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1. INTRODUCTION

There are many papers which deal with bifurcation problems concerning families
of vector fields depending on a single parameter. A relatively extensive biblio-
graphy on bifurcations of one-parameter families of vector fields can be found in
[16, 17]. However, there are only several results concerning generic bifurcations of
vector fields depending on more-dimensional parameters (see e.g. [3, 4,5,7,8,9, 11,
13, 14, 19, 20]). There are two basic reasons for this. The first is that the dimension
of the bifurcation equation is growing along with the number of parameters in the
generic cases. This causes difficulties concerning the computation of critical points.
The second is that even for a three-dimensional central manifold very complicated
topological structures of trajectories can occur also in generic cases. In such cases
the so called “strange” or ‘“‘chaotic attractor” may appear, on which trajectories
oscillate chaotically for long periods of time (see e.g. [18]). Despite of these dif-
ficulties a considerable progress, mainly in the theory of two-parameter bifurcations,
has been made. Let us mention some articles devoted to these problems.

V. 1. Arnold [3] analyses generic bifurcations of two-parameter families of vector
fields which are unfoldings of codimension two degenerate singularities. One of these
unfoldings is described in detail by R. I. Bogdanov [7, 8]. He assumes that the matrix
of the linear part of the given vector field is equivalent to the Jordan block with 1
above the diagonal and zeros elsewhere and, moreover, some coefficients of the
second order terms are nonzero. A similar singularity was also studied by F. Takens
[20] (see also [11]) under some symmetry conditions. Versal deformations of two-
parameter families of vector fields in the plane, invariant with respect to rotations
by an angle 2n/n about the origin, are discussed by V. I. Arnold [4]. All these results
can also be found in Arnold’s book [5]. The paper of Takens [19] contains results
on the Hopf bifurcation for a class of more-parameter families of vector fields in the
plane. The paper of J. Guckenheimer [13] is devoted to two-parameter unfoldings

1



of a vector field, having the matrix of its linearization at a critical point with simple
eigenvalues 0, +if, B + 0 and none of the others pure by imaginary.

We study germs of vector fields under the same assumptions on their linear parts
as in [ 7], however, unlike Bogdanov’s assumptions we assume that one coefficient of
a second order term is equal to zero (¢,; = 0, 4;, + 0, see [7, (5)]). These conditions
define a degenerate singularity of codimension 3. This paper is also an attempt to
answer Marsden’s question ‘‘how should one break the symmetry in the Takens
bifurcation and produce an associated structurally stable unsymmetric bifurcation”
(see [17, p. 1143]). We use in this paper the approach employed by Bogdanov in [7].

2. NOTATION, DEFINITIONS AND MAIN RESULTS

Definition 1. Two mappings f1, f> € C*(R", R™) are called O-equivalent at a point
x € R", if there exists a neighbourhood U of x such that f,/U = f,/U. We call the
class {g e C*(R", R™) : g is O-equivalent to fe C*(R", R") at x} the germ of the
mapping f at x and denote it by f,, or [f]s or simply f. The set of all such terms is
denoted by CZ(R", R™). '

Definition 2. Two germs f, § € C7(R", R™) are called k-equivalent (1 < k < oo) if
for their representatives f, g we have f(x) = g(x), D’ f(x) = D/ g(x),j = 1,2, ..., k.
We call the class j* f(x) = {§ e CZ(R", R™) : § is k-equivalent to f| the k-jet of the
germ f at x or the k-jet of the mapping f at x, and denote it also by j* f(x). The set
of all such k-jets is denoted by J¥(x).

Denote by I' = I';’ the set of all C*-vector fields on R". If £ € I'y’, then &(x) =
= (x, v(x)), where v € C*(R", R"). We identify such a vector field with the differential
equation X = v(x), or with the mapping v. We denote by G, the set of all germs of
vector fields from I';’ at 0, for which the origin is their critical point. The set of all
k-jets of germs of vector fields from the set G, is denoted simply by JX.

We can endow the set J% (k = 1, 2, ...) with the natural smooth structure induced
by the following mappings:

al 1 JL > R, al(j' v(0)) = D v(0),

a2 J2 - R™ x R™*M2 - 42(j2(0)) = (D v(0), D* v(0)), etc.,
so that the sets J* are smooth manifolds, where dim J! = n?, dim J? = n? +
+ 3(n* + n), etc.

Definition 3. Denote by ¢,: R" x R! — R" the flow of the vector field ve I'”.
Two germs ¥, 7, € G, are called topologically, or orbitally, C°-equivalent, if for
their representatives v,, v,, the following holds: There exist neighbourhoods U and V
of 0 € R" and a homeomorphism h: U — V such that if x e U and ¢,,(x, [0, t]) = U
for some ¢ > 0, then there exists a ' > 0 such that h(g,,(x, [0, t]) = @,,(h(x), [0, ¢']).

Definition 4. Let v e I'”. The germ ¥ at 0 of a k-parameter family of vector fields



V:U — I'y such that V(0) = v, where U is a neighbourhood of 0 € R, is called a k-
parameter unfolding of the germ §. The neighbourhood U is called the basis of the
unfolding.

Definition 5. Let 7/, ¥, be two unfoldings of a given vector field v with the same
basis U = R*. The unfolding V, is called C°-equivalent to the unfolding V,, if there
exist their representatives ¥, and V;, respectively, such that for all Ae U the cor-
responding vector fields V,(4) and V() are orbitally C°-equivalent, where the home-
morphism /(2) of this equivalence depends continuously on A.

Definition 6. Let v € I’ and ¥ be an unfolding of the germ # with the basis U < R*.
A mapping ¥: W — U, where W is a neighbourhood of 0 e R™, ¥(0) = 0, defines
a new unfolding ¥*V of the germ #, i.e. a germ of the m-parameter family of vector
fields defined via Y*V = V. ¥. If the mapping ¥ is of the class C", we say that the
unfolding ¥*Vis C™-induced from V.

Definition 7. An unfolding V of the germ & € G, is called topologically versal, or
versal, if any unfolding of the germ & is C°-equivalent to an unfolding of & which is
C°-induced from V.

Definition 8. Let V: U — I'?, U = R*, be a given family of vector fields and let N
be a neighbourhood of the origin in the phase space R". Assume that the vector field
V(eo) (we shall often write V, instead of V(e)) has a critical point x, € N. This critical
point is called a nonbifurcation point of the family Vif there exists a neighbourhood
N’ = N of the point x, and a neighbourhood U’ = U of the point ¢, such that for
all ¢ e U’ the vector field V,/N’ is orbitally C°-equivalent to V, [N’ in N’. A critical
point which is not nonbifurcation is called bifurcation. A point ¢, € U is called
a bifurcation value for the family V and for the neighbourhood N if there exists
an ¢ in an arbitrary small neighbourhood of ¢, such that the vector fields V, and V,
are not orbitally C%-equivalent in N. The bifurcation diagram of oritical points of
the family V is the set of all bifurcation values for the family V and for the neigh-
bourhood N.

