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REPRESENTATIVE PROPERTIES
OF THE QUASI-ORDERED SET F(a, M)

Joser SLAPAL, Ostrava
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In [5] V. Novdk improved a result of M. Novotny in [4] proving that a set of
type F(w, .2, N,) is an N,-universal quasi-ordered set. Moreover, he used the quasi-
ordered set F(a, M) for the representation of ordered sets and showed that a set of
type F(w,, N,) is an X,- universal quasi-ordered set for every regular cardinal number
N,. Finally, L. Misik [6] proved that a set of type F(w,, N,) is an N,-universal quasi-
ordered set for every number N,. In this paper the above-mentioned results are im-
proved and supplemented.

A quasi-ordered set is a non-empty set G together with a reflexive and transitive
binary relation < (see for instance [1]) If, moreover, the relation < is antisymmetric,
the set G is said to be ordered. A chain is defined as an ordered set such that we have
either x < y or y < x for each pair of its elements x, y. By an antichain we under-
stand an ordered set for which the implication x < y => x = y holds for each pair of its
elements x, y. Two quasi-ordered set G, G’ are called isomorphic if there exists such
a one-one mapping f of the set G onto G’ that x,ye G, x £ y < f(x) /().
A set H with a binary relation is called -an m-universal set for quasi-ordered sets
(where m > 0 is a cardinality) if for every quasi-ordered set G with card G < m
there exists a subset H' < H isomorphic with G. An m-universal set for ordered sets,
an m-universal set for chains and an m-universal set for antichains are defined in an
analogous way. If an m-universal set for quasi-ordered sets is quasi-ordered, then we
call it an m-universal quasi-ordered set. i :

Let us recall one important property of every quasi-ordered set. If G is a quasi-
ordered set, x, y € G, then put x = yifandonlyifx < y,y < x. Then the relation =
is an equivalence relation, i.e. a reflexive, symmetric and transitive binary relation,
which defines a decomposition G of G. Let X, Ye G and put X < Y if and only if
x < yforany x € X, y € Y. Then the set G is an ordered set (see [1]).

Let M be a non-empty set and a > 0 an ordinal number. Denote by F(x, M) the
set of all sequences of type a consisting of elements of the set M together with the
relation < defined as follows: {a, | A < a} < {b,| 4 < a} if and only if there exists
a strictly increasing sequence {ﬁ . [ 2 < a} of type a of ordinal numbers less than o
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such that a, = by, for every 4 < a. It is easy to prove that the relation < is reflexive
and transitive so that F(oc, M) is a quasi-ordered set. This relation, however, is in
general not antisymmetric as is shown in [4] Therefore F(o, M) is generally not an
ordered set. If N is a set with card N = card M, then clearly F(a, N) is isomorphic
with F(o, M) so that the type of the set F(«, M) depends only on the cardinality m
of the set M. We denote this type by F(«, m). Clearly, for o < w, the set of type
F(c, m) is an antichain of power m®™*,

I « is an ordinal number, then we denote the set of all ordinal numbers less than a
ordered according to their magnitude by W(«). It is known that W(x) is a chain of
type o (see [2]). Let {a, | 2 < a} be a sequence of type «. Let G = {x | there exists an
ordinal number 4 < o« such that a; = x}. For every x € G put m({a, ; L<a})=
= card {A | 2 € W(x), a; = x}. We shall need the following two lemmas proved in [5]:

Lemma 1. Let G be a non-empty set such that card G < s\“ Then the elements
of the set G can be written in the form of a sequence of type w,, {al ‘ <ol
such that m({a; | A < ®,}) = N, for every xeG.

Lemma 2. Let G be a set with card G = m where 2 < m < N,. Let & be the
set of all sequences of type w, consisting of elements of the set G and such that
m({a; ] J < w,}) =N, for any sequence {a,| 2 < ,} € & and any element x € G.
Then card & = 2%,

Let « denote a given ordinal number. If «; and a, are ordinal numbers such that
o = a; + o, then the number a, is called the remainder of number o corresponding
10 the segment a,; (see [3]). Now we shall prove the following important theorem:

Theorem 1. Let o, f be ordinal numbers, 0 < o < 8, and let m, n be cardinal
numbers, 0 < m < n. Let at least one of the following three assumptions hold:
() m<n,
(1) m = N,
- (1) oy + (B — a) > B — « for every remainder ay > 0 of number .
Then for every quasi-ordered set F(o, M) of type F(o, m) there exists a subset of
a quasi-ordered set of type F(p, n) isomorphic with F(a, M).

