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1. INTRODUCTION

A problem which has been studied is to find the minimum numberf(r, g) of vertices
an r-regular digraph with (directed) girth g can have. Behzad, Chartrand, and Wall
[1] showed by construction that f(r,g) < r(g — 1) + 1 and conjectured equality
always holds. Later Behzad [2] verified this conjecture for r = 2, any g. Bermond
[3] established its validity for r = 3, any g and for a few values of g when r = 4 or 5.
Recently Hamidoune [5, 6] proved the conjecture for r = 4, any g and showed
that a vertex-transitive r-regular digraph with girth g has at least r(g -1 +1
vertices.

The conjecture follows easily for all » when g = 2 or 3, and this leads one to con-
sider the case g = 4. Except for those values of r included above, there are no other
known cases of equality when g = 4. However, Cacetta and Haggkvist [4] have
obtained the lower bound

(1.1) (8> 3@d + J2)r+ 1~ 270 + 1.

In this note, we study f(r, 4) and prove that r-regular, girth 4 digraphs satisfying
an additional restriction (namely, § < 6, see Theorem 3.1) have at least 3r + 1
vertices. This enables us to conclude that f(r,4) = 3r + 1 for r £ 23. We also im-
prove the lower bound (1.1) by showing that

(1.2) f(r,4) > 2:85r + 1-52.

Note that (1.2) implies f(r, 4) = 3r + 1 for r <10.

We use standard terminology and notation throughout. Thus D = ( V, E) denotes
a digraph (without loops and multiple arcs) with vertex set V = V(D) and arc set
E = E(D). For veV, I'*(v) = {u : (v,u) € E} is the out-neighborhood of v and
I~(v) = {u:(u,v)€ E} is the in-neighborhood of v; dy(v) = [[*(v)| is the out-
degree of v, while dy(v) = [~ (v)| is the indegree of v. The minimum outdegree
and minimum indegree of vertices of D are denoted by

5t = mindp(v), 6p = mindp(v).
veV veV
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For A < V, (A) is the digraph induced by D on the vertex set A; I'*(A) =
={u:3ved, (v,u)eE} and I' (A) = {u:3ve A, (u,v)eE}. Hence for ve A,
disy(v) = | (v) 0 A, 854y = min d{,(v), and so forth.

ved

If D has a (directed) cycle, the minimum length of a cycle of D is called the girth
of D. If dj(v) = dp(v) = r for every v e V, then D is called r-regular.

Finally, we introduce the following key notion for this paper. We define 8}, and §,
to be the minimum outdegree (respectively, indegree) of the digraphs induced on
the out-neighborhoods (respectively, in-neighborhoods) of the vertices of D:

< . . +

Op = MiN 8,y = min  dipe(u),
veV veV uel * (v)

Op = Mind -y, = min  dip-)(u).
veV veV ,uel ~ (v)

We then set ‘
ép = min {55, 5} -

Thus 8, = p implies that each vertex in {I'*(v)> has outdegree at least p and each
vertex in (I“(v)) has indegree at least p, for allve V.

2. LOWER BOUND FOR f(r, 4)

The following lemma due to Caccetta and Haggkvist [4] will be useful in obtaining
our lower bound for f(r, 4).

Lemma 2.1. Let D be a digraph with girth at least 4. Then
3—-./5
5f < ——2—‘/—(|V(D)| —1).
As an immediate corollary we have the following.

Corollary 2.2, Let D be a digraph with girth at least 4 and |V(D)| < 6. Then
there exists vertices u, v e V(D) such that dj(u) < 1 and dp(v) £ 1.

We now state and prove the main result of this section which improves an inequality
of Caccetta and Haggkvist [4].

Theorem 2.3. Let o = (3 — \/5)/2. Then
f(r4) >3 —o)r+1+ax+1)> 285+ 1:52,

Proof. Let D = (¥, E) be an r-regular digraph with girth g at least 4. By reversing
arcs if necessary, we may assume dp, = 8. Let ve Vand u € I'"(v) be vertices such
that d ;- (,(u) = §,. Applying Lemma 2.1 to <I'"(v)), we obtain 5, < a(r — 1).
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We use the following notation (see Figure 1):
X=TI"(v), Y=T"(v), Z=V—-(XuYul{v}),
Z =T @Wnz, 22=2-2, Y =T"(u)nY.

