gamma_{2}\right)\right] a_{k_{2}}=$ $=\left[p: r_{k_{3}}\right] a_{k_{3}}, \ldots,\left[p: r_{k_{j}}\right] a_{k_{j}},\left[p: r_{k_{j}}-1\right] a_{k_{j}}, \ldots,\left[p: r_{k_{j}}-\left(\gamma_{j+1}-\gamma_{j}\right)\right] a_{k_{j}}=$ $=\left[p: r_{k_{j+1}}\right] a_{k_{j+1}}, \ldots$ is a p-sequence of the element a_{0} in A.

Lemma 5. Let p be a prime, A, B mixed groups, $a \in A \backslash T(A), b \in B \backslash T(B)$. If $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ and $\left\{r_{i}, s_{i}\right\}_{i=0}^{\infty}$ are the p-height sequences of the elements a and b in the groups A and B, respectively, and if $l_{1}=\infty, s_{m-1}<s_{m}=\infty$ then the element $a \otimes b$ has a p-sequence in $A \otimes B$.

Proof. By the hypothesis there are elements $a_{1}, a_{2}, \ldots \in A, b_{1}, b_{2}, \ldots \in B$ such that $p^{i+r_{m}} a_{i}=a, p^{i+r_{m}} b_{i}=p^{r_{m}} b, i=1,2, \ldots$ Obviously, $p^{r_{m}+2}\left(a_{1} \otimes b_{1}\right)=p^{r_{m}+1}\left(a_{1} \otimes\right.$ $\otimes b)=a \otimes b$ and $p^{i+1+r_{m}}\left(a_{i} \otimes b_{i}\right)=p a \otimes b_{i}=p^{i+r_{m}}\left(a_{i-1} \otimes b_{i}\right)=a_{i-1} \otimes$ $\otimes p^{r_{m}} b=p^{i-1+r_{m}}\left(a_{i-1} \otimes b_{i-1}\right)$ for each $i=2,3, \ldots$. Now $r_{m}+2-\left(1+r_{m}\right)+$ $+\sum_{i=2}^{n}\left(\left(i+1+r_{m}\right)-\left(i+r_{m}\right)\right)=n$ and the element $a \otimes b$ has a p-sequence in $A \otimes B$ by Lemma 4.

Lemma 6. Let p be a prime, A, B mixed groups, $a \in A \backslash T(A), b \in B \backslash T(B)$. If $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ and $\left\{r_{i}, s_{i}\right\}_{i=0}^{\infty}$ are the p-height sequences of the elements a and b in the groups A and B, respectively, and if $s=h_{p}^{\bar{B}}(\bar{b})=l_{1}=\infty, s_{m}<\infty, m=$ $=1,2, \ldots$, then the element $a \otimes b$ has a p-sequence in $A \otimes B$.
Proof. By the hypothesis there are elements $a_{1}, a_{2}, \ldots \in A, b_{1}, b_{2}, \ldots \in B$ such that $p^{s_{i+1}} a_{i}=a, p^{s_{i}} b_{i}=p^{r_{i}} b, i=1,2, \ldots$. Then $p^{s_{i}} b_{i}=p^{r_{i}} b=p^{r_{i}-r_{i-1}+s_{i-1}} b_{i-1}$ for each $i=1,2, \ldots$ and so $a \otimes b=p^{s_{1}+s_{2}}\left(a_{1} \otimes b_{1}\right)$ and $p^{r_{i}-r_{i-1}+s_{i-1}}\left(a_{i-1} \otimes\right.$ $\left.\otimes b_{i-1}\right)=p^{s_{i}}\left(a_{i-1} \otimes b_{i}\right)=p^{s_{i+1}}\left(a_{i} \otimes b_{i}\right)$. However, $s_{1}+s_{2}-\left(r_{2}-r_{1}+s_{1}\right)+$
$+\sum_{i=2}^{n}\left(s_{i+1}-\left(r_{i+1}-r_{i}+s_{i}\right)\right)=s_{n+1}-r_{n+1}$ and it suffices to use Lemma 4 owing to the fact that $\lim _{n \rightarrow \infty}\left(s_{n+1}-r_{n+1}\right)=s=\infty$.

Lemma 7. Let p be a prime, A, B mixed groups, $a \in A \backslash T(A), b \in B \backslash T(B)$. If $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ and $\left\{r_{i}, s_{i}\right\}_{i=0}^{\infty}$ are the p-height sequences of the elements a and b in the groups A and B, respectively, the elements a, b have the p-property and if $h_{p}^{\bar{A}}(\bar{a})=l=s=h_{p}^{\bar{B}}(\bar{b})=\infty, l_{n}<\infty, s_{n}<\infty, n=1,2, \ldots$, then the element $a \otimes b$ has a p-sequence in $A \otimes B$.

Proof. Put $y_{1}=l_{i_{1}}+s_{i_{2}}-r_{i_{2}}$ and $x_{2 t-1}=l_{i_{2 t-1}}+k_{i_{2 t+1}}-k_{i_{2 t-1}}, x_{2 t}=s_{i_{2 t}}+$ $+r_{i_{2 t+2}}-r_{i_{2 t} t}, y_{2 t}=l_{i_{2 t+1}}, y_{2 t+1}=s_{i_{2 t+2}}$ for each $t=1,2, \ldots$. Then $\left[p: y_{1}\right]$. $.\left(a_{i_{1}} \otimes b_{i_{2}}\right)=\left[p: l_{i_{1}}\right]\left(a_{i_{1}} \otimes b\right)=a \otimes b\left(\right.$ since $\left.\alpha_{1}=l_{i_{1}}-r_{i_{2}} \geqq 0\right)$ and $\left[p: y_{2_{2}}\right.$]. $\cdot\left(a_{i_{2 t+1}} \otimes b_{i_{2 t}}\right)=\left[p: k_{i_{2 t+1}}\right]\left(a \otimes b_{i_{2 t}}\right)=\left[p: x_{2 t-1}\right]\left(a_{i_{2 t-1}} \otimes b_{i_{2 t}}\right),\left[p: y_{2 t+1}\right]$. $\cdot\left(a_{i_{2 t+1}} \otimes b_{i_{2 t+2}}\right)=\left[p: r_{i_{2 t+2}}\right]\left(a_{i_{2 t+1}} \otimes b\right)=\left[p: x_{2 t}\right]\left(a_{i_{2 t+1}} \otimes b_{i_{2} t}\right)$ for each $t=$ $=1,2, \ldots$. Now $\sum_{t=1}^{2 n}\left(y_{t}-x_{t}\right)=l_{i_{1}}+s_{i_{2}}-r_{i_{2}}-\left(l_{i_{1}}+k_{i_{3}}-k_{i_{1}}\right)+\sum_{t=1}^{n}\left(y_{2 t}-\right.$ $\left.-x_{2 t}\right)+\sum_{t=1}^{n-1}\left(y_{2 t+1}-x_{2 t+1}\right)=s_{i_{2}}-r_{i_{2}}-k_{i_{3}}+\sum_{t=1}^{n}\left(l_{i_{2 t+1}}-s_{i_{2 t}}-r_{i_{2 t+2}}+r_{i_{2 t} t}\right)+$ $+\sum_{t=1}^{n-1}\left(s_{i_{2 t+2}}-l_{i_{2 t+1}}-k_{i_{2 t+3}}+k_{i_{2 t+1}}\right)=l_{i_{2 n+1}}-k_{i_{2 n+1}}-r_{i_{2 n+2}}=\alpha_{2 n+1}$, $\sum_{t=1}^{2 n-1}\left(y_{t}-x_{t}\right)=l_{i_{1}}+s_{i_{2}}-r_{i_{2}-}-\left(l_{i_{1}}+k_{i_{3}}-k_{i_{1}}\right)+\sum_{t=1}^{n-1}\left(y_{2 t}-x_{2 t}\right)+\sum_{t=1}^{n-1}\left(y_{2 t+1}-\right.$
$\left.-x_{2 t+1}\right)=s_{i_{2}}-r_{i_{2}}-k_{i_{3}}+\sum_{t=1}^{n-1}\left(l_{i_{2 t+1}}-s_{i_{2 t}}-r_{i_{2 t+2}}+r_{i_{2 t}}\right)+\sum_{t=1}^{n-1}\left(s_{i_{2 t+2}}-\right.$
$\left.-l_{i_{2 t+1}}-k_{i_{2 t+3}}+k_{i_{2 t+1}}\right)=s_{i_{2 n}}-r_{i_{2 n}}-k_{i_{2 n+1}}=\alpha_{2 n}$ for each $n=1,2, \ldots$ and the element $a \otimes b$ has a p-sequence in $A \otimes B$ by the hypothesis and Lemma 4.

Lemma 8. Let p be a prime and A a mixed group with a p-primary torsion part T. Further, let $a \in A \backslash T$ be an arbitrary element and let $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ be its p-height sequence. If n is a positive integer such that $l_{1}<l_{2}<\ldots<l_{n}<\infty$, $p^{t_{i}} a_{i}=p^{k_{i}} a, i=1,2, \ldots, n$, and if $U=\left\langle t_{2}, \ldots, t_{n}\right\rangle$ where

$$
\begin{equation*}
t_{i}=p^{l_{i}-k_{i}-l_{i-1}+k_{i-1}} a_{i}-a_{i-1}, \quad i=2, \ldots, n, \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
U=\sum_{i=2}^{n}\left\langle t_{i}\right\rangle \quad \text { and } \quad T=U \oplus V \tag{6}
\end{equation*}
$$

for a suitable subgroup V of T.
Proof. In the proof of [3; Lemma 4] it has been proved that

$$
\begin{equation*}
\left|t_{i}\right|=p^{l_{i-1}+k_{i}-k_{i-1}}, \quad i=2, \ldots, n \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{p}^{A}\left(p^{i} t_{i}\right)=j, \quad i=2, \ldots, n, \quad 0 \leqq j<\left|t_{i}\right| . \tag{8}
\end{equation*}
$$

