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INTRODUCTION

In 1965, R. C. O’Neil published a paper [17] the main theorem of which asserts
that for every Abelian group G and for every two spaces X and Y such that the
product X x Yis paracompact and regular there exist isomorphisms
(1) H'(X x Y;G)~ @ H(X;H/(Y;G)). n=0,1,2,....

i+j=n
Unfortunately, O’Neil’s proof of this theorem is correct only under the additional
assumption that either the space Yis compact o1 the space X is homotopy equivalent
to a CW complex K such that the product K x Y'is compactly generated. Moreover,
the examples of G. E. Bredon [5] and E. G. Skljarenko [1] have shown that without
this or some other additional assumption isomorphisms (1) really need not exist.

The problem of general sufficient conditions for the existence of isomorphisms (1)
was then studied in [1] and [3]. The sufficient conditions given in Theorem C of
[1] have shown that in the case of a non-compact space Y the existence of iso-
morphisms (1) may depend on the local properties of the space X. In [3] the problem
was studied in connection with similar problems for the normal Cech cohomology
(see Definition 1.2) and for Grothendieck cohomology with constant coefficients,
and more general results were obtained than those of [1]. It was proved, for example,
that for every Abelian group G, for all paracompact regular spaces X and Y, and for
all closed subspaces A < X and B < Y there are homomorphisms
(2) ® H(X,A; H(Y,B;G))» H(X x Y, X x BUA x Y;G),

i+j=n ,

n=20,12,....

which are natural with respect to the argument (X s A) and bijective for every pair
(X, A) such that for all integers k

lim {H{U x Y, U x B; G)| U is a neighborhood of x} ~ H¥(Y, B; G)
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if xeX — A, and
lim {HXU x Y, U x BU (U n A) x Y; G)| U is a neighborhood of x} = 0

if x € A. Similar results were also obtained for the normal Cech cohomology and for
Grothendieck cohomology.

In this paper the results of [3] are further generalized and improved. It is proved
that for a module G over a principal ideal domain A there are A-homomorphisms (2)
with the properties described above, and sufficient conditions are given for their
commuting with the connecting homomorphisms of appropriate cohomology exact
sequences and for their commuting with the homomorphisms induced by continuous
maps ¢ : (Y, B) > (Y', B').

As a matter of fact, none of the results just mentioned can be found in this paper
in an explicit form. With the exception of Theorem 2.7, all our main results are for-
mulated only for the normal Cech cohomology, and it is left to the reader to state
explicitly the correspodnding results for Cech or Grothendieck cohomology, which
can be easily derived from them.

The paper is organized as follows. In Section 1 we recall the definition and some
properties of the normai Cech cohomology groups needed in the sequel, and in Section
2 we state our main results. Section 3 contains preliminary remarks on semi-simplicial
A-modules and their geometric realizations, which play an important role in Section
4, and the remaining two Sections 4 and 5 are devoted to proofs of two of our main
theorems.

Our results do not depend on which sign conventions are used, but some arguments
in our proofs do. For this reson we remark that everywhere in this paper only the
natural sign conventions of [19] are used.

1. PRELIMINARIES ON THE NORMAL CECH COHOMOLOGY

The normal Cech cohomology groups were introduced and studied in [3] and [4]
(see also Remark 1.3).In this section we recall their definition and some properties
needed in the sequel. More details can be found in [3] and [4].

1.1. Let X be a topological space and 4 = X a subspace. By a covering of the
pair (X, A) we mean a pair % = (%y, % 4) consisting of a covering %y = {U,| i€l }
of the space X and of a covering %, = {U; n A| iel,} of A, where I, < Iy.

Given two coverings

U = Uy, Uy) Uy ={U)| iely}, Uy ={U;n 4| iel,},
V=V V4 Vx={V]|jel}, Ya={V;nd|jel}

of a pair (X, A), we say that ¥ refines % and call ¥~ a refinement of % if there is
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a map ¢ :(Jy, J4) - (Ix,1,) such that V; = U
% < ¥ in this case.

A covering % = (. U 4) of a pair (X, A) is said to be normal if Uy and % , are
normal (= uniformizable = numerable) coverings of the spaces X and A, respective-
ly. The class of all normal coverings of the pair (X, A) is clearly quasiordered and
directed by the relation < and contains cofinal subsets.

oy for all jeJy. We also write

1.2. Definition. For a pair (X, 4) of topological spaces, for an Abelian group G,
and for an integer n let

(1.1)  A%X, A; G) = lim {H"(%x. U; G)| % = (Ux, U,) € cov (X, A)} ,

where cov (X, A) is a cofinal subset of the class of all normal coverings of the pair
(X, A) and H"(x, % 4; G) denotes the n-th cohomology group with coefficients in G
of the simplicial pair (N(%x), N(% 4)) consisting of the nerves of the coverings %y
and %4, and let

(1.2) h"(X, A; G) = lim {H(%, %  A; G)| % € cov (X))},
(1.3) hy(X, A; G) = lim {H"(%, % ~ A; G)| U € cov,(X)}

where cov (X) is a cofinal subset of the class of all normal coverings of X, m is an
infinite cardinal, and cov,, (X) is a cofinal subset of the class of all normal coverings
U = {U,| iel} of X with card] < m.

Defining induced homomorphisms

f* = H"(f; G) : H'(Y, B; G) » A"(X, 4; G)
where f is a continuous map from (X, A4) into (¥, B), and connecting homomorphisms
(1.4) 6% = 8"(X, A4; G) : H"(4; G) » A"* (X, 4; G)

in the usual way, we obtain a cohomology theory (H*(—; G), 5*) on the category
Top, of all topological pairs and their continuous maps, which is called the normal
Cech cohomology theory (with coefficients in G). Similarly (1.2) and (1.3) can be
regarded as cofunctors on the category Top,.

Clearly, if G is a left (right) module over a ring A then (1.1)—(1.3) can be regarded
as cofunctors from Top, into the category of left (right) modules over A in a canonical
way, and (1.4) are A-homomorphisms.

1.3. Remark. The groups (1.2) and (1.3) play an auxiliary role in the theory of the
normal Cech cohomology. The groups (1.2) were introduced and studied also by
K. Morita in [15].

1.4. Theorem. The normal Cech cohomology theory (H*(—; G),5*) on Top,
satisfies the axioms of homotopy, exactness and dimension, and the following
Sfunctional excision axiom: If U « A =« X and A is a functional neighborhood
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of U then the inclusion map (X — U, A — U)Q (X, A) induces an isomorphism
H*X, A;G) ~ H*(X — U, A — U; G).
Moreover, it is also additive in the following sense: If X is the topological sum

of subspaces X, (i € I) then the inclusion maps X; G X (i € I) induce an isomorphism
A"(X: G) =~ [[A"(X:; G) foralln =0,1,2,....
iel

The cofunctors h"(—; G) and h%(—; G) satisfy the axiom of homotopy, and
there are canonical identifications hy(X, A; G) = h"(X, 4; G) = H"(X, A; G) =
= H"(X, A; G) for every closed pair (X, A) where X is a paracompact regular space
containing a dense subset of cardinality < m.

1.5. We call a pair (X, A) m-normal, where m is an infinite cardinal, if for every
normal covering % of A of cardinality < m there is a normal covering ¥~ of X with
% < ¥ n A. This notion is clearly equivalent to the notion of the P"-embedded
subspace A of X in the sense of [16]. For properties of m-normal pairs see e.g. [3],
[4]. [10] and [16]. Here we only remark that every pair (X, A), where the inclusion
map A Q X is a cofibration, is normal, i.e. m -normal for all m.

In the following theorem we use the well known fact that on the category of
semisimplicial pairs (X, A4) there is a canonical identification H*(X, A; G) =
= A*(|X|,|4]; G) commuting with the connecting homomorphisms, and some
properties of semi-simplicial sets K(G, n) and L(G, n + 1). For these properties
see 3.11, 3.12 and [11, pp. 226—231].

1.6. Theorem. Let G be an Abelian group, n a non-negative integer and m an
infinite cardinal, m = card G. Let K(G, n) be the Eilenberg-MacLane semi-
simplicial group associated with the pair (G, n), let |K| be its Milnor’s geometric
realization, and let ¢, € H'(K, x; G) = ﬁ','“([K|, *; G) = h"( Kl, *; G) = H"(|K|, *; G)
be the fundamental cohomology class. Then for every topological pair (X, A) the
formulae

B(X, 4) ([f]) = £*(e) € (X, 4: G).,
P, A)([]) = 14 e (X, 4:6),
(X, 4)([1]) = /*(e) e F(X: 4 G)

where f is a continuous map from (X, A) to (]K|, *), define group homomorphisms

(1.5) (X, A): [X, 4; K], *] - R}(X, 4; G),
(1.6) (X, A) :[X, 4; K|, ] - B"(X, 4; G),
(L.7) (X, 4) : [X, 4; K|, x] - H"(X, 4; G)

which are natural with respect to both arguments (X, A)and G. The homomorphisms
(1.5) and (1.6) are bijective for every pair (X, A), and (1.7) is bijective for all
(No + card G)-normal pairs (X, A). Moreover, for every (No + card G)-normal
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pair (X, A) we have the commutative diagrams
T‘n

[4:|K(G,n)[] ﬁ"(/?; G)

) |

[X, 4;|L(G. n |+ 1)), |K(G, n)[] 5

“pl* n+1

[X.A4: [K(G,n + 1)], x] — A"*'(X, 4; G)

(n=0,1,2,...) where p : L(G,n + 1) - K(G, n + 1) is the canonical projection.
If G is a left (right) A-module then (1.5)—(1.7) are A-homomorphisms.

L.7. Corollary. If m = N, + card G and the pair (X, A) is (No + card G)-
normal, then there are canonical isomorphisms hy(X, A; G) ~ h*(X, A; G) ~
~ A%(X, 4; G).

1.8. Besides the normal Cech cohomology theory we shall also consider axiomatic
cohomology theories (h*, 5*) on Top, which satisfy the Eilenberg-Steeniod axioms
of homotopy, exactness and dimension, and the functional excision axiom (see
Theorem 1.4). We shall call such cohomology theories normal to distinguish between
them and cohomology theories in the sense of Eilenberg-Steenrod. Moreover, we shall
suppose everywhere in this paper that our normal cohomology theories (h*, 6*) are
non-negative, i.e. that i = 0 for n < 0. It is easy to see that almost all the results
of [8] concerning axiomatic cohomology theories remain true also for more general
normal cohomology theories.