Since g = 4, it follows that Z' = I'"(u) — X; since D is r-regular, lZ’| =r— 0y

v

7N

Figure 1

Y: /'*Iv)
X=r"v)

z

Using definitions, we calculate that

Y| = dirrup(v) Z 0+ Z 65 2 0.

Since g = 4, I'*(Y') = YU Z". This along with the r-regularity of D implies that

5<+Y'> =r— IZ"l - (1Y| - inl) = IYII - lZ”

Applying Lemma 2.1 to {Y’), we obtain
|Z' |2 Y] =6y > Y] =Y = 1) 2 (1 =) dp + .
Then
|Z| =|z|+|2’| =(r=bp) + |Z'| > (r = 0p) + (1 = @) 6p + 00 =
=r—ad,—1)>r—ofa(r —1) = 1) = (1 —a?)r + ofa + 1).
Hence '
D) =2r+1+|2|>2r+1+ (1 =) r+ofe+1)=
=@B-)r+1+aa+1).

The theorem now follows.
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Corollary 2.4. f(r,4) = 3r + 1 for r < 10.
Using the above results, we can also verify the stronger conjecture of Caccetta
and Haggkvist [4] for small r.

Theorem 2.5. Let D be a digraph with girth 4 and minimum outdegree 55 = r.
Then |V(D)| = 3r + 1 for r £ 6.

Proof. By eliminating arcs if necessary, we may assume that dj(v) = r for every
ve V(D). If D is r-regular, the conclusion follows from Corollary 2.4. So we assume D
is not r-regular. Then there exists a vertex w such that d,(w) = r + 1. Since IF+(W)| =
= r £ 6, we may apply Corollary 2.2to <I'*(w))> to obtain a vertex u € I' *(w) with
d{r+uwy(u) = 1. Then |F+(u) - F*(w)| = r — 1, and since the girth is 4,

V(D) 2 [P~ ()] + [{v}]| + [T*()| + [F*(u) — T*(w)| 2 3r + 1.

We remark that in the notation of [4], [6], the preceding theorem implies that
h(r,4) = 3r + 1 for r < 6. :

3. RESTRICTED »-REGULAR DIGRAPHS

The main result of this section is the verification of the conjectured inequality
f(r,4) = 3r + 1 for a restricted class of r-regular digraphs of girth 4. This restricted
class is large enough to include all such digraphs with » < 23.

Theorem 3.1. Let D = (V, E) be an r-regular digraph with girth g 2 4 and
5p £ 6. Then |V| 2 3r + 1.

Proof. We use the same notation as in the proof of Theorem 2.3. Thus é,, = 5,
u and v are vertices with u € I'"(v) and d(r-,,(u) = &5, and Figure 1 applies. If
6p = 0, then it follows that I'"(u) € Z so that |Z| = r and |V| = 3r + 1. Now
suppose 0, = 1. Then |Z'| = r — 1. Since |Y'| = djr+(,,(u) 2 §p = 1, there exists
a vertex y' e Y’. Since |Y| =r, dy(y)Sr—1;since g 24, T*())s YU Z".
The r-regularity of D now implies Z" # 0 so that |Z| = |Z'| + |2”| = r. Hence
V] 2 3r + 1.
As o) increases, the analysis becomes more complicated. Here we proceed with the
case 0, = 6; similar, but simpler, arguments are available for , = 2, 3, 4, 5.
So our assumptions are that dg;-,(u) = 5, = 6. We assume ]V’ <3r+1,
equivalently !Z”I < 5, and obtain a contradiction.
Let X' =TI (u)nI'"(v) and X" = I'*(u) n I'"(v), so that X' n X" = 0 and
|X’| = 6. We then have the following.
(1) IY’[ = IF*(u) A F*(v)[ =6 or 7: Since g =4, 5fyy = (r— |Z”|) - (|Y —
—|Y)=|¥|-|z'|z|y| -5 Now g =4 implies that |Y’| =2 2(|Y’| —
— 5) + 1 or |Y’| £9. On the other hand, |Y'| = d{r+y(v) = 6p = 6. Suppose
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lY’l =8 or 9. Then 6y, = |Y’] — 5 = 3 and applying Theorem 2.5 to {Y'),
we conclude IY’[ > 10, a contradiction. So |Y’l =6or7.