If $n=2$ then U is a bounded pure subgroup of T and we are through. With respect to the induction principle we can suppose that $\left\langle t_{2}, \ldots, t_{n-1}\right\rangle=\sum_{i=2}^{n-1}\left\langle t_{i}\right\rangle$ is a direct summand of T and it suffices to show that $\left\langle t_{2}, \ldots, t_{n-1}\right\rangle \cap\left\langle t_{n}\right\rangle=0$ and that U is pure in T. If $0 \neq p^{j} t_{n}=\sum_{i=2}^{n-1} \lambda_{i} t_{i}$ then by (8) and the induction hypothesis we have $\lambda_{i}=p^{j} \mu_{i}$ for suitable integers $\mu_{i}, i=2, \ldots, n-1$. Further, by (7) we have $0 \neq$ $\neq p^{l_{n-1}+k_{n}-k_{n-1}-1} t_{n}=p^{l_{n-1}+k_{n}-k_{n-1}-1-j} \sum_{i=2}^{n-1} \lambda_{i} t_{i}=\sum_{i=2}^{n-1} p^{l_{n-1}+k_{n}-k_{n-1}-1} \mu_{i} t_{i}=0 \quad$ (since by the definition of the p-height sequence, $l_{n-1}+k_{n}-k_{n-1}-1 \geqq l_{n-1}>$ $>l_{i-1}+k_{i}-k_{i-1}$ for each $i=2, \ldots, n-1$) - a contradiction showing that $\left\langle t_{2}, \ldots, t_{n-1}\right\rangle \cap\left\langle t_{n}\right\rangle=0$. Now let the equation $p^{j} x=\sum_{i=2}^{n} \lambda_{i} t_{i}$ be solvable in T. If $\lambda_{n} t_{n}=0$ then $p^{j} \mid \lambda_{i}, i=2, \ldots, n-1$, by the induction hypothesis. If $\lambda_{n} t_{n} \neq 0$, $\lambda_{n}=p^{m} \mu_{n},\left(\mu_{n}, p\right)=1$, then for $m \geqq j, p^{j} \mid \lambda_{i}, i=2, \ldots, n-1$, by the induction hypothesis. The case $m<j$ is impossible, since then $p^{m} \mid \lambda_{i}, i=2, \ldots, n-1$, and $p^{l_{n-2}+k_{n-1}-k_{n-2}-m+j_{2}} x=p^{l_{n-2}+k_{n-1}-k_{n}-2} \mu_{n} t_{n}$ together with (8) gives $j \leqq m$ and we are through.

Lemma 9. Let p be a prime and A a mixed group with a p-primary torsion part T. Further, let $a \in A \backslash T$ be an arbitrary element and let $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ be its p-height sequence such that $l_{m-1}<l_{m}=\infty$ for some $m \in \mathbb{N}$. If $p^{l_{i}} a_{i}=p^{k_{i}} a$, $i=1,2, \ldots, n-1$, then there are elements a_{m}, a_{m+1}, \ldots in $G \backslash T$ such that:
(i) If $t_{i}, i=1,2, \ldots, m-1$ are elements (5),

$$
\begin{equation*}
t_{m}=p^{l_{m-1}+k_{m}-k_{m-1}} a_{m}-a_{m-1} \tag{9}
\end{equation*}
$$

and $U=\left\langle t_{2}, \ldots, t_{m}\right\rangle$ then

$$
\begin{equation*}
\left.U=\sum_{i=2}^{m} \oplus t_{i}\right\rangle \quad \text { and } \quad T=U \oplus V \tag{10}
\end{equation*}
$$

where V is a suitable subgroup of T such that

$$
\begin{equation*}
\left\langle p^{l_{m-1}+k_{m}-k_{m-1}} a_{m+i+1}-a_{m+i} \mid i \in \mathbb{N}_{0}\right\rangle \subseteq V . \tag{11}
\end{equation*}
$$

(ii) If A is of rank one and if we denote $H=\left\langle V \cup\left\{a_{m}, a_{m+1}, \ldots\right\}\right\rangle_{\pi \backslash\{p\}}^{A}$ then

$$
\begin{equation*}
A=U \oplus H \tag{12}
\end{equation*}
$$

Proof. With respect to [3; Lemmas 6,7] and their proofs it remains to show that $U=\sum_{i=2}^{m}\left\langle t_{i}\right\rangle$. By the preceding Lemma we have $\tilde{U}=\left\langle t_{2}, \ldots, t_{m-1}\right\rangle=\sum_{i=2}^{m-1}\left\langle t_{i}\right\rangle$. The hypothesis $h_{p}^{A}\left(p^{k_{m}} a\right)=\infty$ yields the existence of an element $a_{m}^{\prime} \in A \backslash T$ such that $p^{2\left(l_{m-1}+k_{m}-k_{m-1}\right)} a_{m}^{\prime}=p^{k_{m}} a=p^{l_{m-1}+k_{m}-k_{m-1}} a_{m-1}$. Put $t_{m}=p^{l_{m-1}+k_{m}-k_{m-1}} a_{m}^{\prime}-a_{m-1}$. If $p^{j} t_{m}=0$ for some $j<l_{m-1}+k_{m}-k_{m-1}$ then we can clearly assume that $j \geqq l_{m-1}$.

No we have $p^{l_{m-1}+k_{m}-k_{m-1}+j} a_{m}^{\prime}=p^{j} t_{m}+p^{j} a_{m-1}=p^{j-l_{m-1}+k_{m-1}} a$ which contradicts the definition of the p-height sequence. Thus

$$
\begin{equation*}
\left|t_{m}\right|=p^{l_{m-1}+k_{m}-k_{m-1}} \tag{13}
\end{equation*}
$$

Suppose now that for some $0 \leqq j<l_{m-1}+k_{m}-k_{m-1}$ we have $h_{p}^{A}\left(p^{j} t_{m}\right)>j$. Without loss of generality we can assume that $j \geqq l_{m-1}$. Then $p^{l_{m-1}+k_{m}-k_{m-1}+j} a_{m}^{\prime}-p^{j} t_{m}=$ $=p^{j} a_{m-1}=p^{j-1_{m-1}+k_{m-1}} a$, which contradicts the definition of the p-height sequence and consequently $h_{p}^{A}\left(p^{j} t_{m}\right)=j, 0 \leqq j<l_{m-1}+k_{m}-k_{m-1}$. Suppose now that $0 \neq p^{j} t_{m}=\sum_{i=2}^{m-1} \lambda_{i} t_{i}$. Then there are integers μ_{i} with $\lambda_{i}=p^{j} \mu_{i}, i=2, \ldots$ $\ldots, m-1, \tilde{U}$ being a direct summand of T. By the definition of the p-height sequence $\underset{m-1}{\operatorname{and}}$ by (13) and (8) we have $0 \neq p^{l_{m-1}+k_{m}-k_{m-1}-1} t_{m}=p^{l_{m-1}+k_{m}-k_{m-1}-j-1} \sum_{i=2}^{m-1} \lambda_{i} t_{i}=$ $=\sum_{i=2}^{m-1} p^{l_{m-1}+k_{m}-k_{m-1}-1} \mu_{i} t_{i}=0-\mathrm{a}$ contradiction showing that $U=\sum_{i=2}^{m} \oplus{ }_{i=2}^{\oplus}\left\langle t_{i}\right\rangle$ is a subgroup of T. With respect to the proof of [3; Lemma 6] we have $t_{m}=p^{l_{m-1}+k_{m}-k_{m-1}}$. . $a_{m}-a_{m-1}$ and the proof is complete.

Lemma 10. Let p be a prime and A a mixed group of rank one with a pprimary torsion part T. Further, let $a \in A \backslash T$ be an arbitrary element and let $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ be its p-height sequence, $l_{i}<\infty, p^{l_{i}} a_{i}=p^{k_{i}} a, i=0,1, \ldots$ If $n \geqq 2$ is positive integer, $t_{i}, i=2, \ldots$, are the elements $(5), U=\sum_{i=2}^{n}\left\langle t_{i}\right\rangle$ and $A=$ $=\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}$ then

$$
\begin{equation*}
A=U \oplus\left\langle a_{n}, a_{n+1}, \ldots\right\rangle_{\pi \backslash p p}^{A} \tag{14}
\end{equation*}
$$