1.9. Theorem. Let (h*, 5%) be an additive normal cohomology theory on Top,,
G an Abelian group and * a one-point space. For every group homomorphism
¢ : G - h°(%) there exists a unique natural transformation of cohomology theories

T, : (H*(=; G), 6%) > (h*, 6*)
such that Tg(*) equals the composition of the canonical isomorphism ﬁo(*; G)= G
and of ¢.

If (h*, 6*) takes values in the category of left (right) modules over a ring A, G is
a left (right) A-module and ¢ is a A-homomorphism, then all the homomorphisms

TI(X, A) : H'(X, 4; G) - I'(X, A)
are A-homomorphisms.

1.10. In the following theorem, the normal Cech cohomology groups H*(X; ¢)
of a space X with coefficients in a presheaf .« of Abelian groups on X are used. These
groups are defined quite analogously to the Cech cohomology groups H *(X; ),
the only difference consisting in replacing the class of all open coverings of X by the
class of all normal open coverings of X.

1.11. Theorem. Let (h*,6*) be a (non-negative) additive normal cohomology
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theory on Top,. For every topological pair (X, A) and every continuous map
f: X - Y there exist a first-quadrant cohomology spectral sequence E =
= {E,, d,, 4,},5, and a decreasing filtration Fh*(X, A) = {FPh*(X, A)}, of h*(X, A)
with the following properties:

(a) FOR*(X, A) = h*(X, A) and F**1h"(X, A) = 0.

(b) E converges to h*(X, A) with respect to the filtration Fh*(X, A), i.e. there
exists an isomorphism E, ~ GrFh*(X, A) of bigraded Abelian groups, where
GrFh*(X, A) is the bigraded Abelian group associated with the filtration Fh*(X, A).

(c) There are isomorphisms E5* ~ H"(Y; Ph"(f,f| A)), where Ph"(f,fl A) is the
presheaf of Abelian groups on Y defined by putting Ph(f, f| A)(U) = h(f~*(U),
f7(U) n A) for all open subsets U of Y.

The spectral sequence E and the filtration Fh*(X, A) are functorial in the usual
sense, and the isomorphisms of (b) and (c) are natural.

If (h*, 6*) takes values in the category ., of left (right) A-modules, then E
becomes in a canonical way a speciral sequence in JM ,, Fh*(X, A) is a filtration
of the left (right) A-module h*(X, A), and the isomorphisms of (b) and (c) are
A-isomorphisms.

1.12. Let (h*, 6*) be a normal cohomology theory on Top,, s? an oriented geo-
metric g-simplex and s?~' an oriented (g — 1)-face of s% In [4, p. 37] natural iso-
morphisms
(1.8) [s97 0 osf] o "N ((s97 1,57 Y) x (X, A)) = h"((s% $9) x (X, A))

(1.9) [s9] : i"~9(X, 4) = h'((s% 5%) x (X, 4))

were defined, reducing in the case X = one-point space and A = 0 to the well-known
isomorphisms of Eilenberg-Steenrod [8, Chap. III] and having the same formal
properties. If (h*, 6*) takes values in the category of left (right) modules over a ring A
then (1.8) and (1.9) are of course A-isomorphisms.

It follows from Theorem 1.6 and from the properties of normal pairs that
h*(K. L) x (X, A); G) ~ h*((K, L) x (X/4, *); G) ~ H*((K, L) x (X/A, *); G) for
every pair (X, A) and every closed pair (K, L) where the space K is compact and
regular. Using this fact we can define the isomorphisms

(1.8)  [s7 ' o577, 87 x (X, A); G) =~ h'((s% 5%) x (X, A); G)
(1.9 [s7] : A"~9(X, A; G) ~ h"((s*, 5%) x (X, A); G)
having the same formal properties as isomorphisms (1.8) and (1.9).

1.13. We conclude this preparatory section with the remark that for a right
A-module G and a left A-module H the cross products
x 1 h"(X, A; G) ® , h(Y, B; H) — h**%((X, A) x (Y, B); G @, H)
x :h?(X, A; G) ® , HY(Y, B; H) - H**%((X, A) x (Y, B); G ® , H)
can be defined, having all the usual properties. This easily follows from the properties
of normal coverings.
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2. MAIN RESULTS

Let A, A"and I' be principal ideal domains and let w : I' > A, ' : I’ = A’ be ring
homomorphisms.

2.1. Theorem. There exist A-homomorphisms
(2.1) 0, = 0%(X, A; Y, B;G): @ hi(X, 4; (Y, B: G)) -
i+j=n

> "X x Y, X x BUA x Y;G)

defined for all non-negative integers n, all A-modules G and all pairs (X, A) and
(Y, B) of topological spaces, and having the following properties:

(a) They are natural with respect to the argument (X, A).

(b) Let G be a A-module, G' a A’-module and (Y, B), (Y', B') topological pairs. If

Ext (A"t (Y',B’;G'), h'(Y,B;G)) =0 for i=0,1,...,n—1,

then the diagram

n

- . 0
® h(X, 4; B(Y,B;G)) —5 (X x Y, X x BUA X Y;G)

o ; |

® hi(X, 4; (Y, B;Gj)— > (X x Y, X x BU A x Y:G)
i+j=n
where the vertical I'-homomorphisms are induced by a continuous map g : (Y. B) >
— (Y, B') and a I'-homomorphism y: G’ — G, commutes for every pair (X, A)
and every such g and y. If (X, A) consists of a geometric simplex and its boundary
then this diagram commutes without any assumption on G, G', (Y, B) and (Y’, B').
(¢) Let G be a A-module and G' a A’-module, and let (Y, B), (Y', B') be closed
topological pairs. If the inclusion maps B Ynad B’ Q Y' are cofibrations and if

(2:2) Ext(h"*'(Y’, B’} G'), h(Y,B;G)) =0 for i=0,1,...,n,

then the diagram

n

o 0 .
® hi(4; W(Y', B';G'))—— i"(A x Y', A x B';G')
itj=n R ..
1@ (g*oy*)oé* l(ld X g)*o'y*o()*
i n+ 1
@ h'*'(X, 4; k(Y B; G)) i "X x Y, X x BUA x Y;G)

i+j=n

commutes for every closed pair (X, A) such that the inclusion map AQX is
a cofibration, for every continuous map g: (Y, B) - (Y’, B') and for every I'-homo-
morphism y: G' - G. If (X, A) consists of a geometric simplex and its boundary,
the condition (2.2) may be omitted.

(d) Let G be a A-module and G' a A’-module, and let (Y, B) and (Y', B') be closed
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topological pairs. If the inclusion maps B Yand B' Q Y’ are cofibrations and if
(2:3) Ext(hi(B'; G'), h(Y, B; G)) =0 for i=0,1,... n,

then the diagram

n

. - 0%
® h(X, 4; h(B'; G')) —— W'(X x B, A x B’; G')

i+j=n
(2.4) l@ (=1)"g* oygo0* l(id X g)* o7y 0 0%
i n+ 1
® hi(X, A; (Y, B; G))ELQ "' (X x ¥, X x BUA x Y;G)

i+j=n

is commutative for every pair (X, A) such that the inclusion map AC X is
a cofibration, for every continuous map g :(Y, B) - (Y, B') and for every I-
homomorphism y:G' — G. If (X, A) consists of a geometric simplex and. its
boundary, the condition (2.3) may be omitted.

(e) The diagram

® hi(X, 4; 4) ® , K(Y, B; G) 2. hi(X, 4; (Y, B; G))
i+j=n i+j=n
X 0%
(X x ¥, X x BUA x Y;G)
where x denotes the cross product, commutes for all A-modules G and for all pairs
(X. A) and (Y, B).
(f) The diagram

B(5(0), ¥(0): (Y, B 6) " B(V(0), ¥(0) x (¥, B); )
) Fell~  <[ven
"= *(Y, B; G)
commutes for every pair (Y, B), for every A-module G and for p = 0,1, ..., n.

(g) Finally,04(X, A; Y, B; G) is an isomorphism if either (X, A) has the homotopy
type of a CW pair or the space Y is compact.

Proof of this theorem will be given in Section 4.
2.2. Corollary. 0%(X, A; Y, B; G) is an isomorphism if and only if canorical
projections X — |N(%)| (% € cov(X)) induce an isomorphism
(2:6) lim A'(|N(@)| x Y, |N(#)| x BU|N(# n 4)| x Y;G) ~
Wecov(X)
~h"(X xY,X x BUA x Y;G).

Proof. This follows from assertions (a) and (g) of Theorem 2.1 because canonical
projections X — |N(%)| induce an isomorphism lim A*(|%)|, |N(% 0 A)|: G} =
~ fz*(X JA; G) for every pair (X, A) and every Abelian group G.
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2.3. Theorem. There exist A-homomorphisms
(2.7) " = (X, A; Y,B;G): @ h'(X. A:H/(Y, B; G)) -
i+j=n

> H(X x ¥, X x BUA x Y:G)

defined for all non-negative integers n, all A-modules G and all pairs (X, A) and
(Y. B) of topological spaces, and having the following properties:

(a) They are natural with respect to the argument (X, A).

(b) Let G be a A-module and G' a A'-module. If topological pairs (Y, B) and
(Y’, B') satisfy the condition

Ext (YY", B';G'), H(Y,B;G)) =0 for i=0,1,...,n—1,

then the diagram

o . 7
® h(X, A; B(Y,B;G)——>A(X x Y X x BUA X Y';G)

i+j=n

n

o Y. Y
@ hi(X, A; H/(Y, B; G))-—A—>H(X x Y, X x BUA x Y;G)
i+j=n

where the vertical I'-homomorphisms are induced by a continuous map g : (Y, B) -
- (Y, B') and a I'-homomorphism y:G" — G, commutes for every pair (X, A)
and every such g and y. If (X, A) consists of a geometric simplex and its boundary
then this diagram commutes without any assumptions on G, G', (Y, B) and (Y', B').