Now let us recall the formulae for the so called first and second Ljapunov’s focus
number, which will be important for better understanding of our further con-
siderations.

Consider the following plane system of differential equations:

(2.1) % = ax + by + P(x,y),
y=cx +dy+Q(x,y),

where P(x, y) =iiPi(x, y) + Ry(x, ), O(x, ) =i§2Q}(x, ¥) + Ry(x, ), P(x,y) =

= a;ox' + ai—l,lxi_ly + .o+ agyh, Qi(X, y) = bi_oxi + bi—l,lxi_ly + oo+ boiy,
i=2,3,..5 ReC” R(x,y)=o(|x] + |y|°), j=1,2, c=a+d 0, 4 =
= ad — bc > 0.



If I, = {(0,0)eR*: 0 < ¢ <¢}, where ¢ > 0 is sufficiently small and I* =
= {(¢,0): ¢ = 0], then the Poincaré mapping H: I, —» I* is defined and by [2, (25),
p. 253], we have

(2.2) G(o) = H(g) — ¢ = (e®"™7 — 1) + 0,0 + a30® + ....

By [2, IX, § 24, Lemma 5], if d'G(0)/de’ = 0, i =1, 2, ..., k, then k must be even.
If ¢ = 0, then dG(0)/d¢ = 0 and therefore also a, = d2G(0)/dg® = 0. In this case
the number L, = ay is called the first Liapunov’s focus number. If also a; = 0,
then o, must be zero and in this case the number L, = a5 is called the second
Ljapunov’s focus number. By [2, 1X, (76), p. 263],

(23) L= ——"— {[ac(a}, + a,,bo; + ag;byy) + ab(b?, + byiaz, +
4b /43
+ ay1byo + *(ag a0, + 2a9,b02) — 2ac(bd, — az0a2) —
— 2ab(a3, — byobos) — b*(2a20b20 + by1bag) + (be — 2a%) (b 1o, —
— ay1a50)] — (a® + be) [3(cbys — baye) + 2a(ay, + bys) +
+ (ca;, — by b)]} . '
By [6, p. 209],
(24) L, = 35 m[agsby0(5a02b1y + 10ag,a50 + 4b3; + 1lay0by; + 6a3, —
— 10b,4bo, — 4at, — lla, bgy — 6b3,) + a50bo,(6b5, — 5a;1bos +
+ 10by,b,0 — 2a3, — 5a;1byo + 5a50b,, — 6a3, — 10a,0a9, +
+ 2b%, + Saozbu) + aozboz(Sb%L —ai; — 6“11“02) -
- azobzo(Saﬁ - bf1 - 6“201711) + a?l(aZO + aoz) -
- b31(bos + bao) — 5bio(ays + 3bos) + b5y(3byy — 6a;, — Sase) +
+ a3,(ay; + as0) + baoboa(5b2y — Say; — 9bos + Saz,) —
— byoay (4ay, + 9bos + Sasg) + boyay(3by, — ag, + 4as,) —
- Sa(z)z(bzl + 3ay,) + 050(3‘112 — 6by; — 51703) + b%1(b21 + bos) +
+ a20802(5a12 = Sbyy — 9aze + Sboz) — agyby(4by; + 9az, +
+ 5bo3) + azob;i(3ay2 — by + 4bos) + 4byoby(2b5 + byo) +
+ boyby1(Thso — ayy + Sby, + ag3) + 2“11[311(“03 + bso) +
+ 2a50b50(8b3g — Saz; — byy) + 2a,0b02(4b5 — Say; — 5by, +
+ 4“03) + azoau’(bso + 5a,; — by, + 7“03) - 2'51021720(‘121 + b12) +
+ 2aozboz(gaos — 5byy — ayy) + 4“02‘111(2%3 + ‘121) +
+ b11(5bo4 — byy + 2a45 — 3byo) + 002(21722 + 20bo4 + Sa;3 +
+ 3by3) — a1(5as, — a2z + 2b31 — 3a04) + 3a,,(2a30 + bos +
+ ay3) — 3by5(2bos + aso + bay) + 3ags(a,, + 3bo3) —
— 3bso(bay + 3as0) — boa(4azs + 22a40 + Tbyy — 6agy + 9by3) +
+ 3by, + 3bys + 15bys + 15as¢ + 3az, + 3ay,.




We recall this very complicated formula for L, because it is not generally known
and nonetheless plays an important role in our considerations.

Now we formulate the known Bogdanov’s results or two parameter families of
plane autonomous ordinary differential equations of the form

(2.5) y=90.¢,

where y = (yy, y2)*, 9 = (94, g,)* € C* (i. e. g is smooth in (y, &); u* is the transpose
of u), g(y,0) = Ay + h(y), the matrix A is equivalent to the Jordan block

01
00
and h(y) = o{||y[?). Consider also the equation
(2.6) v =9(»0)= Ay + h(y).

Definition 9. By a smooth regular transformation we mean a smooth mapping
keeping the origin fixed and having a regular Jacobian matrix at the origin.

Lemma 1 (Bogdanov [7]) (1) There exists a smooth regular transformation of

%
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Fig. 1. Bogdanov’s bifurcation diagram.



coordinates in the phase space transforming the system (2.6) into the form
(2.7) X =X,, X;=(Tx,x)+ R(x),

(Tx, x) = t1,%7 + 112%,1%, + 122%5, R(x) = of|[x]?).

Fig. 2. Bogdanov’s bifurcation (g > 0).

(2) 1f the family (2.5) is nondegenerate (see Definition 11; in this case t;; + 0,
t12 = 0), then there exists a smooth regular transformation of coordinates
(x, 1) = (¥,(v, &), ¥,(¢)) transforming the family (2.5) into the form

(2.8) ., % =X,

Xy = py + %y + X7 + x1%2Q(x 4, ﬂ) + x§¢(x, ,U) s
where Q, @€ C®, 0(0,0) = g = 1,[t;.
(3) The family (2.8) is versal. ‘
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(4) The bifurcation diagram of the family (2.8) in a sufficiently small neigh-
bourhood U of the origin in the parameter space looks like that in Figure 1. If
q > Othen there are the following bifurcations (see Figure 2): For pe S, there
are no critical points, for p € S there is one critical point of the saddle-node type

P

Fig. 3. Bogdanov’s bifurcation (g < 0).

and for pe U\ 8§, there are two critical points: one is a saddle while the second
is a focus. If p moves in the direction B — C — D crossing the curves R and P
transversally the following bifurcations occur: If p crosses the curve R the stable
focus bifurcates into an unstable closed orbit and then this closed orbit bifurcates
into a separatrix of the saddle for pe P, which disappears for pe D. The
first Ljapunov’s focus number L, is positive for pue€ R.