Proof. For the sake of brevity we shall use the notations $C=\left\langle a_{n}, a_{n+1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}$ and $D=\left\langle a_{n}, a_{n+1}, \ldots\right\rangle$. If $c \in U \cap C$ is an arbitrary element then $\varrho c \in U \cap D$ for some integer ϱ with $(\varrho, p)=1$. Hence $\varrho c=\sum_{i=2}^{n} \lambda_{i} t_{i}=\sum_{i=n}^{m} \mu_{i} a_{i}$ for some $m \geqq n$. Multiplying by $p^{l_{m}}$ we get $p^{l_{m}} \sum_{i=n}^{m} \mu_{i} a_{i}=\left(p^{k_{m}} \mu_{m}+p^{i=2} \begin{array}{c}l_{m}-l_{m-1}+k_{m-1} \\ i=n \\ l_{m-1}\end{array}+\ldots\right.$
$\left.\ldots+p^{l_{m}-l_{n}+k_{n}} \mu_{n}\right) a$ and $p^{l_{m}} \sum_{i=2}^{n} \lambda_{i} t_{i}=0$ owing to the fact that $l_{m} \geqq l_{i}>l_{i-1}+$ $+k_{i}-k_{i-1}=\left|t_{i}\right|, \quad i=2, \ldots, n$. Thus $p^{l_{m}} \varrho c=0$ and $|a|=\infty$ yields $p^{k_{m}} \mu_{m}+$ $+p^{l_{m}-l_{m-1}+k_{m-1}} \mu_{m-1}+\ldots+p^{l_{m}-l_{n}+k_{n}} \mu_{n}=0$. However, for each $n \leqq i<m$ we have $l_{m}-l_{i}+k_{i} \geqq l_{m}-l_{m-1}+k_{m-1}>k_{m}$ and consequently $\mu_{m}=$ $=p^{l_{m}-l_{m-1}+k_{m-1}-k_{m}} v_{m}$ for some integer v_{m}. So, $\varrho c=v_{m}\left(p^{l_{m}-l_{m-1}+k_{m-1}-k_{m}} a_{m}-\right.$ $\left.-a_{m-1}\right)+\sum_{i=n}^{m-2} \mu_{i} a_{i}+\left(\mu_{m-1}+v_{m}\right) a_{m-1}=v_{m} t_{m}+\sum_{i=2}^{m-2} \mu_{i} a_{i}+\left(\mu_{m-1}+v_{m}\right) a_{m-1}$. Using the induction principle we easily obtain the equality $\varrho_{m} c=\sum_{i=n+1}^{m} v_{i} t_{i}+v_{n} a_{n}$ for suitable integers $v_{n}, v_{n+1}, \ldots, v_{m}$. However, $\left.v_{n} a_{n}=\varrho c-\sum_{i=n+1}^{m} \begin{array}{c}i=n+1 \\ v_{i} t_{i} \in T \cap\left\langle a_{n}\right\rangle= \\ m_{n}\end{array}\right\}$ $=0$, thus $v_{n}=0$ and $\varrho c \in U \cap \sum_{i=n+1}^{m}\left\langle t_{i}\right\rangle=0$. Consequently, by Lemma $8, c=0$,
T being p-primary and ϱ relatively prime to p. We have shown that $U \cap C=0$ and we proceed to $U \vee C=A$. Let $b \in A$ be arbitrary. By the hypothesis we have $\varrho b=$ $=\sum_{i=0}^{m} \lambda_{i} a_{i}$ for some integer $\varrho,(\varrho, p)=1$, and without loss of generality we can assume $i=0$
that m
$m$$\underset{n}{m}$. Putting $\varrho_{i}=l_{i}-k_{n-1}, i=0,1, \ldots, m$, we have $\varrho b=\sum_{i=0}^{m} \lambda_{i} a_{i}=\sum_{i=0}^{n-1} \lambda_{i} a_{i}+$ $+\sum_{i=n}^{m} \lambda_{i} a_{i}=\sum_{i=0}^{n-1} \lambda_{i}\left(p^{\varrho_{n}-\varrho_{i}} a_{n}-\sum_{j=i}^{n-1}\left(p^{\varrho_{j+1}-\varrho_{i}} a_{j+1}-p^{\rho_{j}-\varrho_{i}} a_{j}\right)\right)+\sum_{i=n}^{m} \lambda_{i} a_{i}=$ $=\sum_{i=0}^{n-1} \lambda_{i}\left(p^{\varrho_{n}-\varrho_{i}} a_{n}-\sum_{j=i}^{n-1} p^{\varrho_{j}-\varrho_{i}}\left(p^{\varrho_{j+1}-e_{j}} a_{j+1}-a_{j}\right)\right)+\sum_{i=n}^{m} \lambda_{i} a_{i}=$
$=-\sum_{i=0}^{n-1} \sum_{j=i}^{n-1} p^{\rho_{j}-\varrho_{i}} \lambda_{i} t_{j+1}+\sum_{i=0}^{n} p^{\rho_{n}-\varrho_{i}} \lambda_{i} a_{n}+\sum_{i=n+1}^{m} \lambda_{i} a_{i}=t+c, t \in U, c \in C$. However, t is divisible by ϱ, U being p-primary, and the assertion follows easily.

Lemma 11. Let p be a prime and A, B mixed groups of rank one with p-primary torsion parts T, S, respectively. Suppose that $a \in A \backslash T, b \in B \backslash S$ are arbitrary elements, $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty},\left\{r_{i}, s_{i}\right\}_{i=0}^{\infty}$ are the p-height sequences of the elements a, b in A, B, respectively, and $k_{m-1}<k_{m}=k_{m+1}=\ldots, r_{n-1}<r_{n}=r_{n+1}=\ldots$ for some $m, n \in \mathbb{N}_{0}$. If $h_{p}^{A \otimes B}(a \otimes b)=h_{p}^{\overline{A \otimes B}}(\overline{a \otimes b})$ then for each $i=2, \ldots, m, j=$ $=2, \ldots, n$ at least one of the following two inequalities is satisfied:

$$
\begin{align*}
& s_{j-1}-r_{j-1}-k_{i} \geqq 0, \tag{15}\\
& l_{i-1}-k_{i-1}-r_{j} \geqq 0 . \tag{16}
\end{align*}
$$

Moreover, for $i=m+1, j=n+1$ both these inequalities hold.
Proof. Assume first, that $l_{m}<\infty, s_{n}<\infty$. By Lemma 8 and [3; Lemma 8] we have $A=U \oplus V \oplus\left\langle a_{m}\right\rangle_{\pi \backslash\{p\}}^{A}, B=X \oplus Y \oplus\left\langle b_{n}\right\rangle_{\pi \backslash\{p\}}^{B}, U \oplus V=T, X \oplus Y=$ $=S, U=\sum_{i=2}^{m}\left\langle u_{i}\right\rangle, X=\sum_{j=2}^{n}\left\langle x_{j}\right\rangle, u_{i}=p^{l_{i}-k_{i}-l_{i-1}+k_{i-1}} a_{i}-a_{i-1}, x_{j}=$ $=p^{s_{j}-r_{j}-s_{j-1}+r_{j-1}} b_{j}-b_{j-1}, p^{l_{i}} a_{i}=p^{k_{i}} a, i=1,2, \ldots, m, p^{s_{j}} b_{j}=p^{r_{j}} b, j=$ $=1,2, \ldots, n$. It is easy to see that $a=p^{l_{m}-k_{m}} a_{m}-\sum_{i=2}^{m} p^{l_{i-1}-k_{i-1}} u_{i}$ and $b=p^{s_{n}-r_{n}} b_{n}-$ $-\sum_{j=2}^{n} p^{s_{j-1}-r_{j-1}} x_{j}$ where $l_{m}-k_{m}=l=h_{p}^{\bar{A}}(\bar{a})$ and $s_{n}-r_{n}=s=h_{p}^{\bar{B}}(\bar{b})$. Now for each $i=2, \ldots, m, j=2, \ldots, n$ the element $g_{i j}=p^{l_{i-1}-k_{i-1}+s_{j-1}-r_{j-1}} u_{i} \otimes x_{j}$ lies in a direct summand of $A \otimes B$ and from the equality $a \otimes b=p^{l+s} a_{m} \otimes b_{n}-$ $-\sum_{j=2}^{n} p^{l+s_{j-1}-r_{j-1}}\left(a_{m} \otimes x_{j}\right)-\sum_{i=2}^{m} p^{l_{i-1}-k_{i-1}+s} u_{i} \otimes b_{n}+\sum_{i=2}^{m} \sum_{j=2}^{n} g_{i j}$ it follows that $h_{p}^{A \otimes B}\left(g_{i j}\right) \geqq l+s=h_{p}^{A \otimes B}(a \otimes b)$. However, if $g_{i j} \neq 0$ then the p-height of the element $g_{i j}$ is obviously $l_{i-1}-k_{i-1}+s_{j-1}-r_{j-1}<l+s$ and so necessarily $g_{i j}=0$. Since (by (7)) $\left|u_{i} \otimes x_{j}\right|=\min \left\{\left|u_{i}\right|,\left|x_{j}\right|\right\}=\min \left\{p^{l_{i-1}+k_{i}-k_{i-1}}\right.$, $\left.p^{s_{j-1}+r_{j}-r_{j-1}}\right\}$, we get the desired result for each $i=2, \ldots, m, j=2, \ldots, n$. Consider now the elements $p^{l+s_{n-1}-r_{n-1}}\left(a_{m} \otimes x_{n}\right)$ and $p^{l_{m-1}-k_{m-1}+s}\left(u_{m} \otimes b_{n}\right)$. Suppose that $h_{p}^{A}\left(p^{j} a_{m}\right)=k>j$ for a positive integer j. Then $h_{p}^{A}\left(p^{j+l_{m}} a_{m}\right) \geqq k+l_{m}>j+$
$+l_{m}$. On the other hand, $h_{p}^{A}\left(p^{j+l_{m}} a_{m}\right)=h_{p}^{A}\left(p^{j+k_{m}} a\right)=j+l_{m}$ by the definition of the p-height sequence - a contradiction showing the p-purity of $\left\langle a_{m}\right\rangle$ in A. By [5; Corollary 60.5] the natural mapping $\left\langle a_{m}\right\rangle \otimes\left\langle x_{n}\right\rangle \rightarrow^{\alpha} A \otimes\left\langle x_{n}\right\rangle$ is monic and by [5; Theorem 60.4] the natural mapping $A \otimes\left\langle x_{n}\right\rangle \rightarrow^{\beta} A \otimes B$ is also monic $\left(\left\langle x_{n}\right\rangle\right.$ is pure in B$)$. Composing these monomorphisms with the natural isomorphisms $\left\langle x_{n}\right\rangle \cong\left\langle a_{m}\right\rangle \otimes\left\langle x_{n}\right\rangle$ we see that $\left|a_{m} \otimes x_{n}\right|=\left|x_{n}\right|=p^{s_{n-1}+r_{n}-r_{n-1}}$ from which it similarly as above follows the inequality $l_{m}-k_{m}-r_{n} \geqq 0$. The inequality (15) for $j=n+1, i=m$, is proved similarly.

Assume now that $l_{m}<\infty, s_{n}=\infty$. By Lemma 9 we have $B=X \oplus\langle Y \cup$ $\left.\cup\left\{b_{n}, b_{n+1}, \ldots\right\}\right\rangle_{\pi \backslash\{p\}}^{B}, X \oplus Y=S, X=\sum_{j=2}^{n}\left\langle x_{j}\right\rangle, x_{j}=p^{s_{j}-r_{j}-s_{j-1}+r_{j-1}} b_{j}-b_{j-1}$, $j=2, \ldots, n-1, x_{n}=p^{s_{n-1}+r_{n}-r_{n-1}} b_{n}-b_{n-1},\left|x_{n}\right|=p^{s_{n-1}+r_{n}-r_{n-1}}$. It is easy to see that $b=p^{2\left(s_{n-1}-r_{n-1}\right)+r_{n}} b_{n}-\sum_{j=2}^{n} p^{s_{j-1}-r_{j-1}} x_{j}$ and the same arguments as in the preceding case yield the desired result for each $i=2, \ldots, m, j=2, \ldots, n$ and the validity of (16) for $i=m+1, j=n$. The inequality (15) for $j=n+1$ is trivial.