(c) Let G be a A-module and G' a A'-module, and let (Y, B) and (Y', B') be such
topological pairs that

(2.8) Ext (A (Y, B;G'),H(Y,B;G)) =0 for i=0,1,....n.

i)

Then the diagram

n

I Py
® hi(A;A(Y', B G)) —> A(A x Y', A x B'; G')
i+tj=n o B} .
J@ (g 0')’*) 0 l(ld X g)*o'y*oé*

+1

® WYX, A; (Y, B; G))—»H"“(X x Y, X x BUA x Y;G)
i+j=n
commutes for every pair (X, A) such that the inclusion map A Q X is a cofibration,
for every continuous map g :(Y,B)— (Y',B') and for every I'-homomorphism
y:G - G. If (X, A) consists of a geometric simplex nad its boundary, the con-

dition (2.8) may be omitted.

(d) Let G be a A-module and G’ a A’-module, and Ietfor topological pairs (Y, B)
and (Y', B')
(2.9) Ext(H(B'; G'),H(Y,B;G)) =0 for i=0,1,...,n.
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Then the diagram

n

N . oo
® hi(x, A;H(B’; G')) —— A"(X x B', A x B';G')

i+j=n . a . 2
@(——1),g*a'y*00* vl(ld Xg)*o’))*o()*
. i ¢n+1 R
® (X, 4;RI*1(Y, B;G)) —— A" (X x Y,X x BU A x Y;G)

i+j=n

is commutative for every pair (X, A) such that the inclusion map A C X is a cofibra-
tion, for every continuous map g : (Y, B) - (Y', B’) and for every I'-homomorphism
y:G - G. If (X, A) consists of a geometric simplex and its boundary, the as-
sumption (1.9) may be omitted.

(e) The diagram
@ KX, 4 1) @Y, B;G)—2> @ K(X, 4: H/Y, B; G))
i+j=n xl i+j=n l@‘i
A (X x Y,X x BU A x Y; G)
commutes for all A-modules G and all pairs (X, A) and (Y, B).
(f) The diagram
V), V(o) B, B 6) — AE(V(p). Y(0) (%2 )
V)] ~ ~ | [V()]
—ﬂ"""(Y, B; G)—
is commutative for every pair (Y, B), for every A-module G and p = 0,1, ..., n.

(g) Finally, ®(X, A; Y, B; G) is an isomorphism if either (X, A) has the homo-
topy type of a CW pair or the inclusion map A < X is a cofibration, A is closed
in X and the spaces Y and B are compact.

Proof. This theorem is in fact an easy corollary to Theorem 2.1. To show this let
us consider the diagram

n

N ) @
® hiX, A; H/(Y, B; G))—A> A(X x Y,X x BU A x Y;G)

i+j=n
~ lﬁl jﬁ;
(2.10) ® hi(X, 4; H(Y, B; G)) A"(x x ¥, X x BuA4 x ¥;G)
i+j=n

. JUSI 0% - = 5
@ WX, 4; (Y, B;G) ——> "X x ¥, X x Bu4 x ¥;G)
i+j=n
where Y=Y x {0} UB x [0,1] = Y x [0,1], B=B x {1}, B, B;, B, and B}
are the obvious canonical homomorphisms, and @} = @;(X, A Y, B; G) is to be
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defined. If (X, A) is a closed pair and the inclusion map A G X is a cofibration then
the inclusion map X x Bu 4 x Y(Q X x Yis also a cofibration (see e.g. [6]) and
therefore f is an isomorphism. Further, the pair {X x B, A4 x Y} is excisive in this
case, which implies that ] is also bijective. We conclude that under our assumption
on the pair (X, A) there is a unique homomorphism @/, making the diagram (2.10)
commutative. This defines homomorphisms @%(X, 4; Y, B; G) for all CW pairs,
and in the general case we apply the same procedure as that we used in 4.14 to define
0%(X. 4; Y, B; G) for general pairs (X, A). Verifying the properties (a)—(g) for the
homomorphisms @%(X, A; Y, B; G) defined in this way makes no trouble.

2.4. Corollary. ¢>','1(X, A; Y, B; G) is an isomorphism if and only if the canonical
projections X — ]N(%)| (% € cov(X)) induce an isomorphism
(2.11) lim A"(|N(%)| x Y, [N(#)| x BU|N(% n A)| x Y; G) =
Uecov(X)

~H'(X x Y, X x BUA X Y;G).

2.5. If h is a cofunctor from the category Top, into the category of Abelian groups,
f:X — Yis a continuous map and A is a subspace of X, we denote by Ph(f,f| A)
the presheaf of Abelian groups on Y defined by the formula Ph(f,fl A)(U) =
= h(f~'(U),f~'(U)n A) and by Sh(f,f[A) the sheaf of Abelian groups on Y
generated by the presheaf Ph(f,fl A). We have

Sh(f,f | A), = lim h(f~"(U), f~(U) n A)
U
where U ranges over all (open) neighborhoods of the point y, and the inclusion maps
()T AQUT(U).fTI(U) N A) induce a canonical homomorphism
ry :Sh(f, f | A), = h(f~'(¥).f 7' (y) 0 A).

2.6. If A is a subspace of a space X we denote by rdyA the relative dimension of 4
in X in the sense of P. S. Alexandroff. We recall that, by definition,

rdyA = sup dim F
F

where F ranges over all non-empty closed subsets of X contained in 4, and that
rd,) = —oo.

Now let us suppose that for a fixed non-negative integer n, for a fixed Abelian
group G and for a fixed topological pair (Y, B) we are given group homomorphisms
(2.12)  @"(X,A4): @ hi(X,4; H(Y, B; G)) » H"(X, A) x (Y, B); G),

i+j=n .

which are defined for all pairs (X , A), natural, and bijective whenever (X R A) is homo-
topy equivalent to a CW pair.

2.7. Theorem. Let (h*, 6*) be an additive normal cohomology theory on the cate-
gory Top,, let G = h°(x) be its coefficient group, and let T :(A*(—; G), §*) >
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— (h*, %) be the unique natural transformation of cohomology theories extending
the canonical isomorphism H®(x; G) ~ G = h%(x). Let (X, A) be a topological
pair, (Z,C) = (X, A) x (,B)=(X x Y, X x BUA xY) and let p, : Z > X be
the canonical projection. Finally, let N be a non-negative integer, and let us put
v(N) =1 + max (rdxM; + i),
0<i<N
where

M; = {xeX|r.:Shi(p,, p, | C) & hi(p; '(x), p7 '(x) n C)} .

If N) <N and

(a) the subspace A is closed,

(b) the subspace X-int A is paracompact and each neighborhood in X of each
point x € X-int A is functional,

(c) the pair (X, X-int A) is normal in the sense of 1.5, and

(d) the canonical homomorphism T¥(Y,B): H(Y, B; G) — hi(Y, B) is bijective
fori=0,1,...,N — 1 and injective for i = N,

then the homomorphism
(2.13) T(Z,C)od"(X,A4): @ hi(X,A;H(Y,B;G))~> h((X, A) x (Y, B))

i+j=n

is surjective in the case n = v(N), bijective in the case N) < n < N and injective
in the case n = N.

Proof of this theorem will be given in Section 5.

2.8. Corollary. If an additive normal cohomology theory (h*, 6*) on Top, with
the coefficient group G, pairs (X, A) and (Y, B), and a non-negative integer N
satisfy the conditions (a)—(d) of Theorem 2.7, and if for i =0,1,..,N — 1

re : Shi(py, py I C), = hi(Y,B) for xeX — 4,
Shi(py, py | C)e =0 for xeA

then (2.13) is an isomorphism for n = 0,1,...,N — 1 and a monomorphism for
n=N. '

2.9. Corollary. If an additive normal cohomology theory (h*, 6*) on Top, with
the coefficient group G, pairs (X, A) and (Y, B), and a non-negative integer N
satisfy the conditions (a)—(d) of Theorem 2.7, and if (X, A) is locally contractible
at every point x € X-int A (see 5.8), then (2.13) is bijective for n < N and injective
for n = N.

Proof. Apply Lemma 5.8.

2.10. Remark. Let us suppose that we are given A-homomorphisms (2.7), which
are defined for all non-negative integers n, for all A-modules G and for all (X, 4)
and (Y, B), and which are natural with respect to (X, A). Then we can define A-
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homomorphisms
(2.14) P o= (X, A Y, B; h*,6%): @ HY(X. A; A/(Y, B; G)) »
i+j=n

- h'((X, A) x (Y. B)),

where (h*, 6*) is an additive normal cohomology theory on Top, with values in the
category of A-modules and with h%(x) = G, and where (X, 4) and (Y, B) are such
that the pair {X x B, A x Y} of subspaces of the space X x Y is excisive with
respect to (h*, 6%), in such a way that the diagram

N

< . P N
® hi(X, A; A(Y, B; G)) — A"((X, A) x (Y, B); G)
i+j=n

2.15) |7

n

‘© Ai(X, 4;AI(Y, B; G)) R W((X, A) x (Y, B))

where T is the unique natural transformation of cohomology theories extending the
canonical isomorphism H%(x; G) & G = h°(x), will commute. Such (2.14) can be
constructed e.g. with the help of the canonical isomorphism 1-7*(X, A, -) =~
~ f.*()?,Z; —),whereX = X x {0} U4 x [0,1} =X x [0,1]andd = 4 x {1}.
Moreover, one can show without difficulties that the homomorphisms (2.14) are
characterized by naturality and by commutativity of the diagram (2.15), and that if
(2.7) have any of the properties listed in Theorem 2.3 then (2.14) have a similar
property. Finally, a theorem can be proved similar to Theorem 2.7.

3. PRELIMINARY REMARKS ON SEMI-SIMPLICIAL 4A-MODULES

In proving the theorems of the preceding section, an important role is played
by semi-simplicial methods. In this section, we recall some properties of Milnor’s
geometric realization functor from the category of ss. sets and ss. maps into the
category of CW complexes and cell maps and generalize to ss. A-modules some well-
known results on ss. Abelian groups. The basic references are [11], [12] and [13].
The terminology and notation we use are those of [11]. In particular, we denote
by [n] the set {0, 1, ..., n}, by A(n) the ss. n-simplex, i.e. the ss. set of all non-
decreasing functions [...] - [n], and by V(n) the standard geometric n-simplex
spanned by the vectors of the standard basis of R**!.

