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1. Introduction. It is known that Nijenhuis’s theory of natural bundles [8], [10],
[12] allows us to characterize differential-geometrical (= invariant) operations and
mappings as natural transformations of some liftings, or equivalently, as certain
differential invariants in the sense of [6]. Moreover, this theory, combined with the
prolongation theory of liftings [4], [5], is an important tool for computation of
differential-geometrical operations — either by “‘infinitesimal”, or ““direct” methods
(see e.g. [7], [9])-

The purpose of this paper is to apply Nijenhuis’s theory to the problem of uni-
queness of the exterior derivative of forms, the Lie bracket of vector fields, and the
Levi-Civita connection of metric fields.

As a motivation, consider the exterior derivative w — dw of forms on a differential
manifold X. It is known that the exterior derivative may be defined by various proper-
ties. For example (see [1]), one may require (1) if @ = f is a function, then df is the
differential of f, (2) the domain of definition of dw coincides with the domain of
definition of w, (3) the mapping w — dw is R-linear, (4) for each p-form w and each
g-form n, dlw A ) =do A n+ (-1 w A dy, and (5) d(dw) = 0 for each w.
There is also another definition of d (see [11]), based on its behaviour under map-
pings: d is the unique R-linear mapping such that for each local diffeomorphism
of X,

(1.1) do*w = o* dw .

Let APTX be the bundle of p-foims over X, j"A?TX its r-jet prolongation, 2, the
category of smooth n-dimensional manifolds and their embeddings, 2y its sub-
category of morphisms a: U — ¥V, where U, V < X, and & .QZ(A”TX) the category of
local bundle homomorphisms of APTX whose projections are morphisms of Dy.
If 1,: Dy > FAB(A’TX) denotes the natural lifting and j't,: Dy - FAB(j*ATX)
its 1-jet prolongation, then d may be regarded as a natural transformation of j 11',, to
T,+1 OF, Which is equivalent, a differential invariant dy: T,!A®R" — AP*!R", where
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T, APR" (AP*'R") is the type fiber of j'A?TX (AP*'TX, respectively); the differential
invariant d, obtained in this way is a linear mapping. Thus the problem of uni-
queness consists in the uniqueness of the differential invariant d, or, if we allow higher
order liftings, in the uniquenss of dg: TFAPR" — AP*IR", where r = 1 is arbitrary.

The problem of uniqueness of the Lie bracket and the Levi-Civita connection may
analogously be formulated in terms of appropriate liftings, their natural transfor-
mations, and the corresponding differential invariants. The methods we use are,
however, more general, and should be compared with [1 1] and, in the case of the
Levi-Civita connection, with [3], [13].

2. Basic geometrical structures. Throughout this paper, R denotes the field of real
numbers, R" the real, n-dimensional Euclidean space. If R" is considered with its
natural vector-space structure, its dual vector space is denoted by R™. X denotes
a smooth n-dimensional differential manifold. Our notations given below follow
[s], [7].

Recall that the rth differential group L, of R" is the group of invertible r-jets
with source and target at the origin 0 € R". Let K}, denote the kernel of the canonical
projection I}, — L., and let ¢,: L}, —» L, be the canonical homomorphism of the Lie
groups. It is known that K} is a nilpotent normal subgroup of L, diffeomorphic
with some Euclidean space, and that L, = L, x K] (= semi-direct product).

The canonical (global) coordinates b}, bi,...,bi ;, 1<i<n 1<), ...
... £Jj, £ n, on L, are defined as follows. Let jjo € L, where o = (o, 0y, ..., &%,)

1

is a local diffeomorphism of R", let a™* = (a7 ', 25", ..., ;') be the inverse dif-
feomorphism. We set
(2.1) b, (jow) = D07 '(0), ..., bj,..;,(7o%) = Dj, ... D, '(0),

where D; is the partial derivative operator with respect to the j-th variable in R".
We define ai(joo) = bi(joa™"); then ajb? = 6% (= the Kronecker symbol).

We denote by TX the tangent bundle of X, by A’TX (j"A’TX) the bundle of
p-forms (the r-jet prolongation of the bundle of p-forms, respectively) over X. The
type fiber of A’TX (j"A’TX) is denoted by A’R" (T;A’R", respectively), and the
canonical coordinates on A?R" (T,A’R") are denoted by ..,y 1 S iy < iy <
<y 21 (Dgyigeiys Oiyigenip s = s Digigeoipkhyekyr 1| = I < Iz <o <ip=m 1
< ky £k, £ ... £k, £ n, respectively). APR" (T,;APR") has a natural structure of
an Lj-module (L," '-module, respectively).