Finally, if $l_{m}=r_{n}=\infty$ then similar treatments as above yield the result.
Lemma 12. Let A be a mixed group of rank one with a p-primary torsion part T and let B be a mixed group with a p-primary torsion part S and $\bar{B} p$-divisible. Further, lei $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ be the p-height sequence of an element $a_{0} \in A \backslash T$ such that $l_{i}<\infty$, $i=1,2, \ldots$.If $p^{l_{i}} a_{i}=p^{k_{i}} a_{0}, i=1,2, \ldots$, and $A \otimes B$ splits then $\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash(p)}^{A} \otimes$ $\otimes B$ splits as well.

Proof. By Lemma 8 and [3; Lemmas 4, 5] there exists a basic subgroup P of T such that $P=U \oplus V, H=\left\langle P \cup\left\{a_{0}, a_{1}, \ldots,\right\}\right\rangle_{\pi \backslash\{p\}}^{A}, H \cap T=P$ and $H=V \oplus$ $\oplus\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash p p}^{A}$. It is easy to see that for each $g \in A$ there are integers ϱ, σ, m such that $\varrho \bar{g}=\sigma \bar{a}_{m},(\varrho, p)=1$. Then $\varrho g=\sigma a_{m}+t, t \in T$, and so $A=H \vee T$. Hence $A / T=H \vee T / T \cong H / H \cap T=H / P$.

The sequences $0 \rightarrow P \rightarrow T \rightarrow T / P \rightarrow 0$ and $0 \rightarrow S \rightarrow B \rightarrow B / S \rightarrow 0$ are pure exact, so that by [5; Theorem 60.4] we have the commutative diagram

with exact rows and columns and natural homomorphisms. By the hypothesis, S and T / P are p-primary and $T / P, B / S$ are p-divisible, hence $T / P \otimes S=T / P \otimes B / S=0$ and
consequently $T \mid B \otimes B=0$. Thus $P \otimes B \cong T \otimes B$. Further, in the commutative diagram

$$
\begin{gathered}
0 \rightarrow P \otimes B \rightarrow H \otimes B \rightarrow H / P \otimes B \rightarrow 0 \\
\downarrow \alpha \\
\downarrow \beta \\
0 \rightarrow T \otimes B \rightarrow A \otimes B \rightarrow A / T \otimes B \rightarrow 0
\end{gathered}
$$

with exact rows and natural homomorphisms, the homomorphisms α and γ are isomorphisms by the preceding part and β is therefore an isomorphism by "Five Lemma". We see that $H \otimes B=(V \otimes B) \oplus\left(\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A} \otimes B\right.$ splits and the assertion immediately follows.

Lemma 13. Let p be a prime and let A, B be mixed groups of rank one with p-primary torsion parts T, S, respectively, \bar{A}, \bar{B} p-divisible. Further, let $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty},\left\{r_{i}, s_{i}\right\}_{i=0}^{\infty}$ be the p-height sequences of elements $a_{0} \in A \backslash T, b_{0} \in B \backslash S$, respectively, and $l_{i}<\infty, i=1,2, \ldots, s_{n-1}<s_{n}=\infty$ for some $n \in \mathbb{N}$. If $A=\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}$, $p^{l_{i}} a_{i}=p^{k_{i}} a_{0}, i=1,2, \ldots, h_{p}^{A \otimes B}(a \otimes b)=\infty$ and $m \in \mathbb{N}$ is such that $l_{m}-k_{m}-$ $-r_{n} \geqq 0$ then for each $i=2, \ldots, m, j=2, \ldots, n$, at least one of the inequalities (15), (16) is satisfied.

Proof. By Lemma 10 we have $A=\sum_{i=2}^{m}\left\langle u_{i}\right\rangle \oplus\left\langle a_{m}, a_{m+1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}$ where $u_{n}, i=2, \ldots$ \ldots, m, are the elements (5)corresponding to A and by Lemma 9 we have $B=\sum_{i=2}^{n}\left\langle x_{i}\right\rangle \oplus$ $\oplus\left\langle Y \cup\left\{b_{n}, b_{n+1}, \ldots\right\}\right\rangle_{\pi \backslash\{p\}}^{B}$, where $Y \subseteq S, x_{i}, i=2, \ldots, n-1$, are the elements (5) corresponding to B and $x_{n}=p^{s_{n-1}+r_{n}-r_{n}-1} b_{n}-b_{n-1}$. Now the proof runs along the same lines as that of Lemma 11.

Lemma 14. Let p be a prime, A a mixed group with a p-primary torsion part T and let $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ be the p-height sequence of an element $a_{0} \in A \backslash$ T. If $p^{t_{i}} a_{i}=p^{k_{i}} a_{0}$, $l_{i}<l_{i+1}<\infty, i=1,2, \ldots$, and $A=\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}$ then $T=\sum_{i=2}^{\infty}\left\langle t_{i}\right\rangle$, where t_{i} are the elements (5).
Proof. With respect to Lemma 8 and [3; Lemma 4] it suffices to show that $T=$ $=\sum_{i=2}^{\infty}\left\langle t_{i}\right\rangle$. If $t \in T$ is an arbitrary element then $m t=\sum_{i=0}^{n} \lambda_{i} a_{i}$ for some $m \in \mathbb{N},(m, p)=$ $=1$. For $n=0$ we have $\lambda_{0} a_{0} \in T$, hence $\lambda_{n}=0$ and $t=0 \in \sum_{i=2}^{\infty}\left\langle t_{i}\right\rangle$. For $n>0$ it is $p^{l_{n}} m t=\left(\sum_{i=0}^{n} p^{l_{n}-l_{i}+k_{i}} \lambda_{i}\right) a_{0} \in T$, so that $\sum_{i=0}^{n} p^{l_{n}-l_{i}+k_{i}} \lambda_{i}=0$ and $\lambda_{n}=p_{n-2}^{l_{n}-l_{n-1}-k_{n}+k_{n-1}}$. . λ_{n}^{\prime} for a suitable integer λ_{n}^{\prime}. Thus $m t=\lambda_{n}^{\prime} t_{n}+\left(\lambda_{n}^{\prime}+\lambda_{n-1}\right) a_{n-1}+\sum_{i=0}^{n-2} \lambda_{i} a_{i}$ and the assertion follows by induction.

Lemma 15. Let p be a prime and A, B mixed groups of rank one with p-primary torsion parts T, S, respectively, $\bar{A}, \bar{B} p$-divisible. Further, let $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty},\left\{r_{i}, s_{i}\right\}_{i=0}^{\infty}$ be the p-height sequences of the elements $a_{0} \in A \backslash T, b_{0} \in B \backslash S$, respectively, and
$l_{i}<\infty, s_{i}<\infty, i=1,2, \ldots$. If $A=\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}, p^{l_{i}} a_{i}=p^{k_{i}} a_{0}, i=1,2, \ldots$, $B=\left\langle b_{0}, b_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{\boldsymbol{B}}, p^{s_{i}} b_{i}=p^{r_{i}} b_{0}, i=1,2, \ldots$, and $h_{p}^{A \otimes B}(a \otimes b)=\infty$ then for each $i=2,3, \ldots, j=2,3, \ldots$ we have

$$
\begin{equation*}
s_{j-1}-r_{j-1}-k_{i} \geqq l_{i-1}-k_{i-1}-r_{j} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
s_{j-1}-r_{j-1}-k_{i} \geqq 0 \tag{18}
\end{equation*}
$$

provided $\left|u_{i}\right| \leqq\left|x_{j}\right|$ and

$$
\begin{equation*}
l_{i-1}-k_{i-1}-r_{j} \geqq s_{j-1}-r_{j-1}-k_{i} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
l_{i-1}-k_{i-1}-r_{j} \geqq 0 \tag{20}
\end{equation*}
$$

provided $\left|x_{j}\right| \leqq\left|u_{i}\right|$, where u_{i}, x_{j} are the elements (5) corresponding to the groups A, B, respectively.

Proof. If $\left|u_{i}\right|=l_{i-1}-k_{i-1}+k_{i} \leqq s_{j-1}-r_{j-1}+r_{j}$ then the inequality (17) is obvious. Further, by Lemma 10 we have $A=\sum_{m=2}^{i}\left\langle u_{m}\right\rangle \oplus\left\langle a_{i}, a_{i+1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}$ and $B=\sum_{n=2}^{j}\left\langle x_{n}\right\rangle \oplus\left\langle b_{j}, b_{j+1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{B}$. Continuing as in the proof of Lemma 11 we see that $p^{l_{i-1}-k_{i-1}+s_{j-1}-r_{j-1}} u_{i} \otimes x_{j}=0$, and this, for $\left|u_{i}\right| \leqq\left|x_{j}\right|$, yields the inequality (18). The inequalities (19) and (20) are proved dually.

Lemma 16. Let p be a prime and A a mixed group with a p-primary torsion part T. Suppose that A contains elements $a_{0}, a_{1}, \ldots \in A \backslash T$ such that $A=$ $\left.=\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}, p^{r_{i}} a_{i}=p^{s_{i-1}} a_{i-1}, r_{i}\right\rangle s_{i-1}, s_{0}=0,\left|p^{r_{i}-s_{i-1}} a_{i}-a_{i-1}\right|=p^{s_{i-1}}$, $i=1,2, \ldots$, and $T=\sum_{i=2}^{\infty}\left\langle p^{r_{i}-s_{i}-1} a_{i}-a_{i-1}\right\rangle$. Further, let $U=\sum_{i=0}^{\infty} U_{i}$, where U_{i}, $i=0,1, \ldots$, be a p-reduced torsionfree group of rank one, the p-divisible closure of which is isomorphic to \bar{A}. Then for each $i=0,1, \ldots$ there exists an element $c_{i} \in U_{i}$ such that $A \cong U / V$, where $V=\left\langle p^{r_{i}} c_{i}-p^{s_{i-1}} c_{i-1} \mid i \in \mathbb{N}\right\rangle_{\pi \backslash\{p\}}^{U}$ and the element a_{0} is mapped onto $c_{0}+V$.