3.1. Theorem. For all ss. sets X and Y, Milnor’s geometric realization functor
induces a map of homotopy sets [X; Y] — [|X|; |Y[]. If Y is a Kan ss. set, this map
is a bijection.

A similar result holds for n-ads of ss. sets.

Proof. This follows immediately from [11, p. 47, Satz 5.7, and p. 48, Satz 5.8].

The following theorem was first proved by J. Milnor [13]. Let us remark that for
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topological spaces X and Y we denote by X x, Y their cartesian product with the
topology induced inductively by the compact subspaces of the ordinary cartesian
product X x Y.

3.2. Theorem. Let X and Y be ss. sets, and let pry : X x Y— X and pr, : X x
x Y — Y be the canonical projections. The maps lpr1| and ]pr2| induce a continuous
bijective map i: IX X Yl - IXI X |Y‘ and a homeomorphism i,: |X X Y' -
- {X] X ]Y! Consequently, if either both ss. sets X and Y are countable or one
of them is locally finite then i is a homeomorphism. In the general case, i is only
a homotopy equivalence.

Similar assertions hold for ss. n-ads.

By a k-topological left (right) A-module, where A is a discrete ring, we mean a left
(right) A-module X together with a topology on X such that the addition, the
multiplication by elements of A and the map x — —x of X into itself are continuous
on compact subspaces.

3.3. Corollary. If X is a ss. left (right) A-module then |Xl becomes in a canonical
way a k-topological left (right) A-module. If O denotes both the trivial ss. A-sub-
module of X and the zero element of |X|, we have |0| = {0}.

Since every ss. group is a Kan ss. set, see e.g. [11, p. 33 or 12, p. 67], we get from
3.1 and 3.3

3.4. Corollary. If Yis a ss. left (right) A-module; then for every ss. set X, Milnor’s
geometric realization functor induces an isomorphism [X; Y] ~ [IX!; |Yl] of
left (right) A-modules.

A similar assertion holds for an n-ad Y of ss. left (right) A-modules and for every
n-ad X of ss. sets.

3.5. Remark. Let Y be a ss. left (right) A-module and let i be the canonical bijection
|Y x Y| - |Y| x |Y|. If X is a compactly generated topological space, [X; |Y[] is
a left (right) A-module with the addition induced by the map Ioc oi”!, where a: Y x
x Y — Yis the addition in Y. It can be easily shown that the same addition is induced
by any map [a] oJj, where j is a homotopy inverse of the map i: (|Y x Y|; |Y x 0],
[0 Y]) = ([Y] x |Y]; |Y] x {0}, {0} x |Y]). (It follows from 3.2 and [14, Lemma
1] that such a j exists.) Moreover, every such map [cx| o j is a commutative H-group
structure on ]Y|

Similar assertions hold for n-ads.

3.6. Theorem. A ss. map of connected (pointed) Kan ss. sets is a homotopy
equivalence if and only if it induces an isomorphism of all homotopy groups.
(See [11, p. 203, Folgerung 7.2] or [12, § 12].)

3.7. Corollary. A ss. homomorphism f: X — Y of ss. groups is a homotopy equi-

452



valence of (pointed) ss. sets if and only if it induces an isomorphism fy: 1 (X, *) X
~ 7Y, %) for i =0, 1,..., with * denoting the neutral elements of X, and Y,,.

3.8. Let M denote the Moore functor from the category of ss. Abelian groups into
the category of positive chain complexes of Abelian groups (see [11, p. 198] for its
definition).

If X is a ss. left (right) module over a ring A then it is clear from the definition of M
that M(X) has a canonical structure of a positive chain complex of left (right) A-
modules. Similarly, if f: X — Y is a ss. homomorphism of ss. left (right) A-modules,
M(f) is a A-homomorphism. This means that M induces a functor from the category
of ss. left (right) A-modules into the category of positive chain complexes of left
(right) A-modules. We shall denote this induced functor by M .

Analogously, the Dold-Kan functor D from the category of positive chain com-
plexes of Abelian groups into the category of ss. Abelian groups (see [11, p. 222] for
its definition) induces a functor D, from the category of positive chain complexes of
left (right) A-modules into the category of ss. left (right) A-modules.

From [11, p. 223, Satz 1.5] we immediately get

3.9. Theorem. For every ss. left (right) A-module X there is a canonical ss.
isomorphism
: X & Dyo My(X)

of ss. left (right) A-modules, and for every positive chain complex Y of left (right)
A-modules there is a canonical isomorphism

b Y~ Mo Dy(Y)

of chain complexes over A. Both iy and iy are, in fact, determined by the underlying
structure of a ss. Abelian group or a chain complex of Abelian groups,respectively,
and

(3'1) MA(‘X) = Ur,x s DA(";’) = lp,y -

Finally, if f,g: Y—> Y’ are homotopic homomorphisms of positive chain com-
plexes of left (right) A-modules then D4f, Dsg : D,Y— DY’ are homotopic ss.
homomorphisms of ss. left (right) A-modules.

3.10. Proposition. For every ss. left (right) A-module X, the inclusions (M 4X), =
cX,,n=0,1,2,..., induce a A-isomorphism H(M,X) ~ ny(X, *), where * de-
notes the zero element of X .

(See [11, p. 198].)

3.11. Throughout this paper, K(, n) denotes the Eilenberg-MacLane ss. Abelian
group corresponding to an Abelian group # and a natural number n. Let us recall
that, by definition, K(n, n) = Dk(n, n), where k(m,n) is a chain complex with
ky(m, n) = = and ky(m, n) = O for i % n, that n(K(n, n), *) = 0 for i + n, and that
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there is a canonical isomorphism 7,(K(7, n), *) ~ =, which is defined as the com-
position
’Lr -1
n(K(m, n), x) ~ H,(MDk(r, n)) i» H,(k(m, n)) = =,
where =~ denotes the canonical isomorphism of Proposition 3.10. It is clear that for
a left (right) A-module 7, K(m, n) is a ss. left (right) A-module, and that the canonical
isomorphism 7,(K(n, n), *) & n is a /A-isomorphism.
Also the following convention is used: If X is a ss. Abelian group, the zero element
of X, the trivial ss. subgroup of X and the zero element of ‘X[ are all denoted by =*.

3.12. Remark. It follows from 3.1 that |K(w, n)| is a CW-complex of type (r, n).
Consequently, it has an H-group structure (with = as the homotopy unit), which is
unique up to homotopy and commutative. If 7 is a left (right) A-module, one can
easily see that every such H-group structure commutes up to homotopy with opera-
tors from A. It follows that for every topological pair (X, A) the homotopy set
[X. A;|K(r, n)|, «] has a canonical Abelian group structure, which extends in a
canonical way to a left (right) A-module structure if = is a left (right) A-module.

We shall now introduce an important auxiliary notion of weak ss. A-homo-
morphism of ss. A-modules, where A is a principal ideal domain.

3.13. Definition. Let A be a principal ideal domain. A ss. map f: X — X' of ss.
A-modules will be called a weak ss. A-homomorphism if f(x) = * and there is a dia-
gram

x.x

o Y
—D,Y—

which is homotopy commutative as a diagram of ss. maps of pointed ss. sets, and
where Y is a free chain complex over A, ¢ and y are ss. A-homomorphisms, and ¢
is a homotopy equivalence of (pointed) ss. sets.

3.14. Proposition. Let A be a principal ideal domain and let X and X' be ss.
A-modules.

(a) Every weak ss. A-homomorphism f:X — X' commutes up to homotopy
fixed on * with the addition and the multiplication by elements of A in X and X',
respectively.

(b) The composition of weak ss. A-homomorphisms is again a weak ss. A-homo-
morphism.

(c) For every homomorphism h: m, (X, *) > my (X', %) of graded A-modules there
is a weak ss. A-homomorphism f: X — X' inducing h.

(d) If Exty (n{X, =), m;04(X', #)) = 0 forall i =0,1,2,..., then ss. A-homo-
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morphisms f, g: X — X' are homotopic as ss. maps of (pointed) ss. sets if and only
if fo=gs: X, *) - ”*(Xl’ *).

(e) Let w : I - A be a homomorphism of principal ideal domains. Then every
weak ss. A-homomorphism f: X — X' is also a weak ss. ['-homomorphism from the
ss. F-module X into the ss. I'-module X.

Proof. Let us write simply M and D instead of M, and D, respectively.

Assertion (a) is obvious. The proof of all the other assertions is based on the
properties of the functors M and D, on the Homotopy Classification Theorem
[9. p. 177, Theorem 3.1] and on the notion of a free approximation, in the sense of
[19, p. 225], of a chain complex over A.

Ad (b). Let f: X - X’ and f': X’ — X" be two weak ss. A-homomorphisms, and
let us consider the diagram

X—LX_LX
I(p l//”(p’ w'|

L DYDY
where both triangles have the properties described in Definition 3.13, and the diagram

l——“"’MX/F—f
. M Mo’
(3.2) ‘1’, , Mo

Y= MDY--s MDY = Y’

(To simplify the notation, we regard the natural equivalences ¢ and ¢’ of Theorem 3.9
as identities, which is possible in view of (3.1).) Since Y is free over A and, by Pro-
position 3.10, M¢': Y’ - MX' induces an isomorphism of the homology groups, by
the Homotopy Classification Theorem there is a homomorphism x : Y — Y’ of chain
complexes over A making the diagram (3.2) commutative up to homotopy. Using
the last assertion of Theorem 3.9 we easily obtain thaty'c Dy ~ f'c fo ¢, which proves
that f' ¢ f is a weak ss. A-homomorphism.

Ad (c). Let x : Y > MX be a free approximation of the chain complex MX over A.
Let us regard H,(MX) as a chain complex with trivial differential and choose a homo-
morphism 7 : Y — H,(MX) of chain complexes over A such that id = 7, o (x4) ™" :
: H,(MX) - H,(MX);such a 7 exists because Y is free over A and A is a principal
ideal domain. In the same way let us choose ' : Y - MX ' and 7' : V' — H*(MX’).
Since Y is free over A and 7’ induces an isomorphism in homology, there is a homo-
morphism # : Y — Y’ of chain complexes over A such that the diagram

T =
Y —— H (MX) —— 7 (X, *)
(33) ﬂl [ A
7’ X
Y s Hy(MX') —— (X, %)
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where ~ denotes the canonical A-isomorphisms of Proposition 3.10, is homotopy
commutative. Similarly, using the fact that Dy : DY —» X is a ss. homotopy equi-
valence of pointed ss. sets by 3.10 and 3.7, we obtain a ss. map f: X — X' satisfying
f(*) = » and making the diagram

(3.4) D”El . lf

of ss. maps of pointed ss. sets homotopy commutative. Since 7, = x4 and 7, = y%,
applying the homology functor to (3.3) and the functors Hy « M and =, to (3.4)
yields the commutative diagram

Ta(X, *) — Ty (X7, %)

~ ~
~

(z) ! .