(5) The family (2.8) with g < 0 is obtained from a family of the form (2.8) with
q > 0 by using the change of variables x, - —x,, t > —t. The bifurcations
of the family (2.8) with ¢ < 0 looks like that in Figure 3. The first Liapunov’s
focus number L, is negative for this family.



Definition 10. The number sign q is called the signature of the family (2.8).

Now let us consider the following two-parameter family of the autonomous system
of differential equations

(2.9), %

Il

a(A)x + b(Z)y + P(x,y,4),
o(2)x +d(2)y + Q(x,,4)

where A = (4;,4,)eR? a,b,c,d, P,QeC® (smooth in (x,y,1)). Let o(%) =
= a(2) + d(4), 4(%) = a(%) d(2) — b(4) c(4). We assume that ¢(2°) = 0, 4(2°) > 0,
2% = (29, 49) and U is a neighbourhood of A° in R? for which the set £ = {ie U:
o(2) = 0} is a curve dividing U into two disjoint regions 2+ = {Ae U:o(1) > 0,,
¥~ ={AeU:0(4) < 0}. The point 2° divides the curve X into two connected com-
ponents X, and X,.

i

|

If A€ZX, then the first Ljapunov’s focus number is defined and we denote it by
L,(%), or simply L,. If L,(%) = 0, then also the second Ljapunov’s focus number is
defined and we denote it by L,(4), or simply L,.

Fig. 4. Bifurcations of the family (2.9); in a neighbourhood of 2° (L;(2°) = 0, L,(2°) > 0).

Lemma 2 ([6, p. 243]). Assume that Ly(A°) = 0, L,(4) % 0 for Ae X, U X, and
Lz(}-O) # 0. Then for a sufficiently small neighbourhood U of A° in R? the following
assertions hold: :

1) If L,(2°) > 0 (L,(2°) < 0), then there exists a curve P,o which has one end-point
( A 14
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at 2° and the other on the boundary oU of U. This curve together with the curve
divide U into three disjoint regions U, Uy and Uy, for which Uy = X7,
Uy =PouZ,up (U, =PouZ, Up), U, Uy=Z"\Uy (Uy =
= X7); see Figures 4,5.

b

Fig. 5. Bifurcations of the family (2.9), in a neighbourhood of A° (L,(2°) = 0, L,(2°) < 0).

(2) Let Ly(4) > O for e Xy, Li(2) < 0 for A€ X, and L, = L,(A°) > 0 Then the
system (2.9); has one unstable closed orbit and one stable focus for ).eU,.
This stable focus bifurcates into a stable closed orbit (Hopf bifurcation) if A
crosses the curve X, i.e. for A€ Uy, there is one stable and one unstable closed
orbit and one unstable focus. These two closed orbits bifurcate into one semi-
stable closed orbit on the curve P,o, which disappears when J. crosses the curve
Pjo, i.e. for Ae Uy there is an unstable focus and no closed orbits.

(3) If Ly(2°) < 0,Ly(4) > 0 for A€ X, and L (A) < O for A€ X,, then the bifurcation
diagram in U looks like that in Figure 5 and the structure of trajectories of
(2.9), in the corresponding regions U, Uy and Uy is the same as we have
described in (2) for L, > 0.

In this paper we consider an unfolding of a germ of vector fields, represented by
the following 3-parameter family of vector fields in the plane:

(2.10) X =f(x.¢),

where [ = (fy, f2)* € C®, x = (x;, X,)*, ¢ = (&, &,, &5). We shall often write f,(x)
instead of f(x, &). We assume that for ¢ = 0 the vector field (2.10), denoted by fo,

9



has the form
51, [~ (Px, x) + Py(x) + hy(x)
(2.11) [xz] = L[XZ] + [(Qx, X) + Qll(X) + hy(x) |
where the matrix
a b
L= [c d]

0 1
[0 )

P = (p;;), Q = (q:;) are symmetric matrices, (+, *) is the scalar product in R?,
hi(x) = of||x[[®), i = 1,2 and ‘

is equivalent to the Jordan block

(2.12) Py(x) = bsox] + bo3x3 + by xix, + byyxx3,
(2.13) Q(x) = €30X7 + €o3%3 + €21X1X5 + CpaX X7 .

We denote by H* the set of all 3-parameter families of C®-vector fields in the plane
of the form (2.10) and endow this set with the C*-Whitney topology (see [12]).
Let us denote by H® the set of all germs at 0 € R of all 3-parameter families of vector
fields from H®.

Now let us formulate the main results of this paper.

Theorem 1. There exists an open dense subset HT of the set H® of all 3-para moter
Sfamilies of vector fields of the form (2.10) such that if f € HY, then f is nondegenerate
(see Definition 12) and it is possible to transform this family by a smooth regular
transformation (u, p) = (x(x, ¢), ¥(¢)) in a sufficiently small neighbourhood of
the origin into one of the form

+ l‘.‘l = uZ B
v .
“U oy = () +ys (Wuy + paut +uy 4 ugu,Quy, p) + udd(u, ),
where
(2.14) vi(w) = £2u, + mops + 3543,
(2.15) 73() = £ + 113),
0(0,0) = ® + 0.

Let D(u) = pi + 3, 2 = {peR*:D(u) =0}, 2" = {ueR> D) >0}, 2~ =
={peR>: D) <0},8, =2*0u{0,S, =2~{0},S; =27,G, = {uwy, (0 =
=0}, G ={my(w) >0}, G ={wy () <0}, Hy={py (n) =0}, H =
={wys(w) >0}, Hi ={p:y;(n) <0}, k=1,2 and let a™ = G, N G,, a* =
= H, n H, {see Figures 6, 7). By L(K) we denote the matrix of the linear part of
a vector field computed at a critical point K.

Theorem 2. If f € HY and v is its normal form (see Theorem 1), then there exists
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a neighbourhood U of the origin in the parameter space and a neighbourhood V

of the origin in the phase space such that the following assertions hold:

(1) If pe S; N U, then the vector field vy (v;) has exactly one critical point inV,
which is a saddle (a focus or a node; for ;i = 0 it may also be a critical point
with one elliptic sector, two parabolic and two hyperbolic sectors (see Figure 16)).

(2) If neS, U, then the vector field v, (v,) has exactly two critical points:
a saddle and a saddle node a saddle node and either a focus or a node).

(3) If ne Sy 0 U, then the vector field v, (v;) has exactly three critical points:
two saddles and one focus or ihree saddles (one saddle and either two foci or
two nodes).

(4) The sets H, Hy(G,, G,) are smooth 2-dimensional submanifolds of R® and
a*(x7) is the curve along which the surface H,(G,) touches the surface Z;
see Figures 6, 7.

(5) If ne 2 and K is the saddle node of thevector field v, (v, ), then the matrix L(K)
has zero eigenvalue of multiplicity 2 if and only if pea™ (nea™).