Proof. For each $i=0,1, \ldots$ choose an element $c_{i} \in U_{i}$ such that $h_{p}^{U}\left(c_{i}\right)=0$ and $h_{q}^{U}\left(c_{i}\right)=h_{q}^{A}\left(a_{i}\right)$ for each prime $q \neq p$. Now it is easy to see that there exists a homomorphism $\varphi: U \rightarrow A$ with $\varphi\left(c_{i}\right)=a_{i}, i=0,1, \ldots$. If $a \in A$ is an arbitrary element then $r \bar{a}=s \bar{a}_{0}$ for some integers $r, s,(r, s)=1$. If $r=p^{k} r^{\prime},\left(r^{\prime}, p\right)=1$, then from $r_{i}>s_{i-1}$ it easily follows the existence of $j, l \in \mathbb{N}$ with $\bar{a}_{0}=p^{k+1} \bar{a}_{j}$. Clearly, $r^{\prime} a=p^{l} s a_{j}+r_{n}^{\prime} t$ and so $r^{\prime} y=p^{l} s c_{j}$ for some $y \in U_{j}$. If $t=\sum_{i=2}^{n} \lambda_{i} p^{r_{i}-s_{i-1}} a_{i}-$ $\left.-a_{i-1}\right)$ then $\varphi\left(y+\sum_{i=2}^{n} \lambda_{i}\left(p^{r_{i}-s_{i-1}} c_{i}-c_{i-1}\right)=a, \varphi\right.$ is an epimorphism and obviously $V \subseteq \operatorname{Ker} \varphi$.

Show that each element $a=\sum_{i=0}^{n} \lambda_{i} a_{i} \in T$ can be written in the form

$$
\begin{equation*}
a=\sum_{i=2}^{n} \mu_{i}\left(p^{r_{i}-s_{i}-1} a_{i}-a_{i-1}\right) \tag{21}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda_{n}=p^{r_{n}-s_{n-1}} \mu_{n} \tag{22}
\end{equation*}
$$

If $n \geqq 1$ then for sufficiently large $r \in \mathbb{N}$ we have $\left[p: r+r_{n}+\sum_{j=1}^{n-1}\left(r_{j}-s_{j}\right)\right] \sum_{i=0}^{n} \lambda_{i} a_{i}=$ $=\left(\sum_{i=0}^{n} \lambda_{i}\left[p: r_{n}+\sum_{j=1}^{n-1}\left(r_{j}-s_{j}\right)-r_{i}-\sum_{j=1}^{i-1}\left(r_{j}-s_{j}\right)\right]\right) p^{r} a_{0} \in T$, from which the validity of (22) immediately follows owing to the fact that $r_{i}>s_{i-1}, i=1,2, \ldots, n$. Thus $a=\mu_{n}\left(p^{r_{n}-s_{n-1}} a_{n}-a_{n-1}\right)+\left(\lambda_{n}+\mu_{n}\right) a_{n-1}+\sum_{i=0}^{n-2} \lambda_{i} a_{i}$ and we can use the induction
principle, the case $n=0$ being trivial.

If $u \in \operatorname{Ker} \varphi$ then $m u=\sum_{i=0}^{n} \lambda_{i} c_{i}$ for some $m \in \mathbb{N},(m, p)=1$. So, $\varphi(m u)=\sum_{i=0}^{n} \lambda_{i} a_{i}=$ $=0 \in T$, hence $0=\sum_{i=0}^{n} \lambda_{i} a_{i}=\sum_{i=2}^{n} \mu_{i}\left(p^{r_{i}-s_{i-1}} a_{i}-a_{i-1}\right)$ by (21) and $p^{s_{n-1}^{i=0}} v_{n}=\mu_{n}$ owing to the hypothesis $T=\sum_{i=2}^{\infty}\left\langle p^{r_{i}-s_{i-1}} a_{i}-a_{i-1}\right\rangle$ and $\left|p^{r_{i}-s_{i-1}} a_{i}-a_{i-1}\right|=$ $=p^{s_{i-1}}$. With respect to (22) we now have $m u=v_{n}\left(p^{r_{n}} c_{n}-p^{s_{n-1}} c_{n-1}\right)+\left(\lambda_{n-1}+\right.$ $\left.+v_{n} p^{s_{n-1}}\right) c_{n-1}+\sum_{i=0}^{n-2} \lambda_{i} c_{i}$ and we can continue by induction.

Proof of Theorem. a) implies b) trivially.
b) implies c). With respect to $[1$; Theorem 2] it suffices to show that $\tau^{A \otimes B}(a \otimes b)=\tau^{\overline{A \otimes B}}(a \otimes \bar{b})$ and that $a \otimes b$ has a p-sequence in $A \otimes B$ whenever $h_{p}^{A \otimes B}(a \otimes b)=\infty$.

Assume (i). By Lemma 1 there exists an integer n such that $k_{n}=k_{n+1}=\ldots$, $l_{n}=l_{n+1}=\ldots, r_{n}=r_{n+1}=\ldots, s_{n}=s_{n+1}=\ldots$ and $l=l_{n}-k_{n}, s=s_{n}-r_{n}$. From the definition of the p-height sequence we obtain the existence of elements $a_{1}, a_{2}, \ldots, a_{n} \in A, b_{1}, b_{2}, \ldots, b_{n} \in B$ such that $p^{l_{i}} a_{i}=p^{k_{i}} a, p^{s_{i}} b_{i}=p^{r_{i}} b, i=1,2, \ldots$ \ldots, n. Further, the relations (1) yield the existence of an integer t with $k_{i_{2 t+1}}=k_{n}$ and $r_{i_{2 t}}=r_{n}$. By Lemma 2 we now have $a \otimes b=\left[p: \alpha_{2 t}+l_{i_{2 t+1}}\right]\left(a_{i_{2 t+1}} \otimes b_{i_{2 t}}\right)=$ $=p^{l+s}\left(a_{i_{2 t+1}} \otimes b_{i_{2 t}}\right)$ and consequently $l+s=h_{p}^{\overline{A \otimes B}}(\overline{a \otimes b}) \geqq h_{p}^{A \otimes B}(a \otimes b) \geqq$ $\geqq l+s$.

Assume (ii). By Lemma 1 there exists an integer m such that $k_{m}=k_{m+1}=\ldots$, $l_{m}=l_{m+1}=\ldots$ and $l=l_{m}-k_{m}$. By hypothesis, $h_{p}^{B}\left(p^{l} b\right)=\infty$ and hence there exists an integer n with $l \geqq r_{n}$ and $r_{n}=r_{n+1}=\ldots, s_{n}=s_{n+1}=\ldots=\infty$. By (1) there exists an integer t with $r_{i_{2 t-2}}<r_{i_{2 t}}=r_{n}$. Now by Lemma 3 we have $a \otimes b=$ $=a_{m} \otimes p^{l} b$ and the element $a \otimes b$ has a p-sequence in $A \otimes B$ by the hypothesis.

Assume (iii). The proof is similar as in the preceding part.
Assume (iv). If $l_{n}<\infty, s_{n}<\infty$ for each $n=1,2, \ldots$ then it suffices to use Lemma 7.

Suppose now that $s_{n}=\infty$ for an integer n. With respect to Lemmas 5 and 6 we can suppose that $n>1$. The relations (1) yield the existence of an integer t such that $s_{i_{2 t-2}}<s_{i_{2 t}}=s_{n}$. If $\alpha_{2 t-1}<\infty$ then, by Lemma 3, $a \otimes b=\left[p: l_{i_{2 t-1}}-k_{i_{2 t-1}}\right]$. $\cdot\left(a_{i_{2 t-1}} \otimes b\right)$. However, $\alpha_{2 t-1} \geqq 0, a \otimes b=\left[p: \alpha_{2 t-1}\right]\left(a_{i_{2 t-1}} \otimes p^{r_{n}} b\right)$, the element $a_{i_{2 t-1}} \otimes p^{r_{n}} b$ has a p-sequence in $A \otimes B$ by Lemma 5 or 6 and consequently $a \otimes b$ has a p-sequence in $A \otimes B$.

It remains now to consider the case $\alpha_{2 t-1}=\infty=l_{i_{2 t-1}}$. If $l_{1}=\infty$ then it suffices to use Lemma 5. If $l_{1}<\infty$ then the relations (1) yield the existence of an integer $n<t$ such that $l_{i_{2 n-1}}<l_{i_{2 n+1}}=\infty$. In this case we have $0 \leqq \alpha_{2 n}<\infty$ so that Lemma 3 gives $a \otimes b=\left[p: s_{i_{2 n}}-r_{i_{2 n}}\right]\left(a \otimes b_{i_{2 n}}\right)=p^{\alpha{ }_{2 n}}\left(\left[p: k_{i_{2 n+}}\right] a \otimes b_{i_{2 n}}\right)$ and it suffices to use Lemma 5.
c) implies a). Assume that the tensor product $A \otimes B$ splits and let $a^{\prime} \in A \backslash T(A)$, $b^{\prime} \in B \backslash T(B)$ be arbitrary elements. By [1; Theorem 2] and [1; Lemma 3] there are non-zero integers m, n such that for the element $a \otimes b=m a^{\prime} \otimes n b^{\prime}$ we have $\tau^{A \otimes B}(a \otimes$ $\otimes b)=\tau^{\overline{A \otimes B}}(\overline{a \otimes b})$ and $a \otimes b$ has a p-sequence in $A \otimes B$ for every prime p with $\overline{A \otimes B} p$-divisible.

Let p be a prime. Denote $T^{\prime}=T(A)_{\pi \backslash\{p\}}, S^{\prime}=T(B)_{\pi \backslash\{p\}}$ and let $\alpha: A \rightarrow A / T^{\prime}$, $\beta: B-B / S^{\prime}$ be the canonical projections. By [5; Corollary 60.3] Ker $\alpha \otimes \beta$ is a homomorphic image of $\left(T^{\prime} \otimes B\right) \oplus\left(A \otimes S^{\prime}\right)$ and it is consequently a torsion group. So $A / T^{\prime} \otimes B / S^{\prime}$ splits and we can assume that $T(A)$ and $T(B)$ are p-primary groups.
(i) We shall assume that $l<\infty, s<\infty$ and we shall construct inductively the sequence $\left\{i_{i}\right\}_{t=1}^{\infty}$ satisfying conditions (1) and (2). By Lemma 1 there are $m, n \in \mathbb{N}$ such that $k_{m-1}<k_{m}=k_{m+1}=\ldots, r_{n-1}<r_{n}=r_{n+1}=\ldots, l_{m}-k_{m}=l, s_{n}-$ $-r_{n}=s$. If $m=1$ then we put $i_{1}=i_{3}=\ldots=1$ and $i_{2}=i_{4}=\ldots=n$. In this case (1) is obviously satisfied and $\alpha_{2 t-1}=l_{m}-k_{m}-r_{n} \geqq 0, \alpha_{2 t}=s_{n}-r_{n}-k_{m} \geqq$ $\geqq 0$ for each $t=1,2, \ldots$ by Lemma 11 .