Put

(22) 0 = R"® (R™ O R™),

where © denotes the symmetric tensor product, and denote by I jk, 1£ign,
1 £ j £ k £ n, the canonical coordinates on Q. Q may be endowed with the struc-
ture of an L-module as follows. For each (j3, g) € L, x Q we set

(23) (e - 4) = a(ice) (b3(js) bijox) Tila) + bh(io))
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or, with the obvious meaning of the symbols,
(24) rj, = af,(bj’.b,'(l“;’, + b%).

The mapping (j5a, q) = joe. g introduced by either of these formulas, defines a left
action of IZ on Q.

Consider the r-jet prolongation T,Q of Q, i.e. the set of r-jets with source 0 € R"
and target in Q, with its natural manifold structure. Let ', i s s Ditoms.omes
1sisn 1=2jsks=n 1=<m £m,<..<m £n, be the canonical co-
ordinates on T, Q. Recall that foreach p = 1,2, ..., r,

(2.5) Fj'k,rn;...mp(j(r)q) =D,, ... Dmp(rj‘kq) (O) .

The L,"'-module structure of T;Q may be easily described by formal differentiation
of (2.4). We obtain

(26) = aiaybl(bIbis, + b +
+ (B3l + b3bin) TG, + BIbLbLTT,  + blin) s
etc.

3. The uniqueness of exterior derivative. The fact that the exterior derivative as
defined above (see (1.1)) is unique was proved by Palais [11]. Our proof is based on
a generalization of the following lemma proved in [7]: The left L,"*-manifold T;Q
has the structure of a left principal K%*2-bundle. This left principal K*2-bundle is
trivial, and its base is diffeomorphic with some Euclidean space. The canonical pro-
jection g,: T;Q — T;Q/K;*? is equivariant in the sense that for each ji"’a e L,'?,
Joq € T, 0,

(3.1) oo oa) = jou - eJ5a) -

Let us reformulate this lemma for spaces arising by prolongations of tensor bundles.
Let E be the space of tensors of type (p, g) on R", let ¢\ be the canonical coordi-
nates on E. Consider the product T, 'Q x T;E (T,E = the space of r-jets with
source 0 € R" and target in E), endowed with the natural structure of an L, !_manifold.

Lemma. The left I’ '-manifold T:”'Q x TIE has the structure of a left principal
K'*!-bundle. This left principal K" 2-bundle is trivial, and its base is diffeomorphic
with some Euclidean space. The canonical projectionm,: T, 'Q x T;E — (T;~'Q x
x T'E)K;*! is equivariant in the sense that for each jy*'ae L', (j57'q, jo¢) €
eT:"'Q x TiE,

(32) m(jo o . (Jo 4, J568)) = Jox - m(Jo ' q, Jok) -

i

Proof. Following [7] denote by R}, the components of the formal curvature
tensor on T7Q, bY Rjimis, (Rjimss,ss,) the comonents of its first (second, respectively)
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formal covariant derivative, etc. Put

(3.3) ri

— i
Jkmy.. = £ (kmy..mg) >

where (jk,m, ... m,) means the symmetrization of (2.5), and denote by ¢!
L A J oy 'f;,m......m, the formal covariant derivatives of t“"_"’. For example,

(34) iy = gl Tl g Plaghedpois s gieds

J1.e-dgim FARRYY } sm°Jji...Jq sm”jy.. mjy -S.lz Jq

.

mjq Jx Iq 15
Then the system of functions I“““, “es }1...1',“’ 1fsisnl15j;=...8j,41 =
= 1, Rty Rigiamys - Rty soimp o 15075 i ',‘;,,,,l, e B . om, CONTAINS 2 SUD-
system defining a global chart on T} 'Q x T'E. The coordinate functlons belonging
to this chart will be referred to as the adapted coordinates. In terms of this chart,
the action of L,*' on T;'Q x TJE is expressed by the formulas

i [ ol i i
(35) rm1...ms+z - rml...ms+z + sm;...ms+z + bm;...ms+z ’
Bi Zigand iy
Jklymy;..img = RJkl smys...sms 3 tjx...j‘;;ml;,..;m, - tfp..j‘;;"ll;...;m: ’
where s,, . .. is a polynomial in the canonical coordinates on K:*" and in the

adapted coordinates on T; 'Q. Consequently, the K.*!-orbits in T/~ 'Q x T'E
are defined by the equations

(3.6) Rj.k, = a;k,, ..o R

. = at
Jklymys...imp—2 Jklmy..omp—2 9
x,, — n if.. — i...ip
b * t.ll Jq»"': mp b.il~~~qul--~mr H

with arbitrary constants on the right-hand sides.