H(MX) s Hy(¥) s Hy(Y) > Hy(MX))

~| iz
1 /.
n*(X, *) n*(X', *)

where ~ again denotes the canonical isomorphisms of Proposition 3.10. This dia-
gram shows that f,, = h,.

Ad (d). There is a diagram

XLX%—E«X

il

whose both triangles have the properties described in Definition 3.13. Since Y'is free
over A and Mo’ induces an isomorphism of the homology groups by Proposition
3.10, there is a homomorphism # : Y — Y’ of chain complexes over A such that
M¢' cn ~ Mo, and therefore also ¢’ « Dn ~ ¢ by the last assertion of Theorem
3.9. Using this, the assumption f, = g, and the diagram (3.5), it is easy to show
that Yy = ¥§ o (Dn)y : T4(DY, %) > my(X’, *). Therefore also (My), = (My')y o
oty : Hy(Y) » H(MX') by Proposition 3.10. Since Y is free over A and the as-
sumption of the assertion (d) is by Proposition 3.10 equivalent to the assumption
Ext, (H{Y),H;,(MX')) =0 for i=0,1,2,..., the Homotopy Classification
Theorem yields My ~ (My') oy, and therefore Y ~ ¥’ o (Dn) in view of Theorem
3.9. This, the relation ¢’ o Dy ~ ¢ and the homotopy commutativity of the diagram
(3.5) immediately imply f ~ g, which was to prove.
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The last assertion (e) follows immediately from [19, p. 225, Lemma 12], which
asserts that any chain complex over a principal ideal domain has a free approxima-
tion.

3.15. Lemma. Let A be a principal ideal domain and let B be a A-subcomplex
of an acyclic A-complex Y. Then for every free approximation f§: B — B of the
A-complex B there is a commutative diagram

~ < o~
B—Y
B lv
-
B——Y
where 7 : ¥ — Y is a free approximation of Y and B, is a direct summand of Y,

for all n.

Proof. Let ¥ be the direct sum of the cone over B and of a free approximation
of Y. Then B, is a direct summand of ¥, for all n and f§ can be extended to a A-homo-
morphism 7 : ¥ — Y, which is clearly a free approximation of Y.

3.16. Lemma. Let G be a A-module and let I(G, n + 1), n 2 0, be the following
chain complex over A:

= 0oL (Gn+ 1) > LG+ 1) 0 ...

| Il
G————G

Let Y be a chain complex over A and let B be a A-subcomplex of Y. If B, is a direct
summand of Y, then for every homomorphism B:B — k(G, n) of A-complexes
there is a homomorphismy : Y - I(G, n + 1) of A-complexes such that the diagram

C
B——mMmY

ﬂl Jv
(e
kG, n)—— UG, n + 1)
commutes.
The proof is trivial.

3.17. Proposition. Let A be a principal ideal domain and let A be a ss. A-sub-
module of a homotopically trivial ss. A-module X. Then for every weak ss. A-

=)

homomorphism f: A — [[K(G,, n) there is a commutative diagram of ss. A-
homomorphisms n=0
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o o
A<«—- DB—H
| t "

X«—D,Y—— ] LG, n + 1) =[] Ds(G,,n+1)

T

X|A——D,Y[D,B-~]K(Gprn + 1)

=0

o

K(G,, n)
0

[

s

(=]

DA(;/B)

where o and B are homotopy equivalences of pointed ss. sets, B, Y and Y|B are
free A-complexes, and o' ~ foa.

Proof. This easily follows from Lemmas 3.15 and 3.16 and from the properties
of the functors D, and M 4.

4. TWO SPECIAL CLASSES OF MAPS AND THE PROOF OF THEOREM 2.1

4.1. Definition. Let / : (X, A) — (Y, B) be a continuous map. We shall say that f
is an LCR-map or that f is locally a map with compact range if each point x € X
has a neighborhood U, whose image f(U,) is contained in a compact subspace of Y,
and each point x € 4 has a neighborhood V, in 4 with the image f(¥,) contained in
a compact subspace of B.

We shall say that a continuous homotopy h, : (X, 4) > (Y¥,B),0 <t £ 1, is an
LCR-homotopy if the map H :(X, A) x [0,1] - (Y, B) defined by the relation
H(x, 1) = h(x) is an LCR-map.

4.2. If f,g : (X, A) - (Y, B) are LCR-maps, let us write f ~,cp g if and only if
there is an LCR-homotopy h, : (X, 4) - (Y, B),0 < t < 1, withf = hyand g = h,.
Clearly, the relation ~ ¢, is an equivalence on the set of all LCR-maps of (X, 4)
into (Y, B). Let us denote by [X, A4; Y, B].cr the corresponding set of equivalence
classes and by [f].cr the equivalence class of an LCR-map f. Then [—; —],cx is
a bifunctor on the category Top3” x Top,, and the the map [X, A; Y, B],cx —
— [X', A, Y', B'] g induced by continuous maps f: (X', A) - (X, A) and
g : (Y, B) - (Y’, B') depends only on the homotopy classes [f] and [g] of maps f
and g, respectively.

4.3. Lemma. If (X, A) has the homotopy type of a CW pair then there are a con-
tinuous homotopy h, : (X, A) » (X, 4),0 < t < 1, and an open covering {U; | iel}
of X such that hy = id and each set hy(U;) (h,(U; n A)), iel, is contained in
a compact separable subspace of X (resp. A).

Proof. According to the general bridge mapping theorem, see [2] or [7, Appendix],
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there is a locally finite normal covering ¥* = { VJI jeJ} of X and a continuous map
f: (|N(“I/"(),, IN("V N A)I) - (X, A) such that fop,. ~idx_,, for each canonical map
Py (X, 4) > (N, [N n A)|). If 7 = {U,| iel} is an open covering of X
such that the set {j € Jl V;n U, + 0} is finite for all i € I, and if h: (X, 4) - (X. 4),
0 < t £ 1,is a continuous homotopy from idiy qytofopy,then%and h,,0 £t £ 1,
are easily verified to have the desired properties.

4.4. Proposition. If (X, A) or (Y, B) has the homotopy type of a CW pair then the
canonical map
(4.1) [X, A: Y. B],cx — [X. 4: Y, B]
is bijective.

Proof. Let us suppose that (X, A) has the homotopy type of a CW pair, and let h,,
0 <t < 1, be the homotopy from Lemma 4.3. If f : (X, 4) — (Y, B) is a continuous
map then f ~ fo hy and foh; is clearly an LCR-map. This proves that (4.1) is
surjective. If f,,f, :(X, A) —» (Y, B) are LCR-maps and f, ~ f,, then clearly
fi~rer fiohy for i =1,2 and f, o h; ~crf2 0 Iy, Which implies f; ~ cg f, and
proves the injectivity of (4.1).

The case of (Y, B) having the CW homotopy type is treated similarly.

4.5. Definition. Let f : (X, A) x (Y, B) = (Z, C) be a map (not necessarily con-
tinuous). We shall say that f is an LCR*-map if for each pair (K, L) = (X, A)
consisting of compact spaces the restriction of f onto (K, L) x (Y, B) is an LCR-map
into (Z, C).

We shall say that a homotopy h,:(X,A) x (Y,B) - (Z,C), 0 <1 =<1, (not
necessarily continuous) is an LCR*-homotopy if for each compact pair (K, L)<
< (X, A) the restriction of this homotopy to (K, L) x (Y, B) is an LCR-homotopy
into (Z, C).

4.6. If f,g:(X,A) x (Y,B) > (Z,C) are LCR*-maps, let us write [ ~ cpeg
if and only if there is an LCR*-homotopy between f and g. This defines an equivalence
on the set of all LCR*-maps of (X, A) x (Y, B) into (Z, C), and if we denote the
corresponding set of equivalence classes by [(X,A4) x (Y, B); Z, C] cgs, then
[ x —; —TJ.ck» may be considered as a functor on Top% x Top} x Top,.
Just as in 4.2 it is clear that the map [(X, A) x (Y, B); Z, C] cps — [(X', 4") x
x (Y',B'); Z', C'] ck» induced by continuous maps f: (X', 4') —» (X, A). g :
:(Y',B)— (Y,B) and h :(Z,C) - (Z', C’) depends only on the homotopy classes

[/], [¢] and [h].

4.7. Propesition. If (X, A) is homotopy equivalent to a CW pair then the canonical
map
(4.2) [(X,4) x (Y,B); Z, Clcr = [(X, A) x (Y, B); Z, Clcge

is bijective. If Z is a k-topological A-module and C a submodule then (4.2) isa A-
isomorphism.
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Proof. This follows from Lemma 4.3 in a similar way as Proposition 4.4.

4.8. For every two pairs (Y, B) and (Z, C) let S(Y, B; Z, C) denote the following
ss. set: n-simplexes of S(Y, B;Z, C) are LCR-maps s:V(n) x Y— Z such that
s(V(n) x B) = C and the restriction V(n) x B — C is also an LCR-map, and if
a:[...] = [n] is a non-decreasing function then the corresponding face operator o*
is defined by a*(s) = 5o (|a| x idy).

Clearly, S(Y, B; Z, C) is always a Kan ss. set, and if Z is a k-topological A-module
and C a submodule then it is a ss. A-module.

4.9. Proposition. For every ss. pair (X, A) and every two topological pairs (Y, B)
and (Z, C) there is a canonical bijection

(43) [X,4;8(Y,B;Z,C),S(Y, Y; Z, C)] ~ [(|X]. |4]) x (Y, B); Z, C]ce

natural with respect to all three arguments (X, A), (Y, B) and (Z, C). If Z is a k-
topological A-module and C is a submodule of Z then (4.3) is a A-isomorphism.