(2) If [Y’| =6, then [X"| = r — 12: Let Y' = {y}, ..., ys}. By Corollary 2.2 and
8y 2 |Y'| = 5 =1 (see (1)), we may suppose dy(y}) = 1. Using g = 4,
|[Y—Y|=r—6,|2’| £5, and dj(y;) = r, we conclude that Z" < I'*(y})
and |2’| = 5. Now y{eI'*(u) and since dfy,(v}) =1, [[*(u) n I*(y})| <
< |Z’| + 1 = 6. Since dfr+u(yi) = 6p = 6, we conclude that Z” < I'*(u).
Since d*(u) = r, we now conclude that |X"| = [[*(u) "I~ (v)] =r — 1 —
-|Y|-|z’|]=r-12

(3) If [Y’| =17, then |X"| = r — 12 or r — 13: Let Y' = {y}, ..., y}. Since D is
r-regular, it follows that 8y, = 2. If {Y’) were not 2-regular, then an argument
like that used in the proof of Theorem 2.5 gives IY’ > 7. Hence {Y’) is 2-regular.
It now follows that |Z’| =5 and 2" U (Y — Y') = I'*(y}) for i=1,...,7.
Let 2" = Z" n I'*(u). Then since dr+u(vi) = 6, it follows that |2 = 4
or 5and |X"| = [[*(u)nI'~(v)] = r — 12 or r — 13. We note for later use that
since |2”| <5, it follows from Corollary 2.2 that there exists a z” € Z” such that
dsl) S 1.

(4) 1f |Y’| =7, then I'*(z")nI'"(y}) * 0: We defer the proof to the next section.
It follows from (4) that when [Y’| = 7, D has a cycle of length 3, contradicting
g =4

(5) If|Y’| = 6, then |I'~(y;)I"~(u)] = 6 or 7 for vertex y; of Y’ with d/y,(y}) = 1:
Refering to (2), we conclude that d(r+y,(yi) = 6 = §,. Now reversing the
direction of all arcs of D and replacing v by u and u by i in (1), we conclude
that [I'~(y}) n I (u)| = 6 or 7.

If IF_(y;) o) F‘(u)| = 7, then applying (4) to the digraph obtained from D by
reversing all arcs, we obtain a contradiction.

(6) The case |Y’| = 6 and |[I'~(y}) 0 I'"(4)| = 6 cannot occur: We defer the proof
to the next section.

Thus the proof of theorem is complete once (4) and (6) are established.

Suppose 8} = 8, = 7 for an r-regular digraph with girth g = 4. Then §; > 7
and it follows from Lemma 2.1 that

r>3ir2—‘/55;+1>19.

Using Theorem 3.1 we now conclude that f(r, 4) = 3r + 1 whenever r < 19, This
can be improved as follows.

Theorem 3.2. f(r,4) = 3r + 1 for r < 23.
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Proof. Let D be an r-regular digraph with girth g = 4. By Theorem 3.1 it suffices
to show that if 6, = 7 and |V(D)| < 3r + 1, then r > 23.If §,, 2 9, then it follows
from Lemma 2.1 as above, that » > 24. So suppose 6, = 7 or 8 and IV(D)I <
< 3r + 1. We may also assume r > 19. We continue with the notation used in the
proof of Theorem 3.1.

Since |V(D)| < 3r + 1,|2"| £ 6, — 1. For y' € Y', we have

d()zr=|2zr-@p-1),
while for y € ¥, dy»(y) = dp. Hence
yEZY Aoy 2 |Y|(r=dp + 1) + (r = [Y]) by =
Y| (r — 26p + 1) + rdp = Sp(r — 26, + 1) + rép =
= 21y — (255 — 1),

since |Y’| 2 6, and r > 26, + 1(r > 19, 6, = 7 or 8). It follows that there exists
a vertex y of Y such that

- /- a 14 .2
d(y)(y) g 26D - ;61)(261) - 1) .