For $m>1$ we put $i_{1}=1$. Suppose now that we have constructed the integers $i_{1}, i_{2}, \ldots, i_{2 t-1}, t \geqq 1$, in such a way that $i_{1}<i_{3}<\ldots<i_{2 t-1}<m, i_{2}<i_{4}<\ldots$ $\ldots<i_{2 t-2}<n, \alpha_{j} \geqq 0$ for each $j=1,2, \ldots, 2 t-2$ and $l_{i_{2 j-1}}-k_{i_{2 j-1}}-r_{i_{2 j}+1}<$ $<0, s_{i_{2 j}}-r_{i_{j} j}-k_{i_{i_{j+1}}}<0$ for each $j=1,2, \ldots, t-1$. From Lemma 11 and $s_{i_{2 t-2}}-r_{i_{2 t-2}}-k_{i_{2 t-1}+1}<0$ it follows that $l_{i_{2 t-1}}-k_{i_{2 t-1}}-r_{i_{2 t-2}+1} \geqq 0$ so that there exists an integer $i_{2 t}>i_{2 t-2}$ such that $\alpha_{2 t-1}=l_{i_{2 t-1}}-k_{i_{2 t-1}}-r_{i_{2 t}} \geqq 0$ and either $i_{2 t}=m$ or $l_{i_{2 t-1}}-k_{i_{2 t-1}}-r_{t_{2 t}+1}<0$. Similarly, let us suppose that we have constructed the integers $i_{1}, i_{2}, \ldots, i_{2 t}, t \geqq 1$, in such a way that $i_{1}<i_{3}<\ldots$ $\ldots<i_{2 t-1}<m, i_{2}<i_{4}<\ldots<i_{2 t}<n, \alpha_{j} \geqq 0$ for each $j=1,2, \ldots, 2 t-1$ and $l_{i_{2_{j-1}}}-k_{i_{2_{j-1}}}-r_{i_{i_{j}+1}}<0, s_{i_{2 j}}-r_{i_{2 j}}-k_{i_{2 j+1}+1}<0$ for each $j=1,2, \ldots$ $\ldots, t-1, l_{i_{2 t-1}}-k_{i_{2 t-1}}-r_{i_{2 t}+1}<0$. By Lemma 11 we have $s_{i_{2 t}}-r_{i_{2 t}}-k_{i_{2 t-1}+1} \geqq$ $\geqq 0$ so that there exists an integer $i_{2 t+1}>i_{2 t-1}$ such that $\alpha_{2 t}=s_{i_{2 t}}-r_{i_{2 t}}-$ $-k_{i_{2 t+1}} \geqq 0$ and either $i_{2 t+1}=m$ or $s_{i_{2 t}}-r_{i_{2 t}}-k_{i_{2 t+1+1}}<0$.

It is easy to see that there exists an integer t such that either $i_{2 t+1}=m$ or $i_{2 t}=n$. In the former case we put $i_{2 t+1}=i_{2 t+3}=\ldots=m, i_{2 t+2}=i_{2 t+4}=\ldots=n$ and by

Lemma 11 we obtain $\alpha_{2 j+1}=l_{m}-k_{m}-r_{n} \geqq 0, \alpha_{2_{j+2}}=s_{n}-r_{n}-k_{m} \geqq 0$ for each $j=t, t+1, \ldots$. In the latter we put $i_{2 t}=i_{2 t+2}=\ldots=n, i_{2 t+1}=$ $=i_{2 t+3}=\ldots=m$ and by Lemma 11 we again get $\alpha_{2 j+1}=l_{m}-k_{m}-r_{n} \geqq 0$, $\alpha_{2 j}=s_{n}-r_{n}-k_{m} \geqq 0$ for each $j=t, t+1, \ldots$.
We have shown that in this case the elements a, b have the p-property.
(ii) Assume now that $l<\infty, s=\infty$ and show that the elements a, b have the p-property. By Lemma 8 and [3; Lemma 8] we have $A=U \oplus V \oplus\left\langle a_{m}\right\rangle_{\pi \backslash\{p\}}^{A}$, $\left.U \oplus V=T(A), \quad U=\sum_{i=2}^{n} \oplus u_{i}\right\rangle, \quad u_{i}=p^{l_{i}-k_{i}-l_{i-1}+k_{i-1}} a_{i}-a_{i-1}, \quad p^{l_{i}} a_{i}=p^{k_{i}} a, \quad i=$ $=1,2, \ldots, m$, and $l=l_{m}-k_{m}>l_{m-1}-k_{m-1}$. It has been mentioned in the proof of Lemma 11 that $\left\langle a_{m}\right\rangle$ is a p-pure subgroup of A. Thus the exact sequence $0 \rightarrow\left\langle a_{m}\right\rangle \rightarrow$ $\rightarrow A \rightarrow A \mid\left\langle a_{m}\right\rangle \rightarrow 0$ is p-pure and the exact sequence $0 \rightarrow S \rightarrow B \rightarrow B \mid S \rightarrow 0$, where $S=T(B)$, is pure. Let us consider the following commutative diagram

with natural homomorphisms, where all three columns are exact by [5; Theorem $60.4]$, the first row is exact by [5; Cotollary 60.5] and the third row is exact by [5; Theorem 60.6]. Using [5; Theorem 60.2] one easily obtain the exactness of the second row.

Since A is of rank one and $\left\langle a_{m}\right\rangle$ is p-pure in A, the factor-group $A \mid\left\langle a_{m}\right\rangle$ is $(\pi \backslash\{p\})$-primary. Further, S is p-primary by the hypothesis, so that $A \mid\left\langle a_{m}\right\rangle \otimes S=0$ and α is an isomorphism. If we denote $T=T(A)$ then the sequence $0 \rightarrow T \otimes B / S \rightarrow$ $\rightarrow A \otimes B / S \rightarrow A / T \otimes B / S \rightarrow 0$ is exact by [5; Theorem 60.4] and $T \otimes B / S=0$, T being p-primary and B / S being p-divisible. Thus $A \otimes B / S \cong A / T \otimes B / S$ is torsionfree, hence $\operatorname{Im} \beta=T(A \otimes B)$ and the middle column splits. If $\varepsilon: A \otimes B \rightarrow A \otimes S$ is the splitting map, $\varepsilon \beta=1_{A \otimes S}$, then for $\eta=\alpha^{-1} \varepsilon \gamma:\left\langle a_{m}\right\rangle \otimes B \rightarrow\left\langle a_{m}\right\rangle \otimes S$ we have $\eta \delta=\alpha^{-1} \varepsilon \gamma \delta=\alpha^{-1} \varepsilon \beta \alpha=1_{\left\langle a_{m}\right\rangle \otimes S}$ showing that η is the splitting map for the first column. Consequently, $B \cong\left\langle a_{m}\right\rangle \otimes B$ splits. By [1; Theorem 2], b has a multiple $p^{\prime \prime} b$ having a p-sequence in B, S being p-primary. Thus $s_{n-1}<s_{n}=\infty$ for some integer n.

By Lemma 9 we now have $B=X \oplus\left\langle Y \cup\left\{b_{n}, b_{n+1}, \ldots\right\}\right\rangle_{\pi \backslash\{p\}}^{B}, X \oplus Y=T(B)$, $X=\sum_{j=2}^{n}\left\langle x_{j}\right\rangle, x_{j}=p^{s_{j}-r_{j}-s_{j-1}+r_{j-1}} b_{j}-b_{j-1}, j=2, \ldots, n-1, x_{n}=$ $=p^{s_{n-1}+r_{n}-r_{n-1}} b_{n}-b_{n-1}, \quad p^{s_{s}} b_{j}=p^{r_{j}} b, j=1,2, \ldots, n,\left|x_{n}\right|=p^{s_{n-1}+r_{n}-r_{n-1}}$. It is
$\underset{n}{\text { easy }}$ to see that $a=p^{l_{m}-k_{m}} a_{m}-\sum_{i=2}^{m} p^{l_{i-1}-k_{i-1}} u_{i}$ and $b=p^{2\left(s_{n-1}-r_{n-1}\right)+r_{n}} b_{n}-$ $-\sum_{j=2}^{n} p^{s_{j-1}-r_{j-1}} x_{j}$.