Proof. Let y,::V(dimx)— |X| be the characteristic map corresponding to
a simplex x € X. It is easy to see that the formula

xeX, teV(dimx), yeY=f(x)(1,y) = (), »)
defines a one-to-one correspondence between ss. maps

f:(X,4) - (S(Y,B; Z,C), S(Y, Y; Z, C))
and LCR*-maps
7:(|x],14]) x (v, B) = (Z,C),

which is natural with respect to all three arguments. Moreover, using 3.2 and the
functoriality of the geometric realization one verifies without difficulties that this
correspondence preserves the relation of homotopy. Consequently, passing from
maps to their homotopy classes gives the desired bijection (4.3).

Combining 1.6, 3.5, 4.4 and 4.9 we obtain

4.10. Proposition. Let n be a non-negative integer and G an Abelian group.
For every ss. pair (X, A) and every topological pair (Y, B) there is a canonical
group isomorphism

(44) k(x| x Y, [X]| x BU [4] x Y; G) ~ [X, A; S(Y, B; [K(G, n)|, %), ] ,

which is natural with respect to all the arguments (X, A), (Y, B) and G. If G is
a A-module then (4.4) is a A-isomorphism.

4.11. Corollary. For every topological pair (Y, B), for every Abelian group G
and for every non-negative integers n and q there is an isomorphism

(4.5) %4 - 7(S(Y, B; [K(G, n)|, %), ¥) ~ I*~%(Y, B; G),
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which is natural with respect to both arguments (Y, B) and G. If G is a A-module
then (4.5) is a A-isomorphism.

Proof. We have
(4.6) n(S(Y, B; |K(G, n)|, ), *) = [A(q), A(q); S(Y. B; [K(G, n)|. *), *]
by the definition of homotopy groups,
(47)  [Alq) Alq): S(Y. B; [K(G, n)]. »). +] = R"((V(q). ¥(q)) x (Y. B); G)

by Proposition 4.10 and the canonical identification (V(q), V(g)) = ([A(q)l, IA(q)
and finally (see 1.12)

(4.8) [V(g)]™" : i"((V(a). ¥(q)) x (Y. B); G) ~ h"~*(Y, B; G).
The isomorphism (4.5) is now defined as the composition of the isomorphisms (4.6) to

(4.8).

4.12. Construction of isomorphisms 0} (X, 4; Y, B; G). Let A be a principal ideal
domain. For n=0,1,2,... we shall now construct A-isomorphisms 87, =
= 0% (X, 4; Y, B; G),

(49) 05, : @ h{(|x]|,|A]: F(Y. B; G)) ~ I"(|X| x Y, [X| x Bu |4] x ¥;G).
i+j=n

)’

where (X, A) is a ss. pair, (Y, B) a topological pair and G a module over A.

By Theorem 1.6 we have a canonical A-isomorphism

(410) & h¥(|x|,
i+j=n

Al; B(Y, B; G)) = @ (X, |4; [K(A(Y, B; G), i)|, «] ,

and by Corollary 3.4 we have a canonicall/_l-isomorphism

(4.11) 4@ (x|, |A]; |[K(R(Y, B; G), i)|, %] z_+@ [X, 4; K(h'(Y, B; G), i), *] .
On the oth;r_ hand, we have the canonical A-isomjorphism

(4.12)  [X, 4; S(Y, B; |K(G, n)|, %), x] = h*(

Xl x Y, !X! X Bu[AI x Y; G)

of Proposition 4.10. Consequently, it suffices to construct a A-isomorphism

(4.13) -+@ [X, A; K(W(Y, B; G), i), *] ~ [X, 4; S(Y, B; |K(G, n)|, *), ]

and then tojdeﬁne (4.9) as the composition of the isomorphisms (4.10)—(4.13) taken
in an appropriate order. '

Our construction of the A-isomorphism (4.13) is based on Proposition 3.14. By the
assertion (c) of this proposition, there is a weak ss. A-homomorphism

¥ = 94(Y, B; G) : S(Y, B; [K(G, n)|, x) > [_'i K(h"~{(Y, B; G), i)
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such that the diagram
¥ no
n(S(Y, B; [K(G, n)l, ), *)—(——)—> n( [T K(h"~ (Y, B; G), i), *)

Ay g Jr(prll)*
h"=4(Y, B; G) n(K(h"~4(Y, B; G), q), *)
where ~ in the lower row denotes the canonical isomorphism of 3.11, commutes for
q =0,1,2,..., n. By Corollary 3.7, § is a homotopy equivalence of pointed ss. sets,
and we define (4.13) to be the A-isomorphism induced by 9.

It is clear from the construction, from the homotopy invariance of both sides in
(4.9) and from Theorem 3.1 that (4.9) is natural with respect to continuous maps
F:(|X[, |A]) = (]X'|. |[4’])- In general case, however, it is not natural with respect
to the arguments (Y, B) and G because the isomorphism (4.13) depends on the choice
of the weak ss. A-homomorphism &) and this choice cannot be made in a canonical
way. Finally, (4.9) also depends on the basic ring A : if w : I' — A is a homomorphism
of principal ideal domains then for a A-module G it may happen that 0}, & €7 ..

Q

4.13. Definition of isomorphisms 67, -, (X, 4; Y, B; G). Let A be a principal ideal
domain. For n =0, 1,2, ...,(X, A) a topological pair of CW homotopy type. (¥, B)
an arbitrary topological pair and G a A-module, we define a A-isomorphism 07 ., =
= 0% cw(X, 4; Y, B; G),

(414) Oicw: ® WX, A W(Y,B;G)~ (X x Y, X x BUA4 x Y;G).
i+j=n

in the following way.

It is well-known that the canonical projection p :(lS(X)', IS(A)I) — (X, A), where
S(X) and S(A) are the singular ss. sets of spaces X and A, respectively, is a homotopy
equivalence if the pair (X, A) has the CW homotopy type. Using this fact we define
(4.14) as the unique map making the diagram

@ h(|s(x)] |S(4)|; #(Y, B; G)) — % R((|S(X)], |S(4)]) * (¥, B); G
~ i+@="p i ~|(p x id)*
@ (X, 4; ﬁf(Y,B; G))»f’—c———a (X, A) x (Y, B); G)
commutative.

It is easy to see that (4.14) is natural with respect to the argument (X , A) and that
(X, A; Y, B; G) = 0 c(|X], |4]; Y, B; G) for every ss. pair (X, 4).

4.14. Proof of Theorem 2.1. Let us consider the diagram

lim 0", _ ‘
lim @ h(Xq A,,,, hi(Y, B; G)) LY, lim h"((X4» 4a) * (Y, B); G)
% i+j=n 3" U
A ~
(4.15) ® h (x "4; W(Y, B; G) - — (X, A) x (Y, B); G)

i+j=n
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where #% runs over the set cov(X), (X4, 4,) = (|N(%)|, [N A)') and both vertical
A-homomorphisms are induced by canonical projections py t(X, A) - (Xq. Ay).
It is easy to see that the left vertical homomorphism is an isomorphism. Using this
fact w: define 0%, = 0%(X, A: Y, B; G) as the unique A-homomorphism making this
diagram commutative. Clearly we have 07(X, A; Y, B; G) = 0% cw(X. A; Y, B; G) if
the pair (X, A) has the CW homotopy type.

We shall now prove that the homomorphisms (2.1) just defined have all the
properties claimed in Theorem 2.1.

Ad (a). This property is an immediate consequence of the definition of the homo-
morphisms 0% and of the naturality of isomorphisms 07 ¢y .

Ad (b). Using the property (a) one can easily see from our definition of 07,
07 cw and 07  that it suffices to prove the homotopy commutativity of the dia-
gram
9.(Y',B';G')

S(Y', B'; |K(G', n)|, %) [1K(h" (Y, B; G'). i)
i=0

l
¥(Y,B;G) » i
S(Y, B; |K(G, n)|, *) ———————— [[K(h""(Y, B; G), i)
i=0
where both vertical arrows denote the ss. [-homomorphisms induced by g and y.
But this follows immediately from Proposition 3.14, Corollary 4.11 and the way
in which the weak ss. A-homomorphisms §’, and the weak ss. A’-homomorphisms 97.
have been chosen.

Ad (c). It is clear that it again suffices to consider the case of (X, A) being the
geometric realization of a ss. pair. Using Theorem 1.6 we further find that it is suf-
ficient to prove commutativity of the diagram

(4.16) [X, 451, 8] —— [X, 4; S(Y, B; [K], %), *]

(Q:)* j(ST 1)*
[X. 45 S, Sl [X, 45 [] K(Gyop + 1), 4]
~|B, o
[4: Sk ] [x.4: T] LG, p+ 1), TI K(G, p)]
(9% )4 ;’ﬁz o
(4 11 K(Go )= [4 [ K(G,. )]

where (X, A4) is an arbitrary ss. pair, K = K(G, n), K’ = K(G’,n), K = K(G, n + 1),
L=LG,n+ 1), L=LG,n+1), S¢ = S(Y; B; |K|, %), Sx. = S(Y', B’; K. %),
Sp = S(Y. B: |L|, %), S. = S(Y',B;|L|,*), G, = h(Y,B;G), G, = h(Y', B'; G'),
the maps ¢ and ¢; are induced by g and y, and all the other maps are defined in an
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obvious way. The maps f; and f, are bijective by contractibility of the Kan ss.
sets S, and L(G,, p + 1)
By Proposition 3.17 there is a commutative diagram of ss. I'-homomorphisms

’

o4 o
Sk <—— DpP —— H K(Gq’ p)
‘ p+q=n
< c lc
B B
Sy «—— DrQ — [] L(G,p+1)

p+q=nl
/

|
v Y
Sy[Sk < DrQ/DP— [] K(G, p + 1)

ptq=n

(4.17)

Dr(Q[P)

where « and § are homotopy equivalences of ss. sets, P, Q and Q/P are free I'-
complexes and ' is homotopic to the composition

o 9;, , 0
DP —— Sg. —> [ K(G,, p) — 1 K(G, p)-
pt+q=n p+q=n
Consequently, commutativity of the diagram (4.16) follows from that of the diagram
[X, A; SL9 SK] - [X, A; S(Y, B; ‘Kl, *), *]

e Jz e

(4.18) [X.4;S., Sk ] [X.4; ] K(G,, p + 1). %]
ptqg=n
zTﬁ* p !
| ,
[X, 4; D;Q, D;P]—25[X, 4; T[] L(G,p + 1), [] K(G, p)]-
ptq=n ptq=n

Since By is clearly a bijection we finally see that it suffices to show that the diagram
SL/SK _— S(Y, B; IKL *)
Is, .

e

i
DrQ,,/DrP — H K(Gq, p+1
p+tq=n
of pointed ss. sets, where f, is induced by f and ¢,, is homotopy commutative.
Using Theorem 3.9, Proposition 3.10 and Corollary 4.11, we derive from the dia-
gram (4.17) I'-isomorphisms
n,(DrQ[DP, %) ~ B"**72(Y',B';G'), p=0,1,...,n+1.