Theorem 3 (bifurcations for v, ). If f€ HY and U, V are as in Theorem 2, then the
following assertions hold:

(1) If pe @7, then the focus K of the vector field v, is degenerate (i.e. the matrix
L(K) has pure imaginary eigenvalues) if and only if pe #* = H  nH; n 9",

(2) There exists a curve n in the surface #*, which has one of its end-points at the
origin, divides the surface #™ into two connected components # 7, #5 and
the following assertions hold:

(a) The first Ljpunov’s focus number L, = L,(1) of the focus K is equal to zero
if and only if pen.

(b) If pe #f (ne o#3), then Li(n) > 0 (L,(1) < 0).

(c) If by; is the coefficient at ujuj on the right-hand side of the second equation
of the vector field vy and pen, then the second Ljapunov’s focus number
of the focus K is given by the formula

L(y)=——"— (N +0 ,
) = sy O+ o)
where N = —b3,bo, + b2 by — Tboyby bsg + 3bsobyy, ie. sign Ly(u) =
= sign N for ||u| sufficiently small. The number sign N is invariant with
respect to regular transformations of coordinates in the phase space.

(3) Let P, be the plane passing throguh the point (0, u3,0), u3 < 0, and parallel
to the (11, ps)-plane. Then the set Py N 9D consists of two lines dy, d, parallel
to the ps-axis. The closure of the set Py~ H, n H; N9~ is a curve h, which
touches the lines d,, d, at its end-points Q, and Q,, respectively. The setn N P,
consists of a single point Q (see Figure 6).

(4) Let U, U, and U be sufficiently small neighbourhoods of the points Q,, Q,
and Q, respectively, in the plane P,. Let wi,wS and w* be two-parameter
families of vector fields obtained from v, by restricting the parameter set to

Il



the sets U, U, and U, respectively. Then there exist curves P, (i =1, 2) touching
the curves R,=hnU,, s; = d; n U, at the points Q;, which form a complete
bifurcation diagram for w; in U,. (The curves P, R;, s; correspond to the curves
P, R and S,, respectively, which form Bogdanov’s bifurcation diagram.)

Fig. 6. Bifurcation diagram for v:.

(5) If the parameter p circulates around the point Q(Q,), we obtain bifurcations
corresponding to the bifurcations of Bogdanov’s normal form with g > 0
(g9 < 0) where, besides the saddle and the focus arising from a saddle-node as
in Bogdanov’s bifurcation, there is another saddle (see Figures 10—11).

(6

~—"

The point Q divides the curve h U into two connected components 5" and 57,
where for pe ™ (ped™) we have Ly(u) > 0 (Ly(1) < 0). There is a curve Py
with one of its end-points at Q, which together with the curve h n U divides U
into three connected components M, M,, M, and the following assertion holds:
If L,(Q) > 0, then the bifurcations of the focus are the same as we have described
in Lemma 2, where the curves Py, 6%, correspond to the curves Pjo, X,
and X,, respectively, and the regions M, M, and M5 correspond to the regions
Uy, Uy and U,,, respectively (similarly for L,(Q) < 0); see Figure 12.

Theorem 4 (bifurcations for v, )-Iffe HY and U, V are as in Theorem 2, then the
following assertions hold:

12
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Fig. 8. Bifurcation diagram for v in the plane Fo.
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(1) If pe @7, then the vector field v, has two foci K, and K,. The focus K(K)
is degenerate if and only if pe%; = (G, N G;)N D~ n{k= (15 Bos pi3):
py >0l (e 9, = (G, N G3) 0 D™ o {p = (g, s is): py < O}). For ned,
(n€ 9,) the first Liapunov’s focus number L,(u) is positive (neg“tive)'

A

Fig. 9. Bifurcation diagram for v‘,_ in the plane P.

(2) Let Py, dy, d, be as in Theorem 3(3) and denote d, = d,, d, = d,. Then the
set g = Pyn Gy NG consists of two connected components g and g~.
The set g*(g~) is a curve with the end-point 0, € d,(0, € d,) at which it touches
the line d,(d,); see Figure 9. Let U,, U, be sufficiently small neighbourhoods
of the points Q, and (,, respectively, in Py and let wi, w3 be the two-para-
meter families of vector fields obtained from v, by restricting the parameter
set to the sets U, and U,, respectively. Then there exist curves P, (i = 1,2)
touching the curves R, = g n U, s, =d,n U, at the point Q,, which form
a complete bifurcation diagram for w; in U,. (The curves P, R,, 5, correspond
to the curves P,R and S,, respectively, which form Bogdanov’s bifurcation
diagram). When the parameter p circulates around the point 0,(0,), we obtain
bifurcations corresponding to the bifurcations of Bogdanov’s normal form



withg > 0 (q < 0) where, besides the saddle and the focus arising from a saddle
node as in Bogdanov’s bifurcation, there is another focus; see Figures 13, 14.
The Hopf bifurcation in Bogdanov’s bifurcation near @, concerns the focus K,
(see the assertion (1)), while the same bifurcation near Q, concerns the focus K ,.

Fig. 10. Bifurcations of the family v:’ near the point Q;.

(3) If ue 2%, the only focus K of the vector field v, is degenerate if and only if
ue9™ =G, N Gy N D*. There exist three curves n,1,, 13 in 4~ all having
one end-point at the origin, which divide the surface ¥~ into four connected
components 91,9, ,%5,9, and the following assertions hold:

(a) The first Liapunov’s focus number L,(u) for the focus K is equal to zero if
and only if pen, U n, U N;.

(b)If pe¥y V%, (ne¥; U D5), then Li(u) > 0 (Ly(1) < 0); see Figure 7.

(¢) If weny Uy Vs, then the same assertion as the assertion (2)—(c) from
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Theorem 3 is valid, where in the formula for L,(u) we have y3 (i) instead

of v5 (W-

(4) The curve g*(g97) intersects the curve ny(n,) precisely at one point Q*(Q~).
Let U*, U~ be sufficiently small neighbourhoods of the points Q% and Q~,

16

Fig. 11. Bifurcations of the family v;' near the point Q,.

respectively. Let w*, w™ be the two-parameter families of vector fields obtained
from v, by restricting the parameter set to the sets U* and U™, respectively.
Then the following assertion holds: The point Q™ divides the curve g* " U*
into two connected components 5% and 6~, where we have L (1) > 0 for ped”
and Ly(n) < 0 for pe 6. There exists a curve Py, with one end-point at Q*,
which together with the curve g* n U™ divides U" into three connected com-
ponents My, M,, My and the following holds: If L,(Q*) > 0, then the bifur-
cations of the focus of the vector field w* are the same as we have described in



Lemma 2, where the curves Py+, 0", 8~ correspond to the curves Py, 2, and X,
respectively, and the regions M, M, and M, correspond to the regions Uy, U,

and U yy, respectively (similarly for Ly,(Q")<0). The same assertion is valid
for a neighbourhood U~ of the point Q™ in Pg; see Figures 4, 15.