To prove the lemma it is sufficient to show that the equivalence relation ‘‘there
exists jotlae L' such that (i~ 'qy, j6&,) = jo ' a. (jb 'q2, 757 "¢,)” is a closed
submanifold of the product (7,;7'Q x TJE) x (T, 'Q x T[E), and that the action
of Ki*! on T!'Q x T!E is free. In the adapted coordinates on the first and
the second factor, this eequivalence has the equations Rj.k, = Rl oo Rittimyssmez =
= Rl tomsimns B0 'J'; = f 'J",. o P s = L 'f;,m.. m, and is therefore
closed. Equations (3. 5) imply that K7*! acts freely on R"IQ x T,E. The remaining
assertions are verified in the same manner as in [7].

We are now in position to prove the uniqueness of the exterior derivative. To this
purpose we put E = APR" in the lemma, and denote by w;,...; the canonical co-

ordinates on APR".

'jr

Theorem 1. There exists a unique, up to a multiplicative constant factor, linear
differential invariant from T;APR" to AP*'R". In canonical coordinates, this dif-
ferential invariant is expressed by the equations

(3.7) Djyejpip+r = Plitejpip+1l o

where [jy ...y Jp+1] means antisymmetrization.
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Proof. 1) Existence. Using the structure of an I,"'-manifold on T;4’R" one
directly verifies that (3.7) defines an L,"'-equivariant mapping from T;A’R" to
APHIR™,

2) Uniqueness. Let d,: T, A’R" — AP*'R" be a linear differential invariant. Con-
sider the product TF~'Q x TIAPR" together with its structure of a principal K;* -
bundle. We have the diagram

j d,
7710 x TrAPR 22 Trarrr L0y prrige
|
(3.8) 7, dpo |
i
i
(H—IQ X r]-;erpRn)/K;—i-l_____]

where proj denotes the projection onto the second factor. Since the mapping d, - proj
is K"*!-equivariant, it can be factored through the projection m,. Denote by
[j5 g, jow] the equivalence class of a pair (j5~'q, jow)e T, 'Q x T;A’R". Then
by definition

(3.9) d, o5, /o)) = A7) .

Since d, is linear, we have for each j5 'q, jiw,, jro,

(3~10) d,,o([ja"q,ijl + j:)wz]) = d,’o([jo"lq,j{)wl]) + dr,o([]'f)—!q,j:)wz]) .

In coordinates, d, o is 2 mapping (Rju, -+ Rjxs; i — 3 @iyociys <5 Dievsipimizozme) =
i i

= (@ s (Rt o5 Ritimysciimy <20 Pigoips 205 Diyeviyimysoim,))s a0d - (3.10)  means

that for each fixed Rjy, ..., Rjppim,;.om—p» @ depends linearly on w;

..... Jijp+1 toesipy e
o> Oy psmy soeezmye HENCE
— . iy..d ijeipsmy;..my
(311) Bjyejprs = Ajl-v-j‘:;+lwi1"'ip +.ot Aj1-~-j;+1 Diyoipimy s sm,
. i i . . 1
where the coefficients depend on Rjy, ..., Rjym,;. im._,- SinCe @j,..j,,, is an L,-

equivariant mapping and @;,..;. .-, @j,...ip;my;;m, aI€ tensors, the coefficients
in (3.11) must also be tensors: take for example Bty = 05 ooy Diyiimyseeim, =
= 0; then after a transformation jéoz ell,

— 1k K _ 1k 3 iy
(312) @ = bl .. by, = DB ANTE o

Jiip+t Jp+1 Jp+1 kg kp 4 iy T

— Alh...l — — ZAh...l iy i
= A P w,l..‘;p = A; P bll b,‘;a)