Proof. Let F(a, M), F(B, N) be quasi-ordered sets of types F(x, m), F(B, n) where
O0<a=<p,0<m<=<n,ie card M = m, card N = n. We can suppose M = N
without loss of generality.

Let the assumption (I) hold. Then the set N — M is non-empty. Let xe N — M
be an element and for every sequence a = {a, | A < a} € F(a, M) put ¢(a) = b =
= {b; , A < B} where {b, I A < B} is a sequence defined in the following way:

_ a; for A<a,
AT N\x for ai<p.

Then clearly b € F(, N) and ¢ is a one-one mapping of F(x, M) onto £ = {¢(a) lae
e F(a, M)} = F(B, N). We shall show that ¢ is an isomorphism of F(«, M) onto .
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Let a={a,|A<a}, ¢ ={a;|i<a}eF(le,M), a<a and ¢(a)=b =
={b,| 2 < B}, @(a’) = b = {b} | 2 < B}. Then there exists a strictly increasing
sequence {y, I A < o} of type o of ordinal numbers less than « such that a; = a;,
for every A < a. Let us define a sequence {4, l A < B} of type B of ordinal numbers
less than f in the following way:

y, for A<oa,

01 = A for a<i<§p.

The sequence {5, | A < B} is strictly increasing and b, = a; = a,, = a;, = b;,
for every A < a and b; = x = b, = b = b;, for every a < 4 < B. Therefore b, =
= bj;, for every A < B, i.e. b < b’". Suppose, on the contrary, that b = ¢(a) =
={b,|A< B}, b =o¢(a)={b;|A<B}eZ, b < b Then there exists a strictly
increasing sequence {6, | 2 < B} of type B of ordinal numbers less than f such that
b, = bj, for every 2 < B. If 1 < a, then 6, < a, for, if 6, = « for some 1, < a,
then b, = b;, = x which contradicts b;, = a;,€ M. Let us define the sequence
{72] 4 < a} such that y, = 5, for every 2 < «. Then {y,|4 < &} is a strictly in-
creasing sequence of type o of ordinal numbers less than « and such that a; = b, =
= b;, = b,, = a;, for every A < a, i.e. a = a’. Thus ¢ is an isomorphism.

Let the assumption (II) hold. Then we can suppose that the set N — M is non-
empty and the proof coincides with the previous one.

Let the assumption (III) hold. Let x € N be an element and let us define the map-
ping ¢ of F(a, M) into F(B, N) in the same way as in the first part of the proof.
Then ¢ is a one-one mapping of F(x, M) onto = = {¢(a)| a € F(x, M)} = F(B,N)
and we shall show that ¢ is an isomorphism of F(«, M) onto Z. Let a, a’ € F(a, M),
a < a',b=¢(a), b’ = ¢(a’). We are able to prove that b < b’ in the same way as
in the first part of the proof. Suppose, on the contrary, that b = ¢(a) = {b, | 2 <8},
b = ¢(a’) = {b] I A < B} €Z,b < b'. Then there exists a strictly incteasing sequence
{61| A < B} of type B of ordinal numbers less than B such that b, = b;, for every
A < B. We shall prove that §, < « for every A < a. Suppose that there exists 4, < a
such that 6, = «. Then 6,, < 6, < B for every 1y = 1 < f, i.e. the sequence
{b; I Ao = A < B} results by omitting a set (empty or non-empty) of members of the
sequence {b} l 030 = A < B}. Let o, denote the remainder of the number a cor-
responding to the segment Ay, i.e.@ = 1 + «,. As the type of the sequence {b, | Ao =
SA<p}is a + (B~ o) and the type of the sequence {b; |5, < i < B}
is <p — a we have a, + (B — @) £ B — «, which is a contradiction. Therefore
8, < o for every 1 < a and this implies, similarly as in the first part of the proof,
that a < a’. Thus ¢ is an isomorphism and the theorem is proved.