Fig. 12. Bifurcations of the family U: near the point Q.

(5) If P, is the plane passing through the point (0, 3, 0), uy > 0, parallel to the
plane Py, then P, N G, is a curve, which intersects the curve 15 precisely at one
point Q°. There exists a neighbourhood U°® of the point Q° in P, such that if w°
is the two-parameter family of vector fieds obtained from v, by restricting the
parameter set to the set U°, then the same assertion on bifurcations in U°
is valid for w° as the above assertion (4) for the bifurcations of w* in U™*.

(6) The family of vector fields v; with negative Ljapunov’s focus number L, may
be obtained from the family of the same form with L, > 0 by using the change
of variables uy - —uy, py > —py, U3 —> —psz and t > —t.

Remark 1. Since Theorems 3, 4 are valid for any plane P, or P,, respectively,
sufficiently close to the (1;, i3)-plane, there must exist surfaces #;, 2;, 9’(?7?,-, 2., P)
such that 2, U, =R,, ?,nU; =P, i=12 20Uy=Py(% nU, =K,
P00, =P, i=12 20Uy =Py, PUy =Py-, P nUg = Ppyo); see
Figure 6 (Figure 7).
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Remark 2. Since we have imposed no symmetry condition on the families of vector
fields, there are simultaneously terms b, 4 u, and +u} in the second equation of the
family vf. Therefore there is no scaling like in the cases studied by Bogdanov [7]

Fig. 15. Bifurcations of the family v,/ near the point ot.

S

Fig. 16. Critical point of the vector field vg (one of the possibilities; the second on is a focus).

and Takens [20] (see also J. Carr [11]), reducing the families v, and v, to small
perturbations of some Hamiltonian systems. This is why the problem concerning the
global properties of the surfaces #;, 2;, #;, ?;, P, P seems to be not easy. We
conjecture that these surfaces probably look like those in Figures 6, 7, because in
this case all the local bifurcations described in Theorem 3 and Theorem 4, respectively,
form a harmonic whole.

Remark 3. The functions y¥(u), y3 (1) and the terms bygui, by u u,, boyus, +ul,
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b,,utu, give us all the necessary information for the determination o the local bifur-
cations of the families vf, as we have described in Theorems 1—4. We conjecture
that this information is sufficient for the determination of the global properties of
the surfaces &;, 2, #,, ?,, i = 1,2, #, ? mentioned in Remark 1. Let us regard
the functions f(uy, pos i13) = £ 2305 + S0au5 + 4,1?”;» FE (s 125 13) =
= +(3u,u5 + 313) as unfoldings of the functions ;55u% and +3u3, respectively
(see e.g. [ 10, 217), where p; is a state variable and y,, u, are parameters. By Thom’s
theorem on the seven elementary catastrophes (see [21, Theorem 5.1]) these un-
foldings are universal. Since f [dus = yi(u)(3f5[ons = > (w)), the sets Hy, G,
from Theorems 3, 4 (H,, G,) are the domains of the catastrophe maps y; : H; —
— (g, p)-plane and 97: G; — (i, u,)-plane, respectively, which are defined as
the projections of these sets (X : H, — py-axis, y5 : G, — pp-axis). The set o™ (a7)
is the set of all non-regular points of the catastrophe map x{ (x; ). The projection of
the set o*(x7) into the (uy, p,)-plane is the catastrophe map, which is obviously
a cusp. The universality of the above mentioned unfoldings is another very weighty

argument allowing us to conjecture that the following families are versal:
(+ %) iy =, 2 2 2
- iy = 9F() + 95 (W) uy + paui £ ui + byyugus + bojuy + byyuiu,,

where x = sign N, N = —b? bo, + b3 by, + Thysb, bso + 3b3ebsy; + 0. Since the
normal forms (+, —1), (—, —1) may be obtained from the families (+, 1) and
(—, 1), respectively, by using the change of variables u, = —uy, ft; = —pu,, s -
— —pu; and t - —1, it suffices to prove the versality of the families (+, 1) and

(= 1)
3. PRELIMINARY LEMMAS

Lemma 3 ([7, Lemma 1]). There exists a linear transformation of coordinates
y = Nx, transforming the system (2.10) into the form

(1) i=y2+ Py, y) + P(y) + 9:(»),
' V2 (0y,y) + 0,(») + 9:(»),

where
o [l
o Ll
o) =), 1=12, N =[] v vro e w [0 1]
if ¢ % 0,(N~')* is the transpose of N~ .

20



Let P = (7:)s 0= (@:;), Pi(y) = b3oy} + bosy; + by ¥1y, + bioy,y3, 0.(y) =
= C3oV1 + Co3¥3 + EaViva + E2¥1V3.

Lemma 4. The matrix T and the function R(x) from the righthand side of the
system (2.7) have the form

T=0+P, P= q IZ!J, R(x) = 130%1 + 121X1X; + t,%,X3 +
P11 2P12J

+ tosx3 + h(x), where 13, = C30 + 2P12d11»
tay = da1 + 2P22 — P12) 411 + 3by, and h(x) = 0(|]x||3) .

Proof. We introduce new coordinates via the following diffecomorphism:
X1 =y, %2 =Ya+ (Py, ) + Pi(y) + gi(y). Obviously, H™":p; =x, y, =
= x;, — (Px, x) + o(||x||*) and by direct computation one can easily show that the
new system has the form

X1 = X3,

I

X, (Qx: x) + éx(x) + 2P11%1%X, + 2P12X5 4 2120, 1X7 +

+ [d21 + 2(P22 — P12) d11 + 3E30] X3x, + 1%y X5 + fo3x3 + h(x),

where h(x) = o(|x[]?).
We have obtained a smooth regular transformation of coordinates & = H o N,
which transforms the system (2.11) into the form (2.7).

Lemma 5. Let T = (t;;) and R(x) be as in Lemma 4. Then the following assertions
hold:

(1) The property ty; = O is invariant with respect to smooth regular transformations
of coordinates.

(2) If ty; = 0, then the number p = ty,[t], is invariant with respect to smooth
regular transformations of coordinates, i.e., it does not depend on any choice
of coordinates in which the system (2.11) has the form (2.7).

Proof. The assertion (1) follows immediately from the proof of [7, Lemma 3].
Since we shall use the idea and some relations from this proof also in the proof of
the assertion (2), we give the proof of (1).