Applying now Proposition 3.14 we reduce our problem to verifying commutativity
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of the diagram
n,(SL/Sk, *) = m,(S(Y. B;|K[. *)

I(ﬂ:&)* l9n+l
n,(DrQ/DP, x) = 1w, 11 K(G; i+ 1)%)

i+j=n

(____.

for p=0,1,...,n + 1.
Our further step is based on the observation that

[A(p), A(p), *; DrQ, DyP, %] = n,(DQ/D;P, %)

is an epimorphism. This and the diagram (4.18) imply that it suffices to prove com-
mutativity of the diagram

[A(p), A(p); St Sk] — [A(p). A(p): S(Y. B: [K]|, *). *]
'[(GHJ'I)*
(4.19) (1)« [A(p), A(p); T] K(G,.i + 1), 4]

i+j=n

[A(p), A(p), =; SL,SK,*]—B—>[A( ), A(p), »; T[] L(G,, i+ 1) 1 K(G;, i), ]

i+j=n itj=n

where B, is induced by any ss. map (S.., ) - ( [] L(G,, i + 1), ) extending the
l+ n
composition Sy, —» [] K(G}, i)~ [] K(G}, i), jfor all p=0,1,..,n+ 1. To
i+j=n itj=n

this end let us conside; the diagram (4.20), where A = A(p), A? is the ss. subset of A
generated by the face d,[p] of the fundamental simplex [p] € A, 4° is the ss. subset
of A generated by the faces d;[p], i # 0, * is the last vertex of [p], V and V° cor-
respond to A and A°, respectively, B5’s are isomorphisms from Proposition 4.10,
and f¢’s are canonical isomorphisms from 3.11. Using the homotopy description of
the connecting homomorphism §* given in Theorem 1.6, the way in which 33*!, 9.
have been chosen and the relation [V] = [V° : V] - [V°], one can prove that with
the exception of the subdiagram (4.19) all parts of the diagram (4.20) commute.
This clearly implies commutativity of the diagram (4.19) and completes our proof
of the assertion (c).

Ad (d). In a similar way as in the proof of the assertion (c) we reduce the problem
to verifying homotopy commutativity of the diagram

(4.21)
S(B'; IK'|)<—Q~S(Y’, B;|L|,|K'|) = S(Y', B’; |K'|. *)L S(Y, B; |K|, «)
9. 9:)‘“
[T K(Gyp) 2o T KV, 86 p) e [ K(Goens )
ptg=n ptq=n ptq=n
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where K" = K(G',n), L = L(G',n+ 1), K=K(G,n+ 1), K'=K(G,n+ 1),
G, = h(B'; G'), G, = h'(Y, B; G), B, is induced by the A’-homomorphisms

(—1)y96* :h%(B'; G') - h*"'(Y', B'; G')
and f,, B are induced by g and y.

All maps in (4.21) are weak ss. I'-homomorphisms, and contractibility of the CW
complex [L'l and Proposition 4.10 imply that

n(S(Y', B'; IL’I, ]K’|), *) ~ m(S(B; ]K!), x) ~ " (B G).

Consequently, by Proposition 3.14, the diagram (4.21) is homotopy commutative if
and only if the corresponding diagram of the i-th homotopy groups is commutative
for i = 0,1,..., n (all higher homotopy groups of S(B'; IK’D are trivial). This is,
however, easily seen to be equivalent to the commutativity of diagram (2.4) for all
pairs (X, 4) = (V(p), V(p)), p = 0, 1, ..., n. To complete the proof it suffices to use
the property (e), which will be proved later, and some well-known properties of the
cross product.

Ad (e). It is clearly sufficient to prove commutativity of the diagram

(], 4] 1) @, 1Y, B: G) s B[], |A]; B, B; G)
(4.22) X pr
. )" .y N
h(( ———— @ h(|x|,|4|; ¥(Y, B; G))
i+j=n

where (X, A) is an arbitrary ss. pair and p + ¢ = n.

x|, |4]) x (Y, B); 6)

We start with a general remark concerning cross products. Let
tss - K(4, p) x K(G, q) - K(G, n)

be the A-bilinear ss. map induced by the Alexander-Whitney natural transformation
(see e.g. [11, p. 118]), and let

oi™' 1 [K(4, p)| x |K(G, q)| - |K(G, n)

1=

’

where i is the canonical bijection of Theorem 3.2. Then y is A-bilinear and continuous
on compact subspaces and the diagram
(4.23) he(|X|, |4]; 4) x h%(Y, B; G)—X> h((|x|, |A]) x (Y, B); G)
T xi ' 4
[1x], |4]; [K(4, p)|, ] x LY, B; [K(G, q)l, »]  [(|X], [4]) x (Y. B); [K(G, n)], *]
id x B, i
(1], 415 [K (4, p)], 1% (¥, B5|K(Gy )} Tucr — LX) % (¥, B K(G, ), <leca-
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where 7 is the natural transformation of Theorem 1.6, f, is given by Proposition 4.4
and f, is given by Proposition 4.4 and Proposition 4.7, can be proved to be com-
mutative. Similarly one can prove commutativity of the diagram

- ®v

ho(x|. |4; 4) —— b(|X]. [4]; G
(4.24) i i 2

[1x], |4]; [K(4, p)], +] > [|X]. |4]: |K(G,, p)]. #]
where ve G, = h%(Y, B; G) and
4, 1 K(4, p) » K(G,, p)
is the ss. A-homomorphism which is induced by the A-homomorphism A —
- h%(Y, B; G) sending 1 € A onto v.
Now for every LCR-map g : (Y, B) - (|K(G, q)|, *) let
1y - K(4, p) > S(Y, B; |[K(G, n)|, %)

be the ss. A-homomorphism defined by the formula

1(3) (1. ) = u(xs(1), 9(»)), teV(dims), yeY,
where yx, : V(dim s) — |K(4, p)| is the characteristic map corresponding to the
simplex s. Supposing g has been chosen, let us put v = #[¢]) and consider the dia-
gram

ﬁ”(lXHAI; Gq) EP(IX > IAI; A)—bx—v——* ﬁ"(Z, C; G)

(4.25) | ~ |
zii 11 ~|1 I [z,c;1 %]
, | B2
(X1 [4]; [K(Ge. 2] #1 « [IX]. |4]; [K(4, )|, *] ~ [Z, C; |K], *]rcre
1134 11 Bas v ~ | B3
[X, 4; K(G,, p), +] <2 S [X, 4;K(4, p), ¥] —5 (o) XX, A;TS, %]
| 93(Y, B; G),

P [x. 45 TT K(Gp )] —
where K = K(G, n), (Z,C) = (|X|,|4]) x (Y, B), S = S(Y,B;|K(G,n)|, ), B5 is
the isomorphism of Proposition 4.9 and f,’s are the isomorphisms of Corollary 3.4.
The squares of this diagram are easily seen to be commutative; commutativity of the
squares III and IV follows immediately from the definition of the maps p, 4, and y,,
and commutativity of the squares I and II is a consequence of the commutativity of
the diagrams (4.23)and (4.24). It follows that the diagram (4.22) is commutative if and
only if the triangle of the diagram (4.25) commutes for all LCR-maps g : (Y, B)

468



- (}K(G q)|, *) and v = ¥([g]). Using this fact and applying Proposition 3.14 (d)
we conclude that it is sufficient to prove commutativity of the diagram (4.22) for
(X. A) = (A(p). A(p)). Making this substitution, comparing the resulting diagram
with the diagram (2.5) (here we use the property (f) which will be proved next) and
using the obvious commutative diagram

V(). ¥(p): 4) ©.1 Gy —r F(V(2), (p); Gy)

O N L)
41®,6, G

q

we find that it suffices to prove commutativity of the diagram

R(V(p), ¥(p); ) © 4 Gy —— B(¥(p), ¥(p)) x (Y, B); G)
[¥()] ® 4] [
A®,G, -G,

This, however, follows from the definition of the isomorphisms [V(p)] and from the
well-known properties of the cross product.

Ad (f). Since we can identify h*(— , — ; —) with H*(— , — ; —) on the category
of ss. pairs, it easily follows from the definition of ¢, and from the commutative
diagram in 4.12 that commutativity of the diagram (2.5) is equivalent to com-
mutativity of the diagram

G, ”p(K(Gq}? p), *)
140 ;

HAA(p). A(p); G) —— [A(D) AP K(Gye ). ]

where ¢ = n — p, G, = h%(Y, B; G), the above arrow denotes the canonical iso-
morphism of 3.11, the isomorphism ¢ is defined by #([f]) = f*(c,), c, e
€ H(K(G,, p), G,) being the fundamental cohomology class (see [11, p. 230,
Korollar]), and [A(p)] is defined in the same way as [V(p)]. Commutativity of this
last diagram is, however, obvious.

Ad (g). It remains to prove that (2.1) is bijective if the space Y is compact. Let us
put K = K(G, n), (Z,C) = (X, 4) x (Y, B), (Xq. 44) = (|N(%)|, |N(% ~ 4)|) and
(Za» Ca) = (X, Aq) x (Y, B) for % € cov(X). In view of the commutative diagram
(4.15) and Theorem 1.6, the homomorphism (2.1) is bijective if and only if the
canonical homomorphism

lim [Zy, Cq; K|, x] > [Z, C; |K], ]

WUecov(X)
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is bijective. This last homomorphism is, however, equivalent to the homomorphism

lim [X,,,, Ay ([K!, *)‘Y'B', *] - [X, A; (lK', *)””B’, *]
WUecov(X)
because Y is compact and K is regular. To complete the proof it suffices to notice
that the pair ((IK] )% %) is homotopy equivalent to a CW pair by [14], and to
apply the general bridge mapping theorem [2], [7, Appendix]. (Remark: J. Milnor
assumes in [ 14] that Y is regular but this assumption is easily seen to be unnecessary.)