J1edp+1 Jiedp+t igeip

which is possible if and only if
(3.13) A = ai o apbl b nALTE

We now apply the condition that the composed mapping d, - proj = d, ¢ o 7, should
be independent of j;'q. In coordinates this means that the expression (3.11)
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rewritten in the canonical coordinates on T' 'Q x T'A'R", does not depend on
r ;k: v T _;k my..m—,- APPlying the formulas for the formal covariant derivatives
analogous to (3.4) one easily obtains that A} 'P""! ~imr (= the coefficient at

@j,...ipmym,) 15 independent of Iy, ..., T ;k S (unless r = 1); the classical

invariant theory then says, however, that A;’x j:;"‘l”"“ = 0 (see e.g. [2]) Repeating
this argument we obtain
(3.14) A = 0 AT < 0
Hence
(3.15) Ojyojprr — A;'l;.:...fi‘;,;:”lwixmip;m =
S
A;lx ;::nx(wil"'ip,m Fhm siy-ip Ff,m ige -~ip-|s) .

Hence A%-™ js a constant tensor. Since it is antisymmetric in the subscripts, it

Jiedp+1
ipm

must be a multiple of the permutation tensor &/  and we have

wjl"‘jp+l =c. w[.il"'jp;jp+1] .

This completes the proof.

4. The uniqueness of the Lie bracket. Using the notation of the fundamental lemma
of Section 3, put E = R" x R”", and examine the bilinear differential invariants from
T;(R" x R") to R". The canonical coordinates on T,(R" x R") (on R") are denoted
by &, 0L E L, & Jp 4 .i» (A, respectively). As before, we shall also consider
the left principal K.*'-bundle =,: T; 'Q x T,(R" x R") - (T;7'Q x TyR" x
x R")[K;*! and denote by &, ¢, &L L., & U the adapted coordi-
nates on the total space of this bundle.

Theorem 2. There exists a unique, up to a multiplicative constant, bilinear
differential invariant from T;(R" x R") to R". In canonical coordinates, this dif-
ferential invariant is expressed by the equations

(4.1) =G -0

Proof. 1) Existence. The mapping (jp¢, jhl) = A(jo¢, jol) defined by (4.1) has
all the properties required.

2) Uniqueness. Let 4,: Tj(R" x R") » R" be a bilinear differential invariant.
In the diagram

Tr lQ X Tr(Rn X Rn) Tr(R" x Rn) Rn

A

|

(4.2) , Xy
!

I

(T7'Q x T;(R" x R))[K;* === === -
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the mapping A, - proj can be factored through =,. Hence 4, is, in the sense of the clas-
sical invariant theory, a vector (= element of R" endowed with the standard action
of L,) depending on the tensors R, ..., Riypumisme s €58 o ELn i C s
by the bilinearity assumption, the components A* of A, are linear combinations of
tensors &L, {9, EC, L L ET Ly e E L, Whose coefficients are constant
tensors. Therefore the only non-vanishing coefficients are at the tensors é‘C{,l, E{,‘C i
and A* must have the form

(43) A= AN, + BUCE, = ANE(L + T1,0") + BYL(E + Ii,em).

Since A* does not depend on I'j, ..., I}, , ., we have

(4.9) A3joy0m + Bijoisy + AlSL6, + BiSie, = 0.
But

(4.5) Al = ad'o} + bd%s}, B = a'8is + b'6%o]

for some a, b, a’, b’ € R so that
(4.6) (ad%6} + bos}) 5,‘,5;” + (a’6’§6j. + b'8%5;) 5.0y +
+ (a8i8} + bIJOT) 5,0, + (a'007 + b'OJOT) 8,5, =
= a(8;5,97 + 5,076;) + b(3j0,07 + 83076;) +

+ @/(35107 + okamat) + bi(Skolom + Shorsl) =

p. J7q°p

= (b + ') (656,07 + 65675,) + ask(3iom + omo) + a'dy(Si6y + 876,) = 0.

J P.

If n =1, then (4.3) is rewritten in the form A = A&’ + I'() + BY(& + I¢) =
= A’ + B{E + (A + B)I'éC, and the independence of I' means that A + B = 0,
ie., 4, is of the form (4.1). Let n > 1. Take forexample j =k =1,p=q=m =
= | = 2. Then (4.6) gives

(4.7) b+b =0.

Similarly take k = p = 1, | = j = m = g = 2. In this way we get

(4.8) a=0, a=0.