Now we shall investigate the set F(ot, M) as an m-universal set.

Theorem 2. Let m be a cardinal number such that 0 < m £ N,. Then a quasi-
ordered set of type F(wv, m) is an m-universal set for ordered sets.

Proof. Let the assumptions of Theorem be true and let G be an ordered set such
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that card G < m. Then there exists a one-one mapping f of G into M where M is
a set with card M = m. Denote by & the set of all subsets of M, ie. & =
={N ] N < M}, ordered by the set inclusion. If we assign to every element x £ G
a subset Y(x) = {f(t)|t < x} = M, then clearly y is an isomorphism of G
onto a certain cubset ¥’ < &% and card N’ = 1 for every N’ € &"'. Since card M =
= m = N,, according to Lemma 1 it is possible to write the elements of the set M
in the form of a sequence {b, | 2 < ®,} of type , such that m,({b, |7 <o))=N,
for every x € M. Now let us define a mapping ¢ of &' into F(w,, M) in the same way
as in the proof of Theorem 1 of [5], i.e., let us assign to every set N’ € &' a sequence
o(N') = {a,| 2 < o} of type o, in the following way: a, = b,, where p, is the
smallest ordinal number such that b,, € N'; suppose that we have defined a, for every
A < A (%o < ,) and put a,, = b,, where u,, is the smallest ordinal number with
the following properties: p;, > p, for every A < Ao, ft;, < ®,, b,,, € N'. In the above
mentioned proof [5] it is shown that such an ordinal number always exists and that ¢
is an isomorphism of &’ onto = = {¢(N')| N’ € &'} < F(w,, M). Hence it follows
that the composite mapping ¢y is an isomorphism of G onto £ = F(w,, M). Because
the type of the set F(w,, M) is F(w,, m), the theorem is proved.

Theorem 3. Let N, be a regular cardinal number and let m be a cardinal number
such that 0 < m < N,. Then a quasi-ordered set of type F(w,,m + 1) is an m-
universal quasi-ordered set.

Proof. Let the assumptions of Theorem 3 be fulfilled and let G be a quasi-ordered
set such that card G < m. Then card G £ m and similarly as in the proof of Theorem
2 there exists an isomorphism ¥ of the ordered set G onto a certain subset &' < &
where & is the set of all subsets of a set M with card M = m ordered by the set
inclusion. The definition of the mapping y yields that card N’ = 1 for every N' € &".
Let a € M be an element and for every N’ € &’ put N = N’ U {a}. Then the system
" = {N”|N’ €'} is a system of sets such that 2 < card N” < N, for every
N" € %" which — ordered by the set inclusion — is isomorphic with G. Denote by g
an isomorphism of G onto &”. Let £(N") be the set of all sequences {a; | 2 < »,}
of type w, consisting of elements of the set N” and such that m,({a; I A<o))=R,
for every x € N”. According to Lemma 2 we have card Z(N”) = 2% for every
N"e &". Ascard X < N, for every X € G it is possible to define a one-one mapping @x
of the set X into Z[x(X)]. Finally, let us define a mapping ¢ of G into F(w,, M U {a})
in the same way as in the proof of Theorem 3 of [5], i.e. let ¢(x) = @x(x) where
xeX e G. In [5] it is shown that ¢ is an isomorphism of G onto a certain subset
of F(w,, M U {a}). Because the type of the set F(w,, M U {a}) is Flo,, m + 1),
the theorem is proved.

Theorem 4. Let m be a cardinal number such that 0 < m < NX,. Then a quasi-
ordered set of type F(w,, m + 2) is an m-universal quasi-ordered set.