Suppose, to the contrary, that » < 23. Then since d, = 7 or 8, it follows from the
above inequality that dy,(y) = 11. It follows from Lemma 2.1 that there exists
a vertex y € I'*(y) n Y such that

Lo () < 2L (P 0 Y] - 1)
Then
IF*3) 0 ¥ = 17 0) 2 Y] 2 [F*0) 0 Y] = dlregon(3) >
> ép — 3——2\/5([r+(y)n Y| - 1).
Thus
r=|Y|Z I G)n Y]+ |{F} + [T @) 0 Y] + [T n Y= T (G) n Y] >
S+ 14 [ (F) A Y]+ 8y —° ‘2¢5 (r* @) Y| = 1) =

=12+3,,+(1—3_:2l§)|r+(y)ny|+¥§g

212+ 6, + 1—3*—\/5 5,,+3—_—‘/—5>23,
2 2
since &, = 7. This contradiction completes the proof of the theorem.
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4. PROOF OF (4) AND (6)

In this section we complete the proof of Theorem 3.1 by establishing the claims
in (4) and (6). The details are not particularly illuminating, which was the reason
for their deferral until this last section.

Proof of (4). Suppose |Y’| = [*(u) n Y| = 7. We need to show that I'*(z") n
AT (y)) # 0 where d3.,(z") < 1 and y; e Y".

Case 1. |2'| =|I'*(u)n 2’| =4. Then [X"|=r—12 and dir+uy(¥i) =6
(see (3)). By reversing the directions of all arcs and replacing v by u and u by y} and
using dr+u5(¥1) = 6, we conclude from (1), (2), and (3) that [I'"(y}) n I'"(u)| = 6
or 7 and |I'~(y}) n I'*(u)] = r — 12 or r — 13. We then have

() nXx|zr-13-4+1=[X"|-4.
But Z" < I'*(y}) (see (3)) so that I'*(z") "Y' = 0. Hence I'*(z")nI*(u) =
S Z" U X". Since 5, = 6 and dz(z") < 1, it follows that [F*(z") n X"| 2 5 so
that I'*(z") n I'"(y}) + 0.

Case 2. |2"| = 5, that is Z” = Z". Then I'*(u) = Z" U Y’ U X" U {v},
dlrewy(¥1) = 7, and [X”| = r — 13 (see (3)). Let T = I'"(y;) n I'"(u). By reversing
arcs and replacing v by u and u by y} in the argument used in (1), we conclude that
|T| = 6 and 65y 2 |T| — 6. Since g 24, |T|22(T|—6)+1 or |T| =11
Applying Theorem 2.5 to <T), We now conclude that |T| = 3(|T| —6) + 1 or
|T| < 8. Then

dirwp(¥h) = ]F‘(y',) 1) F*(u)| >r—8—6—1=r—15, and since
{Y") is 2-regular,
IF()nXx|zr-15-2-1=r—-18=|X"|-5.

First suppose that [I'"(y{) n X"| > [X”| —= 5. Then I'*(z")nI'*(u) = X" L Z"
Since d(yn(z") £ 1, |[T*(z") N X"z 86, — 125, and we conclude that I'*(z") N
N T (yi) * 0.

Now suppose that [I'"(y}) N X' = |X”| — 5. Then it follows that dr+ (1) =
=r—15|T|=8and X - X' = X" <= I (y}) U T*(z)n(X — X' — X") + 0,
then I'*(z") n I'"(y}) * 0. So assume I'*(z") n (X — X' — X”) = 0. Then it fol-
lows that I'*(z") € 2" UX" U Y" Since |Y'|=r —|Y|=r—7 and since
diz~(z") < 1, it follows that |F+(z") o) X”] =r— (r—7) — 1 = 6. Thus again we
conclude I'*(z") n I'"(y}) = 0. This completes the proof of (4).