Let N be the matrix from Lemma 3 and H the mapping from the proof of Lemma 4.
Then the mapping @ = H o N transforms the system (2.11) into the form (2.7).
If ¢’ is another mapping transforming the system (2.11) into the form (2.7), then
@' o @~ ! is the regular transformation, transforming the system (2.7) into the same
form. Therefore it suffices to prove the invariance of p with respect to the regular
transformations transforming the system (2.7) into the same form. An arbitrary
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transformation with this property is composed of the mappings H - ¢ and R, where g
is a linear mapping which does not change the linear part of the system and R is
a nonlinear mapping having its linear part equal to the identity and transforming the
system (2.7) into the same form. Let the mapping R be defined as follows:

R:yy = x; + X (x) + Yi(x) + o(”x”3),

Xy + X,(x) + Yo(x) + of[[x]*),

Il

(3.4)

It

Va2

where X , Y, i = 1, 2 are homogeneous polynomials of degree 2 and 3, respectively.
The mapping ¢ must be of the form

(3.5 : 0ry= [é j] x

where A, ¢ are real numbers, 4 = 0.

Since the mapping R transforms the system (2.7) into the same form and in new
coordinates we obtain that

1())

1=y - Xz()’) + ===y, +o[¥]?),

the function X , must satisfy the equality X 2( y) = (0X,()/0y,) y.- Therefore we have

2()’)

= 9) + Z o) = (1) + E2 o)

1

and this proves that the mapping R does not change the numbers ¢4, t,,.

If y, = Axy + &X,, y, = AX,, A, e€ R, A % 0, then x, = A7 1y,, x; = A1y, —
— &A™ 2y,. In these new coordinates we obtain a system of the form (3.1), where
Py =€ %tyy, Pra = 3(t2A7% — 26824771), Gy = AT My Gia = AT M —
-~ 2647 %t)4), €39 = A7 %t30. By Lemma 1 and Lemma 4, there is a smooth regular
transformation transforming this system into the form %, = x,, X, = (Tx, x) +
+ T30x7 + Ta(x) + h(x), where

Tt,_+[ ﬁ“:li=5 + 2P,,d11 -
( j) Q Bii 2B1a 30 30 P12911

Therefore we have
(3.6) =41, Fo=2A"1,,
Tyo = A7 230 + 2(t;2A7 %6 — 26727 3%1,,) (A7 'yy) .

Thus the property t;; = 0 is invariant with respect to the mappings R and g. If
t;; = 0, then (3.6) implies that ¥y, = A™%f3, 1, = 27 2t], and thus the number p
is also invariant with respect to the mapping ¢. Now, it suffices to prove the invariance
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of p with respect to the mapping R. In the coordinates defined by R we have

X,
i, = {(T\ %) + t3ox) + To(x) + z

X Y.
Xy + —2(Tx,x) + —2 x, +
Xy 0x, 0x,

# 2% ) + o)

Therefore if #;; =0, then J, = (Ty, y) + t30¥; + T3(») + o(|y[?}, where T5(y)
is a homogeneous polynomial of degree 3 in y,, y,, which does not contain any term
with y3,i.e. the number ¢, is invariant with respect to the mapping R. We have shown
above that the number t,, is invariant with respect to R and so the number p is also
invariant with respect to this map. This completes the proof.

x=R"1y

4. TRANSFORMATION INTO THE NORMAL FORM

Using Lemma 1 we can rewrite the system (2.10) into the form

Xp =X + U1(X, 8),

(4.1) v
Xy = 115X1%, + 135%5 + t30X; + Q3(x-) + vz(x, 8),

where v,, v, € C*, vy(x, 0) = 0, v,(x,0) = of||x|*), Qs(x) is a homogeneous poly-
nomial of degree 3 in x;, x, which does not contain the power x3. We assume t,; = 0,
1, 0,150+ 0.

Let us choose new coordinates: y = \/Ipl t1,x. Then we obtain

.).)1 =JVa +51(y=8)a

Yo = {ylyz + 22 %} + (sign p) yi + 03(») + B2(1s ),

l Jlel

where #;, #, and §; have the same properties as v;, v, and Q, respectively. Therefore
we may assume that (4.1) has the form

2) fo )

X, = 0X;X; + Wox5 + 0x] + 05(x) + 0y(x, ¢),

where © = 1/{/|p| is the invariant of the germ represented by the family (2.10),
o = sign p, 05 and #,, ¥ have the same properties as Q3 and v,, v,, respectively.

After introducing new coordinates y, = x;, y, = X3 + 9,(x, ¢), (4.2) becomes
Vi =Yz
Y2 = @yiya + 0023 + 0yi + Q5(¥) + vy(v, €),

where Q3 and v} have the same properties as Q5 and v,, respectively. We can rewrite
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this system into the form

Y1 =DV,
(4.3) ‘ R _

V2 =F(y,e) + 20001, ) + ¥3¥(p. ¢),
where
oF(0,0) _ 9°F(0,0) _

F.0,%ec®, F0,0)=
©.9 ay; ayi

2°F(0, 0) 20(0,0) N
IO _6s, CY _ . §(0,0)=0.
P o % o, 00,0)=0

1

Lemma 6. If o =+ 0, then there exists a smooth regular transformation z =
= 2(, ¢), z(0, 0) = 0 transforming the system (4.3) into the form
Zy=2z,,
(4.4) P A ,
2, = F(zy, 8) + 2,2,G(zy, ¢) + z3%(z, ¢) ,
where
0F(0,0) _ 9F(0,0) _

0z, 0z2

F,G,%eC®, F(0,0)= 0,

3
P00 _ 6 60,0) = w.
oz3
Proof. If z; = y; — afe), z, = y,, then
Zy = 2Z,,
z, = F(yi,e) + 9,0(r1,8) + 38(y, ) = F(z, + ofe), ¢) +
+ ,0(z, + ae), &) + ¥3P(z + afe), ¢) -

We have 0(z, + a(e), &) = O(a(e), &) + z,0(zy, €), where §(0, 0) = 0, 30(0, 0)/d =
= , 0(0,0) = w. Since w # 0, the Implicit Function Theorem implies that there
exists a neighbourhood U of 0 € R® and a smooth function «: U — R* such that
#(0) = 0, O(a(e), &) = O for all e € U and we obtain a system of the form (4.4).

Lemma 7. If w = 0, then there exists a smooth regular transformation u =
= u(z, &), u(0, 0) = 0 transforming the system (4.4) into the form
(4.5) 121 = Uy,
iy = (Pl(s) + (/’2(3) uy + ‘Ps(s) ui + ouj +
+ uyu,Q4(uy, &) + u3®,(u, €),
where ¢, € C*, ¢(0) =0, i=1,2,3, 0,,9,€C%, 0,(0,0) = w.
Proof. Letthe function F be the function from Lemma 6. Then the Malgrange-
Weierstrass preparation theorem (see [15, V, p. 82] and also [10,Theorem 6.3])
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implies that there exist smooth functions ¢,(¢), i = 1, 2, 3, B(z,, ¢) such that ?:i(0) =
=0, i=1,23, B(0,0) =1 and F(z;,¢) = [02] + ¢3(¢) 21 + 0,(e) z1 + ?4(s)] -
. B(z,, ¢) for (z,, ¢) from a sufficiently small neighbourhood of the origin. If u; < z,,
u, = z,/\/B(zy, ¢), then the system (4.4) becomes

iy = u,0(uy, ¢),
[0:(e) + @a(e) uy + @sle) ul + ouf + uu,Q4(u1, 8) +
+ uid,(u, )] O(uy, ¢),

I

2P

where
0(ure) = S g eco, Ouy,e) = VB(ur,s).
B(uy, €)
Using the transformation of time s = a(f) = [§ O(u,(1), ¢) dr we divide the system
by ©(u,, ¢) and thus obtain the system (4.5).