Using Lemma 11 and the method from part (i) we can construct the sequence $\left\{i_{t}\right\}_{t=1}^{\infty}$ such that the elements a, b have the weak p-property. Now it remains to show that $p^{l} b$ has a p-sequence in B. The factor-group $A \mid\left\langle a_{m}\right\rangle$ is $(T \backslash\{p\})$-primary, $\left\langle a_{m}\right\rangle$ being p-pure in A and A being of rank one. Consequently, in the middle row of the diagram (23) the group $A \mid\left\langle a_{m}\right\rangle \otimes B$ has zero p-primary part. Moreover, $a \otimes b=p^{l}\left(a_{m} \otimes b\right) \in\left\langle a_{m}\right\rangle \otimes B$ by Lemma 3, from which it easily follows that the element $a \otimes b$ has a p-sequence in $\left\langle a_{m}\right\rangle \otimes B(a \otimes b$ has a p-sequence in $A \otimes B$ by the hypothesis). Thus, in view of the natural isomorphism $B \cong\left\langle a_{m}\right\rangle \otimes B$, the element $p^{l} b$ has a p-sequence in B.
(iii) The case $l=\infty, s<\infty$ is similar to the preceding one.
(iv) Assume, finally, that $l=s=\infty$. We shal distinguish four cases.
$\alpha)$ Suppose that $l_{m-1}<l_{m}=\infty, s_{n-1}<s_{n}=\infty$ for some $m, n \in \mathbb{N}$. Using Lemma 11 and the method from part (i) we can construct the sequence $\left\{i_{t}\right\}_{t=1}^{\infty}$ such that the elements a, b have the weak p-property. However, in this case, the elements a, b have in fact the- p-property.
β) Suppose now that $l_{i}<\infty, i=1,2, \ldots$, and $s_{n-1}<s_{n}=\infty$ for some $n \in \mathbb{N}$. With respect to Lemma 12 we can restrict ourselves to the case $A=\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}$. Obviously, there exists $m \in \mathbb{N}$ such that $l_{m}-k_{m} \geqq r_{n}$. If $u_{i}, i=2, \ldots$, are elements (5) corresponding to A and $U=\sum_{i=2}^{m}\left\langle u_{i}\right\rangle$ then $A=U \oplus\left\langle a_{m}, a_{m+1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}$ by Lemma 10. By Lemma 13 and the method used in part (i) one can construct the integers $i_{1}, i_{2}, \ldots, i_{2 t}, i_{2 t+1}$ such that $i_{1}<i_{3}<\ldots<i_{2 t-1}, i_{2}<i_{4}<\ldots<i_{2 t}$, $\alpha_{j} \geqq 0, j=1,2, \ldots, 2 t+1$, and either $i_{2 t-1}<i_{2 t+1}=m, i_{2 t}=n$, or $i_{2 t-1}=$ $=i_{2 t+1}=m, i_{2 t}=n$. In both cases we put $i_{2 t}=i_{2 t+2}=\ldots=n$ and $i_{2(t+i)+1}=$ $=m+i, i=0,1, \ldots$. Then $\alpha_{2 j}=s_{n}-r_{n}-k_{m}=\infty, \alpha_{2 j+1}=l_{m+j-t}-k_{m+j-t}-$ $-r_{n}, j=t, t+1, \ldots, \lim \alpha_{j}=\infty$ and the elements a, b have the p-property.
γ) The case $l_{m-1}<l_{m}=\infty$ for some $m \in \mathbb{N}$ and $s_{j}<\infty, j=1,2, \ldots$, is similar to the preceding one.

ס) Finally, let us suppose that $l_{i}<\infty, s_{i}<\infty, i=1,2, \ldots$. Using Lemma 12 twice we can suppose that $A=\left\langle a_{0}, a_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{A}, B=\left\langle b_{0}, b_{1}, \ldots\right\rangle_{\pi \backslash\{p\}}^{B}, a_{0}=a$, $b_{0}=b$.

During this part of the proof we shall use the notation $\varrho_{i}=l_{i}-k_{i}, \sigma_{i}=s_{i}-r_{i}$, $i=0,1, \ldots$. Let $u_{i}, x_{i}, i=2,3, \ldots$, be the elements (5) corresponding to A, B, respectively. Put $i_{1}=1$. If $i_{1}, i_{2}, \ldots, i_{2 t-1}$ are constructed let $i_{2 t}$ be the smallest positive integer such that $\left|u_{i_{2 t-1}+1}\right|<\left|x_{i_{2 t}+1}\right|$ and $i_{2 t+1}$ be the smallest positive integer such that $\left|x_{i_{2 t}+1}\right|<\left|u_{i_{2 t+1}+1}\right|$. The sequence $\left\{i_{t}\right\}_{t=1}^{\infty}$ obviously satisfies relations (1). Further, $\left|x_{i_{2} t}\right| \leqq\left|u_{i_{2 t-1}+1}\right|,\left|u_{i_{2 t+1}}\right| \leqq\left|x_{i_{2 t}+1}\right|$ so that Lemma 15 gives
$\alpha_{2 t-1}=\varrho_{i_{2 t-1}}-r_{i_{2 t}} \geqq 0, \alpha_{2 t}=\sigma_{i_{2 t}}-k_{i_{2 t+1}} \geqq 0, t=1,2, \ldots$, and the elements a, b have the weak p-property. It remains to show that $\lim _{t \rightarrow \infty} \alpha_{t}=\infty$.

Let $g \in A, h \in B$ be arbitrary elements. By the hypothesis there are $\varrho, \sigma, m, n \in \mathbb{N}$ and integers $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}, \mu_{1}, \mu_{2}, \ldots, \mu_{n}$ such that $(\varrho, p)=(\sigma, p)=1$ and $\varrho g=$ $=\sum_{i=0}^{m} \lambda_{i} a_{i}, \sigma h=\sum_{j=0}^{n} \mu_{j} b_{j}$. Then $\varrho \sigma a \otimes b=\sum_{i=0}^{m} \sum_{j=0}^{n} \lambda_{i} \mu_{j}\left(a_{i} \otimes b_{j}\right)$ and so

$$
\begin{equation*}
A \otimes B=\left\langle a_{i} \otimes b_{j} \mid i, j \in \mathbb{N}_{0}\right\rangle_{\pi \backslash\{p\}}^{A \otimes B} . \tag{24}
\end{equation*}
$$

By [3; Lemma 11(ii)] we have $T(A \otimes B)=T \otimes S$ and therefore Lemma 14 yields

$$
\begin{equation*}
T(A \otimes B)=T \otimes S=\sum_{i=2}^{\infty} \sum_{j=2}^{\infty}\left\langle u_{i}\right\rangle \otimes\left\langle x_{j}\right\rangle \tag{25}
\end{equation*}
$$

Let $M=\sum_{t=1}^{\infty}\left(\left(\left\langle u_{i_{2 t-1}+1}\right\rangle \otimes\left\langle x_{i_{2 t}}\right\rangle\right) \oplus\left(\left\langle u_{i_{2 t+1}}\right\rangle \otimes\left\langle x_{i_{2 t}+1}\right\rangle\right)\right)$ and let L be the complementary direct summand of $T(A \otimes B)$ from the decomposition (25).

Now for each $t=1,2, \ldots$ put $z_{2 t-1}=a_{i_{2 t-1}} \otimes b_{i_{2 t}-1}, \quad z_{2 t}=a_{i_{2 t+1}-1} \otimes b_{i_{2 t}}$ and show that

$$
\begin{equation*}
(A \otimes B) / L=\left\langle z_{t}+L \mid t \in \mathbb{N}_{0}\right\rangle_{\pi \backslash\{p\}}^{(A \otimes B) / L} \tag{26}
\end{equation*}
$$

where $z_{0}=a \otimes b$. For each $i, j \in \mathbb{N}_{0}$ choose an integer t such that $i \leqq i_{2 t+1}-1$, $j \leqq i_{2}$. Then
(27) $\left[p: \varrho_{i_{2 t+1}-1}-\varrho_{i}+\sigma_{i_{2 t}}-\sigma_{j}\right] z_{2 t}-a_{i} \otimes b_{j}=m+l, \quad m \in M, \quad l \in L$, owing to the fact that $\left[p: l_{i_{2 t+1}-1}\right] a_{i_{2 t+1}-1}=\left[p: k_{i_{2 t+1}-1}+l_{i}-k_{i}\right] a_{i}$ and $\left[p: s_{i_{2} t}\right] b_{i_{2 t}}=\left[p: r_{i_{2 t}}+s_{j}-r_{j}\right] b_{j}$. Now we set

$$
\begin{align*}
& R_{2 t-1}=\sigma_{i_{2 t}-1}-\sigma_{i_{2 t-2}}+\varrho_{i_{2 t-1}}+k_{i_{2 t-1}}, \tag{28}\\
& S_{2 t-1}=r_{i_{2 t}}+\sigma_{i_{2 t}-1}, \\
& R_{2 t}=\varrho_{i_{2 t+1}-1}-\varrho_{i_{2 t-1}}+\sigma_{i_{2 t}}+r_{i_{2 t}}, \\
& S_{2 t}=k_{i_{2 t+1}}+\varrho_{i_{2 t+1}-1}
\end{align*}
$$

and we are going to show that

$$
\begin{equation*}
\left[p: R_{t}\right] z_{t}+L=\left[p: S_{t-1}\right] z_{t-1}+L \tag{29}
\end{equation*}
$$

for each $t=1,2, \ldots \quad\left(S_{0}=0\right)$. Since $a=p^{\rho_{1}} a_{1}, \quad b=\left[p: \sigma_{i_{2}-1}\right] b_{i_{2}-1}-$ $-\sum_{k=2}^{i_{2}-1}\left[p: \sigma_{k-1}\right] x_{k}$, we have $a \otimes b=p^{R_{1}} z_{1}-\sum_{k=2}^{i_{2}-1} p^{\rho_{1}+\sigma_{k}-1} a_{1} \otimes x_{k}$. However, Lemma 15 and $\left|x_{k}\right|<\left|u_{i_{1}+1}\right|=\left|u_{2}\right|, k=2, \ldots, i_{2}-1$, yield $\varrho_{1} \geqq k_{2}$. Hence $\sum_{k=2}^{i_{2}-1} p^{e_{1}+\sigma_{k-1}} a_{1} \otimes x_{k}=0$ and (29) holds for $t=1$. Further, $a_{i_{2 t+1}-1}=\left[p: \varrho_{i 2 t+1}-1-\right.$ $\left.\stackrel{\varrho_{i}}{-\varrho_{i_{t-1}}}\right] a_{i_{2 t+1}-1}-\sum_{j=i_{2 t-1}+1}^{i_{2 t+1}-1}\left[p: \varrho_{j-1}-\varrho_{i_{2 t-1}}\right] u_{j}, \quad b_{i_{2 t}-1}=\left[p: \sigma_{i_{2 t}}-\sigma_{i_{2 t}-1}\right] b_{i_{2 t}}-$
$-x_{i_{2}}$, hence

$$
\begin{align*}
& z_{2 t-1}=\left[p: \varrho_{i_{2 t+1}-1}-\varrho_{i_{2 t-1}}+\sigma_{i_{2 t}}-\sigma_{i_{2 t}-1}\right] z_{2 t}- \tag{30}\\
&- {\left[p: \varrho_{i_{2 t+1}-1}-\varrho_{i_{2 t-1}}\right] a_{i_{2 t+1}-1} \otimes x_{i_{2 t}}-} \\
&-\sum_{j=i_{2 t-1}+1}^{i_{2 t+1}-1}\left[p: \varrho_{j-1}-\varrho_{i_{2 t-1}}+\sigma_{i_{2 t}}-\sigma_{i_{2 t}-1}\right] u_{j} \otimes b_{i_{2 t}}+ \\
&+\sum_{j=i_{2 t-1}+1}^{i_{2 t+1}-1}\left[p: \varrho_{j-1}-\varrho_{i_{2 t-1}}\right] u_{j} \otimes x_{i_{2 t}} .
\end{align*}
$$