Proof. Let the assumptions of Theorem 4 be fulfilled. If m < N,, then the
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statement follows from Theorem 3 and Theorem 1. If m > N, then we obtain the
statement in the following way:

Let G be a quasi-ordered set such that card G £ m. Then card G < m and ac-
cording to Theorem 2 the ordered set G is isomorphic with a certain subset H <
< F(w,, M), where v > 0 and M is a set with card M = m. Denote by ¥ an iso-
morphism of G onto H. Let a € M, b€ M, a + b, be two elements. Let us construct
the class Z[y(X)] for every element Y/(X) = {a, |4 < w,} € H(X € G) where Z[(X)]
is the set of all sequences which we obtain by inserting the sequence {a, b, a, b, ...}
or {b,a,b,a,..} of type w, after every element a;, 2 < w,. Every element ¢ e
€ Z[¥(X)] belongs to the set F(w,, M U {a, b}) for every X € G. For y(X) < y(Y)
and ¢ e Z[Y(X)], n e Z[Y(Y)] & < n holds. Because card Z[y(X)] = 2% for every
X € G there exists a one-one mapping @y of X into Z[Y(X)] for every X € G. If we
define a mapping ¢ of G into F(w,, M U {a, b}) in the same way as in the proof of
Theorem of [6], i.e. ¢(x) = @x(x) for xe X € G, then ¢ is an isomorphism of G
onto a certain subset of F(w,, M U {a, b}). Because the type of the set F(w,, M U
U {a, b}) is F(w,, m + 2), the theorem is proved.

Now we shall deal with representations of finite chains and finite antichains by the
set F(a, M).

Theorem 5. If B is a chain of type w,, then a quasi-ordered set of type F(®,, 2)
contains a subset isomorphic with B.

Proof. If B is a chain of type w,, then we can suppose B = W(w,) without loss
of generality. Let F(w,, M) be a quasi-ordered set of type F(w,, 2), where M =
= {a, b}. To every ordinal number ue W(w,) let us assign a sequence f(u) =
= {c!| 4 < w,} defined in the following way:

o “_ /4 for A<y,
Nb for p£i<o,.

It is clear that f(u) € F(w,, M) for every u € W(w,) and that f is a one-one mapping
of the chain W(w,) onto a certain subset K = F(w,, M). We shall show that f is an
isomorphism of W(w,) onto K. Hence let py, 4y € W(w,), p; < p,. Then f(p,) =
={ct" |2 < o}, f(u;) = {c?| 2 < o,} and put

"

z for A<y,
\,u2+(/—,u1) for u, £2<o,.

Then {y, | A < ,} is a strictly increasing sequence of ordinal numbers of type w,
and because p, + (A —py) < pp + (0, — py) = @, for p; L4 < w, we have y; < o,
for every A < w,. Now if ¢§' = a, then 1 < pu, and therefore y, = 4 < p; < p,.
This implies ¢;2 =qa. If ¢j' =b, then g <A <o, and therefore y, =
=pu, + (4 - Hq) = p,. This implies ci2 = b. Thus, ¢;' = c;? for every A < ,,
e. f(#1) = f(u,). Suppose, on the contrary, that f(yl) ={ct'|A<o} =

<{e?]d< ®,} = f(1,). Then there exists a strictly increasing sequence
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{yi | A < o,} of type o, of ordinal numbers less then w, such that ¢}' = c? for every
A<ow, If A<y, then ¢’ = a and therefore cf? = a which implies y, < p,.
Because 4 < y; for every 4/ < w, we obtain 2 < u; = A < u,. This implies ¢, < u,
and the proof is complete.

Corollary. Let m be a cardinal number such that 0 < m < N,. Then a quasi-
ordered set of type F(w,, 2) is an m-universal set for chains.

Proof. Every finite chain is isomorphic with a certain subset of a chain of type w,.
Now the statement follows from Theorem S for v = 0.

Theorem 6. Let m be a cardinal number such that 0 < m < X,. Then a quasi-
ordered set of type F(wg, 3) is an m-universal set for antichains.

Proof. Let the assumptions of Theorem 6 be fulfilled. Let P be an antichain such
that card P < m. Let o be an ordinal number with card « = m. Then a set of type
F(a, 2) is an antichain of power 2" and thus it contains a certain subset isomorphic
with P. According to Theorem 1 every set of type F(a, 2) is isomorphic with a certain
subset of a set of type F(w,, 3). Thus Theorem 6 is proved.
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