5. BASIC ALGEBRAIC MANIFOLDS

Let M(i, ) be the set of all i x j-matrices and M(k) = M(k, k). We can identify
any 2-jet o € J3(x) with a couple of matrices (L, K), where Le M(2) and K € M(2, 3).
More precisely, if f: R* —» R? is a smooth mapping, then j? f(x) = (L(f) (x), K(f) (x)),
where

f= Gt UNG) = DA = | ¢ g]eme) and
_ | P11 P12 P22 _ azfl(ff) _ jz_fl__ _ azf1(x)
K(f) (X) B I:‘In q12 ‘122]’ Pu= 6xf Co 0x 3)(2, 2 5)6% ’
0°f (> *f, 0*f(x
911 = Ug (;), 912 = bﬁxl f;;)z’ 22 = —‘—‘ai(g’)‘

Let us define the following subsets of J3 = J3(0):
(5.1) Ty = {(L,K)eJ;: F{(L,K)=0, i=12, Fy=Fu(LLK)=1t;,=0,

J

rank L= 1}, (j,k)=(1,1),(1,2), F,=TrL=a+b,
F, =detL=ad — bc,

2 3 2

a a a
(52) tll=GP11—2;P12+?P22+E"711—20412*‘?‘]22,
a a
(5.3) ty2 = 2pyy — 2;1’12 + 24,5 — 25‘122,

under the assumption b = 0. Since rank L= 1, we have b? + ¢2 % 0. If ¢ # 0,
then using Lemma 3 one can show that ¢,, has the form (5.2), where the variables in
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this expression are changed as follows: b — ¢, p;; = ¢33, P12 = 912> P2z = G115
P11 = P22> 412 = P12, 922 = Pyq- Similarly for t,,:b = ¢, piy = g5 P12 = G125
G132 = P12, 922 = P11- If ¢ £ 0, then similarly to the sets T;,, T;, we can define
the sets Ty, and T}, respectively. Denote F = (F, F,, F3): R'® - R>.

Lemma 8. The sets Ty, Ty;, Ty, Tia are smooth submanifolds of J3 of codi-
mension 3.

Proof. We will prove the assertion of Lemma 8 for the sets Ty, and Ty,. The

proof of the assertion for the sets T,, T, is analogous. It suffices to show that
rank DF = 3. Let H; = (hy;), i = 1, 2, where

nl P P
= ey 2y ey
da dc 0q4;
hyy = a_P_&’ hyy = lel_i', hyy = aF“,
6(1 6(1 aqll

Then det H; = —b? and det H, = —2b. Therefore the mapping F corresponding
to the set Ty, and also to the T, satisfies rank DF = 3.

We can identify any 3-jet fe J3(x) with a triple of matrices (L, K, M), where
(L.K) e J3(x) and M € M(2, 4). More precisely, if f: R* > R is a smooth mapping,
then 57 1) = (L) (4 K(7) (), M(F) (). where

(L(f) (x), K(f) (X))G.I%(x)’ M(f) (x) _ |:I‘11 Fia2 Fi3 rmjl,

Si1 S12 S13 Sia

_ Pfix) _fi(%) _PN(x) o _fily)

ryr = A3 H 12 — o2 13 — 5 14 — 3
0x; 0x71 0%, 0xq 0x5 0x5

_x) 0%k _ PNk 0Yalx)

S11 F T 5 82T s Si3 T 50 Sia T 3
0x7 0x1 0x, 0xy 0x3 x5

Let us define the following subsets of J3 = J3(0):
Tyo = {(L,K,M)eJ3: F(L,K) =0, i = 1,2, F)(L,K,M) =0, rank L = 1},
Typ = {(L,K,M)e J3: F(L,K) =0, i = 1,2, F; = F;(L,K) - 0,

F, = F,(L,K,M) =0, rank L = 1},

G.k)=(1,1),(1,2), F(L,K), i = 1,2, Fy(L.K) are defined as above and F, =
=130 = 30 + 2124, (see Lemma 4), where

Pis = . ji = =254+ gzp
12 b P12 bPzz s 411 b 12 b 22

a a\* 1 aé
C30 = — —byy — b -] +=c30— ¢ - .
C3p b 30 03 <b> b 30 03 (b)
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If ¢ # 0, then one can show that
3 2 4 3 2
. a a a a a
C30 = bag 5 + cbos + bay — + bi2a — c30 — —aco3 — €31 — — ¢ —
c c c c
Similarly we can express p;, ano q,;. In this case we can define sets Tso and T i 1N
a similar way as we have defined the sets Ts, and Ty .

Lemma 9. The sets Tsi1, Ta12s Ts11, T312 are smooth submanifolds of J3 of
codimension 4 and the sets T, T are smooth submanifolds of J3 of codimension 3,

Proof. We will prove the assertion of Lemma 9 for the sets Ty, T5;, and Ty,
only. The proof for the sets Ts11> Ts12> Tio is analogous. Let F; = (Fy, Fa, Fys F,):
R'8 _, R* be the mapping with the components defined in the definition of the set Ty, ;
(i = 1,2) and let H; = (h;), where

OF OF oF OF
hy = J’ by = _IE, hy = ——k‘, h = "—k“,
da dc 0qy; acs,
k=124, hy = B py, = Fu oy 0y o OF
da dc aqll 6630

Then det H; = —b and det H, = —2. Therefore rank DF; = 4 and rank DF, = 4
and thus the sets Ty, and Ts;, are smooth submanifolds of J3 of codimension 4.
The proof for the set Ty, is similar to the cases of the sets T;; and T, (see the proof
of Lemma 8).

Let us define the following sets: T; = {(0, 0)} x Ty Ti={(0,0)} x Ty; =
= R? x J32, i=12T3—{(00)}><T30, A (OO)JXTSOCRZX\] T,; =
={(0,0)} x Ty,j, T5; = {(0,0)} x T5,; = R* x J3, j =1,2. As a consequence
of Lemmas 8 ano 9 we have

Lemma 10. The sets Ty, T,, T,, T, are smooth submanifolds of R* x J2 of
codimension 5 and the sets Ty, Tsy, T3, Ty, Ty, Ty, are smooth submanifolds
of R® x J3, where codim Ty = 5, codim T3 = 5, codim T3, = codim Ty, =
= codim T3, = codim T, = 6.

Denote by HZ the set of all 2-parameter families of smooth vector fields of the
form (2.5) and by HY = H® the set of all 3-parameter families of smooth vector
fields of the form (2.10).