Proof of (6). Suppose |Y’| = 6 and [~ (y}) N I'"(u)| = 6, where d(y(y}) = 1.
By (2), lX"] = r — 12. By (5), dir+wy(¥1) = 6 = &y, so that by reversing the direc-
tion of all arcs and replacing u by yi and v by u in (2), we conclude that

IP=(3) 0 T ()] = direqp(vi) = r = 12.
It follows from [Y’I = 6, dfy»>(y';) 21(i=1,..,6), and g = 4 that dy.,(y;) < 3.

445



We now distinguish three cases.
Case 1. dyy(y)) = 3. It then follows that
T~ aXx|=|r~()nrtw -3 -1=r-12-4=[X"| - 4.

Since dy(v}) = 1 for Y’ = {y}, ..., y5}, we may assume that (y}, y5) and (¥, y3)
are edges (see Figure 2).
1 °

o v
Y %
Figure 2. The 6 vertices of { ¥ for case 1.

Since |Z’| = 5, by Corollary 2.2 there exists a vertex z” € Z” with d{z.,(z") < 1.
Since d(y,(y3) = 1, it follows from g = 4 that d(y.(y3) < 3. First suppose
d55(¥2) = 3. Then djy~(y3) = 1 and so Z” = I'*(y}). Hence I'*(z") nY = 0.
Therefore |I'*(z") n I'*(u)| 2 6, implies |[*(z) n X"| 2 5. Hence I''(yy) N
N I'*(z") + 0 contradicting g = 4. Now suppose dy~(y3) < 2. Since d(y»(y3) = 1,
it follows that Z" = I'*(y;) and [T~ (yp) nX"|2(r—12) -2 —1= x| - 3.
Since g 24, I'(z")nY' = {y3} and hence |I’+(z”) mX”| >5—1=4. Hence
I'*(z")yn I~ (y}) # 0, contradicting g = 4.

Case 2. diy»(y}) < 1. Then as before it follows that [~(y}) n X"| = |X"| — 2.
So if [I*(2") n X"| z 3, there is a cycle of length 3. Now assume that |[I'*(Z") n
N X”I < 2, so that the number of arcs from Z” to X” is at most 5. 2 = 10. Counting
arcs we obtain

(2" x 2y E| + (2" x X)nE[ +|(2' x Y)nE| =
= Y dirrup(z) 256, =5.6=30;
zeZ"
6
(Y x Y)Y E| + (Y x Z)V A E| =Y dfre(y) = 6.6, = 36.
i=1
Moreover since d/yn(y;) = 1 for i =1, ..., 6, <Y") contains a cycle of length of at

least 4 and consequently |(Y’ x Y') n E| £ 13. So

(Y x 2"y E| 2 36 — 13 = 23
and
|z’ x Y)nE|£5.6-23=71.
It now follows that
(2" x 2y E[ 230 — 10 = 7 = 13,

which contradicts the obvious fact that {Z”) has at most (3) = 10 arcs.
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Case 3. diy(y}) = 2. Then it follows that |[I'"(y{) n X"| = |X"| = 3. If
r“(z"n X”[ > 4, there is a cycle of length 3, contradicting g = 4. Now assume
r*(z"yn X"| £ 3, so that the number of arcs from Z” to X" is atmost 5. 3 = 15.
Let I~ (y)) n Y’ = {y5, v} and Y5 = {y5, y5, yi} (see Figure 3).

A Y Yy
o o o
\/ / )
% vz

Figure 3. The 6 vertices of { Y”) for Case 3.

4
It is easy to verify that Y dfy»(yi) < 7. Hence |(Y; x Z") n E| 2 35, — 7 = 11,
i=2

so that |(Z" x Y§) nE| £ 5.3 — 11 = 4. Since g = 4, it follows that (Z” x Y’) n
N E = (Z" x Y3) n E. But counting arcs again we obtain

|z x 2’y E| + (2" x X") 0 E| + |(2" x Y§) n E| = 56, = 30.

Hence

[(z" x 2")nE[ 230 — 15— 4 = 11,

contradicting once again that {(Z"”) has at most 10 arcs.
This completes the proof.
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