Choosing integers j_{1}, j_{2} such that $\varrho_{j_{1}}-\varrho_{i_{2 t-1}} \geqq\left|x_{i_{2 t} t}\right|$ and $\sigma_{j_{2}}-\sigma_{i_{2 t}-1} \geqq\left|u_{i_{2 t+1}-1}\right|$ we get $\left[p: \varrho_{i_{2 t+1}-1}-\varrho_{i_{2 t-1}}\right] a_{i_{2 t+1}-1} \otimes x_{i_{2 t}}=\left(\left[p: \varrho_{j_{1}}-\varrho_{i_{2 t-1}}\right] a_{j_{1}}-\right.$ $-\sum_{r=i_{2 t+1}}^{j_{1}}\left[p: \varrho_{r-1}-\varrho_{i_{2 t-1}}\right] u_{r} \otimes x_{i_{2 t}}=-\sum_{r=i_{2 t+1}}^{j_{1}}\left[p: \varrho_{r-1}-\varrho_{i_{2 t-1}}\right] u_{r} \otimes x_{i_{2 t}} \in L$ and $\left[p: \varrho_{j-1}-\varrho_{i_{2 t-1}}+\sigma_{i_{2 t}}-\sigma_{i_{2 t}-1}\right] u_{j} \otimes b_{i_{2 t}}=\left[p: \varrho_{j-1}-\varrho_{i_{2 t-1}}+\sigma_{i_{2 t}}-\right.$ $\left.\left.-\sigma_{i_{2 t}-1}\right] u_{j_{2}} \otimes\left[p: \sigma_{j_{2}}-\sigma_{i_{2 t}}\right] b_{j_{2}}-\sum_{r=i_{i_{t}+1}}^{j_{2}}\left[p: \sigma_{r-1}-\sigma_{i_{2 t}}\right] x_{r}\right)=$
$=-\sum_{r=i_{2 t}+1}^{j_{2}}\left[p: \varrho_{j-1}-\varrho_{i_{2 t-1}}+\sigma_{r-1}^{r=i_{2 t}+1}-\sigma_{i_{2 t}-1}\right] u_{j} \otimes x_{r} \in L$. From this and from (30) we easily get

$$
\begin{gather*}
z_{2 t-1}+L=\left[p: \varrho_{i_{2 t+1}-1}-\varrho_{i_{2 t-1}}+\sigma_{i_{2 t}}-\sigma_{i_{2 t}-1}\right] z_{2 t}+ \tag{31}\\
+u_{i_{2 t-1}+1} \otimes x_{i_{2 t}}+L .
\end{gather*}
$$

Finally, $z_{2 t}=\left(\left[p: \varrho_{i_{2 t+1}}-\varrho_{i_{2 t+1}-1}\right] a_{i_{2 t+1}}-u_{i_{2 t+1}+2}\right) \otimes\left(\left[p: \sigma_{i_{2 t+2}-1}-\right.\right.$ $\left.\left.-\sigma_{i_{2}}\right] b_{i_{2 t+2-1}}-\sum_{k=i_{i_{2}+1}}^{i_{2 t+2-1}}\left[p: \sigma_{k-1}-\sigma_{i_{2 t}}\right] x_{k}\right)$, from which it similarly as above

$$
\begin{gather*}
z_{2 t}+L=\left[p: \varrho_{i_{2 t+1}}-\varrho_{i_{2 t+1}-1}+\sigma_{i_{2 t+2}-1}-\sigma_{i_{2 t}}\right] z_{2 t+1}+ \tag{32}\\
+u_{i_{2 t+1}} \otimes x_{i_{2 t}+1}+L .
\end{gather*}
$$

The inequalities $\left|x_{i_{2 t} t}\right| \leqq\left|u_{i_{2 t-1}+1}\right|$ and $\left|u_{i_{2 t+1}}\right| \leqq\left|x_{i_{2 t}+1}\right|$ together with (31) and (32) prove the validity of (29) for each $t=1,2, \ldots$. Moreover, the formulas (31) and (32) together with (27) prove (26).

By (26), (29), (31), (32) and Lemma 16 the factor-group $(A \otimes B) / L$ can be represented as U / V. Since $a \otimes b+L$ is mapped onto $c_{0}+V$, the eiement $c_{0}+V$ has a p-sequence in U / V and consequently the series $\sum_{i=1}^{\infty}\left(R_{i}-S_{i}\right)$ has nonnegative partial sums and $\sum_{i=1}^{\infty}\left(R_{i}-S_{i}\right)=\infty$ by [3; Lemma 16]. However, $\sum_{i=1}^{2 n}\left(R_{i}-S_{i}\right)=$
$=\sum_{t=1}^{n}\left(R_{2 t}-S_{2 t}+R_{2 t-1}-S_{2 t-1}\right)=\sum_{t=1}^{n}\left(\sigma_{i_{2 t}}-\sigma_{i_{2 t-2}}-k_{i_{2 t+1}}+k_{i_{2 t-1}}^{i=1}\right)=$
$=\sigma_{i_{2 n}}-k_{i_{2 n+1}}=\alpha_{2 n}, \sum_{i=1}^{2 n+1}\left(R_{i}-S_{i}\right)=\sum_{t=1}^{n}\left(R_{2 t+1}-S_{2 t+1}-R_{2 t}-S_{2 t}\right)+R_{1}-$
$-S_{1}=\sum_{t=1}^{n}\left(\varrho_{i_{2 t+1}}-\varrho_{i_{2 t-1}}-r_{i_{2 t+2}}+r_{i=1} r_{i_{2 t}}\right)+\varrho_{i_{1}}+k_{i_{1}}-r_{i_{2}}=\varrho_{i_{2 n+1}}-r_{i_{2 n+2}}=$ $=\alpha_{2 n+1}$ and the proof is complete.

Corollary 1. Let A, B be mixed groups of rank one and let P, Q be non-torsion pure subgroups of the groups A, B, respectively. Then $P \otimes Q$ splits if and only if $A \otimes B$ splits.

Proof. Each element $a \in P \backslash T(P)$ has in P the same p-height sequence as in A and it suffices to apply Theorem.

Corollary 2. Let P, Q be pure subgroups of a splitting mixed group A of rank one. Then $P \otimes Q$ splits. In particular, each pure subgroup of a splitting mixed group of rank one has the splitting length at most 2.

Proof. It follows immediately from Corollary 1.
Corollary 3. Let A be a torsionfree group of rank one and B a mixed group of rank one. Then $A \otimes B$ splits if and only if for each $0 \neq a \in A$ there exists $b \in B \backslash$ $\backslash T(B)$ with the p-height sequence $\left\{r_{i}, s_{i}\right\}_{i=0}^{\infty}$ such that for each prime p with A p-reduced we have $h_{p}^{A}(a) \geqq r_{n}=r_{n+1}=\ldots$ for some $n \in \mathbb{N}$ and $\left[p: h_{p}^{A}(a)\right] b$ has a p-sequence in B whenever $s_{n}=\infty$.

Proof. If p is any prime and $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ is the p-height sequence of a in A then $l_{1}=$ $=l_{2}=\ldots=h_{p}^{A}(a), k_{1}=k_{2}=\ldots=0$ and it suffices to apply Theorem.

As a final application of our results we shall present a new proof of a special case of [3; Theorem] characterizing mixed abelian groups of rank one having the splitting length 2.

Corollary 4. A non-splitting mixed abelian group A of rank one has the splitting length 2 if and only if it contains an element $a \in A \backslash T(A)$ such that for each prime p the p-height sequence $\left\{k_{i}, l_{i}\right\}_{i=0}^{\infty}$ of a has the following two properties:

$$
\begin{gather*}
l_{i}-k_{i}-k_{i+1} \geqq 0, \quad i=0,1, \ldots, \tag{33}\\
\lim _{i \rightarrow \infty}\left(l_{i}-k_{i}-k_{i+1}\right)=2 h_{p}^{\bar{A}}(\bar{a})-\lim _{i \rightarrow \infty} l_{i}, \tag{34}
\end{gather*}
$$

where we put $\infty-m=\infty$ for every $m \in \mathbb{N}_{0} \cup\{\infty\}$.
Proof. Assume first that $A^{2}=A \otimes A$ splits. If p is a prime and \bar{A} is p-reduced then $l_{i}-k_{i}-k_{i+1} \geqq 0, i=0,1, \ldots$, by Lemma 11 and (34) obviously holds by Lemma 1. If \bar{A} is p-divisible and $l_{n}=\infty$ for some $n \in \mathbb{N}$ then Lemma 11 proves (33) while (34) is obvious. Finally, if \bar{A} is p-divisible and $l_{i}<\infty, i=1,2, \ldots$, then Lemma 15 proves (33) and (34) is true by the proof of Theorem, since in this case $i_{t}=t$, $t=1,2, \ldots$.

Conversely, if the conditions (33) and (34) are satisfied then the elements a, a have the p-propety for $i_{t}=t$ and A^{2} splits by Theorem.
[1] L. Bican: Mixed abelian groups of torsionfree rank one, Czech. Math. J. 20 (95), (1970), 232-242.
[2] L. Bican: A note on mixed abelian groups, Czech. Math. J. 21 (96), (1971), 413-417.
[3] L. Bican: The splitting length of mixed abelian groups of rank one, Czech. Math. J. 27 (102), (1977), 144-154.
[4] L. Fuchs: Abelian groups, Budapest, 1958.
[5] L. Fuchs: Infinite abelian groups I, Academic Press, New York and London, 1970.
[6] L. Fuchs: Infinite abelian groups II, Academic Press, New York and London, 1973.
[7] I. M. Irwin, S. A. Khabbaz, G. Rayna: The role of the tensor product in the splitting of abelian groups, J. Algebra 14, (1970), 423-442.

Author's address: 18600 Praha 8-Karlín, Sokolovská 83, ČSSR (Matematicko-fyzikální fakulta UK).