5. PROOF OF THEOREM 2.7

Let us write A € B for subsets A and B of a space X if B is a functional neigh-
borhood of A.

5.1. Definition. (See [3, p. 148] and [4, p.45].) Let & be a presheaf of Abelian
groups on a space X. We say that o is uniformly locally trivial if for each pair of
open subsets U and V of X with U € V and for each s e «/(V) there is a normal
open covering {Uil i eI} of the space U such that s l U, =0foreachiel.

5.2. Proposition. If a presheaf o/ of Abelian groups over a space X is uniformly
locally trivial then H*(X; o) = 0.
For the proof see [3, p. 149] and [4, p. 45].

5.3. Corollary. Let o : ./ — B be a homomorphism of presheaves of Abelian
groups on a space X. If both presheaves Ker a and Coker o are uniformly locally
trivial then « induces an isomorphism ax : H¥X; o) ~ H*(X; B).

5.4. Lemma. If the topological pair (X, A) satisfies the conditions (a)—(c) of
Theorem 2.7, then the following assertions hold:

(a) Every neighborhood (in X) of each closed subset F = X-int A is functional.

(b) For each closed subset F of X and for each family {U,-| iel} of open subsets
of X with the property F-int A <« \J U, there is a normal open covering {leje J}

iel

of X such that for each je J either V,F =0 or V; € A or V; < U; for some
iel.

The proof is an exercise on the properties of normal coverings and is left to the
reader.

5.5. Lemma. Let (X, A) be a topological pair satisfying the conditions (a)—(c)
of Theorem 2.7, and let &/ be a locally trivial presheaf of Abelian groups on X.
If «(U) = 0 for all open subsets U of X with U € A, then o/ is uniformly locally
trivial.

Proof. Let U and V be open subsets of X such that U € V, and let se (V).
Since o is locally trivial, for each point x € U-int A there is an open neighborhood U,
of x such that U, = Vand s | U, = 0. Applying Lemma 5.4 to F = U and to the
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family {le x € U} we obtain a normal open covering {le Jj€J} of X such that for
each je J either V,nU =0or V; = A or V; « U, for some x e U. To complete
the proof it suffices to notice that {U n V,-I j € J} is a normal covering of U and that
s|UnV;=0forall jeJ.

5.6. Proposition. (See [3, p. 1511].) Let (X, A) be a topological pair satisfying the
conditions (a)—(c) of Theorem 2.7, let of be a presheaf of Abelian groups on X,
let o7 be the sheaf generated by </, and let v :.of — 7 be the canonical homo-
morphism. If v: (U) = JJ(U) for all open subsets U of X with U € A, then v
induces an isomorphism vy : H*(X:; o) ~ H*(X; o).

Proof. This follows from Corollary 5.3 because the presheaves Ker v and Coker v
are uniformly locally trivial by Lemma 5.5.

5.7. Proposition. Let (X, A) be a topological pair satisfying the conditions
(a)—(c) of Theorem 2.7, let o be a sheaf of Abelian groups on X, and let us put
M= {xeX| o, +0}.If Moint A =0 then A(X: /) = 0 for p > rdyM.

Proof. Under the assumption B = 0 this was proved by E. G. Skljarenko in [18].
Using Lemma 5.4 one can easily verify that his proof goes through also in our more
general case.

Starting from this point the notation of Theorem 2.7 is used.

5.8. Lemma. If (X, A) is locally contractible at each point xe X-int A in the sense
that for each neighborhood U of x there is a smaller one V such that the inclusion
map (V,Vn A)G (U, U n A) is homotopic to a constant map onto the point x,
then the homomorphism (see 2.5)

(5.1) re: Sh(py, p, I C), = h*(p7 '(x), py '(x) n C)
is bijective for all x € X and all integers q.
Proof. This is an immediate consequence of the homotopy axiom.

5.9. Proposition. If (X, A), (Y, B) and N satisfy the conditions (a)—(d) of Theorem
2.7 and if (X, A) is locally contractible at each point x € X-int A, then T(Z, C)
is bijective for n < N and injective for n = N.

Proof. Applying Theorem 1.11 in an appropriate way and using Proposition 5.6,
we obtain the following commutative diagram

A7(X; SAYp,, p,| C; G)) ~ E5* —— A"(Z, C; G)
p .
ll//’z’“‘ l‘l"z"q lT"(Z, C)
A7(X; Sh%(p,, p,C)) ~ Ey* =——> h"(Z, C)
P

where the homomorphism ¢ : E - E’ of spectral sequences and the homomorphisms

Y5? are induced by T. Using the obvious fact that %" is injective and applying
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Lemma 5.8, we obtain that ¢4? is an isomorphism for p + ¢ < N and a mono-
morphism for p + g = N. An easy inductive argument shows that the same holds
for %% This, however, implies that T"(Z, C) is bijective for n < N and injective for
n=N.

5.10. Remark. As a special case of the last proposition we obtain: If the spaces X
and Y are paracompact and regular and if one of them is locally contractible, then
A*X x Y;G) ~ HXX x Y;G).

5.11. Lemma. For every pair p, q of integers there is a canonical homomorphism
(5.2) p.q: hP(X, A; B(Y, B)) > H(X; Sh'(p,, p,| C)) .

If (X, A) satisfies the conditions (a)—(c) of Theorem 2.7 then (5.2) is an epimorphism
for p=rdyM, + 1 and an isomorphism for p > rdyM, + 1.

Proof. Let G, = h(Y, B), let o/, be the presheaf on X defined by putting o7,(U) =
=G, for UnA =0 and o/ (U)=0 for Un A+ 0, and let o7, be the sheaf
generated by o/ . For each open subset U of X we have an obvious canonical mono-
morphism .« (U) - Ph(p,, p,| C)(U), and it is clear that these monomorphisms,
induce a monomorphism v : &7, - Sh%(p,, p,[ C). We now define the homomorphism

(5.2) as the composition h*(X, A; G,) = A"(X; o/,) > H(X; ) AN
- A7(X; Sh'(p,, P1| C)) of the homomorphisms induced by the canonical homo-
morphisms «/, — o/, - Sh%(p,, p,| C).

Now let us suppose that (X, A) satisfies the conditions (a)—(c) of Theorem 2.7.
Since by Proposition 5.6 H*(X; o/,) ~ H*(X; /,), we must show that v, is an
epimorphism for p = rdyM, + | and an isomorphism for p > rdyM, + 1. Let %
be the cokernel of v in the category of presheaves of Abelian groups and let " be
the sheaf generated by #". Clearly ", = 0 for x ¢ M, and therefore by Proposition
5.6 and Proposition 5.7 we have A”(X; ¥) = A"(X;X) =0 for p > rdyM,.
Applying now the exact cohomology sequence corresponding to the exact sequence
0- ,Jq - Shi(p,, p1| C) > A — 0 of presheaves, we obtain immediately that
(5.2) is an epimorphism for p = rdyM, + 1 and an isomorphism for p > rdxM, + 1.

5.12. Proof of Theorem 2.7. For each % € cov(X) let us put (X, A,) = (|N(%),
]N(JII A A)l) and (Zy, Cy) = (Xa, Ay) x (Y, B). By Proposition 5.9, the homo-
morphism T(Z,, Cy) o P"(X 4, Ay), % € cov(X), is bijective for n < N and injective
for n = N. Consequently, the same argument as that used in the proof of Corollary
2.2 shows that it suffices to prove that the homomorphism

—
n

lim W(Zy, Cy) —— (Z), C)
Uecov(X)
induced by canonical projections X — X, is an epimorphism for n = v(N), an iso-
morphism for ¥(N) < n < N and a monomorphism for n = N.
Let py : Z, — X, be the canonical projection. By Theorem 1.11 and by Lemma
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5.11, for each % e cov(X) there is a diagram

(5.3) h"(X 4, Ay WY, B)) ~ E3*(U) == h"(Z 4. Cy) ,
P

where E(#%) = {E%), d,. .}, is a first-quadrant cohomological spectral sequence
and h*(Z,, C,) is considered as a filtered graded Abelian group with the filtration
Fyh*(Zy, Cy) determined by p, and satisfying Foh*(Z,.Cy) = h*(Z4. C,) and
Fi7 'h(Zy, Cy) = 0. Tt follows further from Theorem 1.11 that every canonical
projection @4y : Xy — X, induces a homorphism ;- : E(#) — E(¥) of spectral
sequences, and that the diagram

hP(X oy Aus h(Y, B)) ~ E3Y(U) =—=> h"(Zy4. C,)
(5-4) i((l’aw")* J(l//«h pq 1(‘/’% X id)*
h"(Xy, Ay; (Y, B)) ~ E54(¥") ==> h"(Zy, Cy)
p
commutes. This diagram implies in particular that ¥4, does not depend on the

choice of the canonical projection ¢4, Consequently, (5.3) and (5.4) form an in-
ductive system over cov(X) with the limit

ﬁ”(X, A; h'(Y, B)) = Ene

== lim h"(Zy, Cy),

P uecov(X)
where E = lim E(%) and lim h*(Z,, C) is taken in the category of filtered graded
Abelian groups. It is clear that the filtration in lim h*(Zy, Cq) is regular.

In the same way one can show that canonical projections @, : X — X,, % € cov(X),
induce the commutative diagram

h#(X, A; h(Y, B)) — E7-

> lim H'(Zy, Ca)
p 1

(5.3) *p.a [”5"’ |o*
HP(X; Sh(py, ps| C)) —— E}* == W(Z, C)
p

whose second row corresponds to the pair (Z, C) and the canonical projection
0, Z-X.

Using the obvious fact that s, , is always injective we conclude from (5.5) and from
Lemma 5.11 that /¢ is surjective for p + g = v(N), bijective for (N) < p + ¢ < N
and injective for p + g = N. An easy inductive argument shows that the same is true
for T//’f“‘, 2 < r £ o. This, however, immediately implies that @" is surjective for
n = y(N), bijective for (N) < n < N, and injective for n = N, and the proof is
complete.
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