Returing back to (4.3) we get

(49) 2= A + Bl = baliEi] + bofeiLie] = b(E - ).
This completes the proof.

5. The uniqueness of the Levi-Civita connection. Let us consider the space E =
= R™ © R™ of tensors of type (0, 2) on R" and denote by g;;, | < i <j < n, the
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canonical coordinates on E. Let E, = Ex{g € E|det(g;(g)) = 0} be the subset
of regular tensors; E, is endowed with the natural structure of an L]-manifold. It
is of great interest to know all differential invariants from IX*'-invariant open
subsets of T,E, to Q which correspond in a well-known manner to linear con-
nections which are geometric objects (= concominants) of the metric tensor and its
derivatives of order <r.

An example of a connection of this type is the Levi-Civita connection V, for which
r = 1. For r > 1, however, some other examples may be given which differ from
the Levi-Civita connection. For this reason we shall consider the problem of uni
queness only for r = 1. We note that the problem of uniqueness of the Levi-Civita
connection has been stated and solved in a different way in [3] and [13].

Let g;;, g;;,x be the canonical coordinates on T,E,, and let (g"") denote the inverse
matrix of (g,;). As before, let I'}, be the canonical coordinates on Q.

Theorem 3. There exists a unique differential invariant from T} E, to Q. In canoni-
cal coordinates, this differential invariant is expressed by the equations

(5~1) rj’k = %gim(gmj,k + Gmk,j — gjk,m) .
Proof. The action of the group I? on T,E, and Q is expressed by
(5.2) = b?blg,, ,
gij,m (bfmbz + blpbzm) gpq + bpb bmgpql

and by (2.4). The fundamental vector fields on T, E, relative to this action, are

0g.: 0 g:: 0
(5.3) & = (ﬁu) 9 4 (ag_u2> L
0bz e 591‘1' 6b,’1’ e agij,m
—_ 5‘1 5‘1 a 64 6‘1 5‘1 . a
= (619,; + Jgip)a_ + (6% pim + 039ipm + 01i).0)
ij ij,m
05\ @ "9 0
éz’=(glp') =gip( + );
abqr e agij,m agiq,r agir,q
and the fundamental vector fields on Q relative to (2.4), are
or: 0
5.4 Bl = Jk olr o + o ,
( ) ' 4 (6bp> ar;k ( P Jk Jj* pk Jli) ar;k

L

gor _ (T 9 _ O
" \eer ) ori, ore’

qr

where e denotes j; id (= the identity of L?). Hence each L}-equivariant mapping
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(93> 91j5) = (T2(93j> 9ij.4)) of T Eo to Q must obey the system of equations

or; X or:
(55) (529,11, + 5zgap) 6_—"5 + (6ngb,m + 5ggap,m + bzzgnb,p) g = =
ab ab,m

= —0.I% + &, + 8%,

ors, , ar,

ap = %5;(63’-6,'; + 6305 .
agaq,r agar,q

J

(5.6)

Consider the system (5.6). Multiplying both sides by g”* and rewriting the system
for cyclic permutations of the subscripts of the independent variable one gets

aI"l 61"1 is r r
(5.7) a—g—i + # = 39%(5%0% + 8{5}) ,
sq,r sr,q
aIﬂ ar‘ ir( s s
dg o dg % = 19"(570% + 5,59) ,
¥s,q rq,s
_ 0Ty ory,

= 1g'5%65 + 8;6%),
agqr,s agqs,r % ( 7 * ])

which implies

(5.8) O = Hg"(69; + 6107) + g”(éjé,‘f + 6;0%) — g'(d0; + 6;53)
sr.q

Hence

(5.9) I = H9™(9as + 951.K) + 97(Gjeikc + irs) —

- giq(gkj,q + gjk,q)) + Y;.'.‘ = %gis(gsj,k + Ga,j — gjk,s) + 'Y;k s

where y}, does not depend on g,,,. Substituting this expression into (5.5) one obtains

(5.10) 5‘72.': o0,

gaq
which means that y}, € R. This shows that each differential invariant from T,E,
to Q must belong to the family of mappings (5.9), where y}, are real numbers. Con-
sider the transformation properties of these mappings. It is directly seen that among
these mappings there is one and only one which is I2-equivariant; this is the mapping
for which 7}, = 0. This completes the proof.
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