Given any g € HY we define the mapping o(g): (x, &) - (9(x, &), n, G, ), where

Gy (0o 1) = 9(x + y, e + n) — g(x, €), Gy, is the germ of G, ,, at (0, 0) e R? x
x R*and 7,: G, — J3 is the natural projection (here we have dim & = 21).

Lemma 11 ([7, Lemma 4]). The set

cd

is @ smooth submanifold in M(2) of codimension 2.

Zz:L:[a bJEM(2)¢G+d=0,ad—bC=0, a* + b* + ¢ + d? £ 0}
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This lemma implies that the se: X = {(0, 0)} x X2 = R* x R* x M(2)is a smooth
submanifold in R* x R?* x M(2) of codimension 4.

Definition 11. A two-parameter family g € HY is called nondegenerate, if we have
ti1 - t12 ¥ 0 for the vector field g, (see (2.7)) and

(54) 2(9) B 0,02 »
i.e. the mapping ¢(g) transversally intersects the set X at (0, 0) e R> x R
Given any 3-parameter family fe H® and any natural number i, we define the
mapping
(53) oi(f): (x, &) > (f(x, &), mFx.0) »

where F.,: ()= f(x+y, e+ u)—f(x,¢),Fopy is the germ of Fi., at
(0,0)e R* x R®and m;: G, — Jj is the natural projection (here we have dime = 3!).

Definition 12. A 3-parameter family fe H ® is called nondegenerate, if we have
112 - t30 % 0 for the vector field f, (see (2.7) and Lemma 4) and

(5.6) 0:(f) A 0,071 » 0:(f) ™ (0,0)T1 .

As a consequence of Lemma 10 and Thom’s transversality theorem (see e.g. [21,
Theorem 3.1]) we obtain

Lemma 12. (1) There exists a residual subset Hy of H® such that if f€ H,, then

the sets (2(f))™* (Tu)s (e2(f)) " (T), (02(£) 7 (T2)s (e2(f)) " (T2), (0(£))~(T3),

(e3(f))~* (T3) consist of isolated points and are mutually disjoint. The sets
(93(f))"1 (Ts;), (es(f) 1 (Tsj),j = 1,2 are empty.

(2) If X < R* x R*is a compact set, then there is an open dense subset Hy(X)
of H® such that if f € Hy(X), then the sets ((02(f)) ™ (T7)) 0 X, ((e2(f)) " (T)) 0
nX, i=12, ((es(f) " (Tx)) n X, ((es(f)) ' (T5)) n X consist of a finite
number of points and are mutually disjoint. The sets ((05(f))™ ' (T3)) n X,

((Qs(f))'l (T'aj)) NnX,j=1,2 are empty.

As a direct consequence of this lemma we have

Lemma 13. The set of all nondegenerate 3-parameter families of vector fields
H, = H® is open dense in H®. If f € H,, then the set {(x, ¢) € R* x R*:0,(f) (x,¢)€
e Ty U Ty} consists of isolated points.

For each g € H, we can find its normal form of the form (4.5). Let us denote by
t,,(9.) the coefficient at u} in the second equation of this normal form. For f from
Lemma 7 we have t,,(f,) = ¢s(e).

For any g € H, define the mapping o,: R® - R®, g,(x, &) = (9(x, ¢), Tr D, g,(x),
det D, g,(x), t;1(9.))- The condition (5.6) implies that det Do,(0, 0) = 0.

Let us compute the Jacobian matrix of the mapping o, for the family f which
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is in the normal form (4.5). Since

TrD,f = ahf}‘ , detD,f = ”(ZZ‘ > tll(fe) = (/’3(8) s
ou, Ouy
we have
0 1 0 0 0 ]
0 o 02:(0) 39,(0) 99,(0)
Og, 0O, Ot

02f2(0) (72f2(0) * * %*
Do/ 0) = udu, oul

0°f2(0) 99,(0) 99,(0) ¢,(0)
ou,0u,  O¢; 0Os, 0Ot

0 o 293(0) 90:(0) d94(0)
Og, Oe, Ot

0

and therefore
2
det Do (0) = — m det D ¢(0) + 0,
Ou,0u,
where ¢ = (¢y, @5, ¢3). Since f e H; we have 0°/,(0)/0u; du, = t;, + 0 and there-

fore det Dg(0) == 0. This enables us to introduce new coordinates in the parameter
space

(5.7) vi=oe), i=1273.
The family (4.5) can be written in the form

sy T o -
iy, = vy + Vauy + vaui + oui + uu,Quy, v) + usd(u, v),

where 0, de C*, 0(0,0) = .
The critical points of the family (5.8) have the form (z, 0), where z is a real root
of the algebraic equation

U = u,,

(5.9) ox® + vix? + vx + v, =0.
If y =x + (1/30) vs, then
(5.10) ¥y +3py+2¢=0,

2
where p = p(v) = (ov, — $v3), ¢ = q(v) = 3(ov; — $vv5 + 0 55v3), v = (vq, v, v3).
Let us introduce new coordinates in the parameter space via the diffcomorphism

(5-11) U:py = ‘I(V), B2 = P(V): B3 = V3.

Direct computation shows that

(5.12) U™ty =97(0) = 200y + pofts + 543,
vy = Y;(ﬂ) = ‘7(3.”'2 + %ﬂg) » V3 = H3 -
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In these new coordinates the discriminant of the equation (5.10) has the form
D = D(u) = pui + p3. In the p-coordinates the family (5.8) has the form

iy = Uy,
iy = 97() + y3() uy + paui + oui + uuyQug, ) + usd(u, p),

where Q, ® € C*, Q(0,0) = w. This is the normal form from Theorem 1 and thus
Lemma 13 completes the proof of Theorem 1.

(5.13)

6. BIFURCATIONS NEAR CRITICAL POINTS

Now we are interested in bifurcations of the vector field vf (see Theorem 1),
which we also denote by v. The first coordinates of critical points of this vector field
are real roots of the equation

(6.1%) ox® + puyx® + 95(w) x + y{(w) = 0,

where y{, y3 (denoted also by y{, y; ) are defined by (2.14), (2.15).

Let 2,2%,927, S, S,, 83, G, G, G, Hi, H , Hy, k = 1,2 and o™ (denoted also
by «°) be defined as in Section 2 before Theorem 1. We remark that 2 = H* U H™,
where H* = {p: p; = +h(u,)}, h(p,) = (—p2)*"% pn, < 0 (see Figure 6).

Denote by R(u, i) the right hand side of the second equation of the family (5.13)
and let L(K) be the matrix of the linear part of the vector field v, at a critical point K.
Then

0 1
(6.2) L(K) = | 0R(K, 1) R(K, p)| -
Ou, Ou,
Since det L(K) = —dR(K, p)/du,, the matrix L(K) has at least one zero eigenvalue
if and only if
(6.3) RK, 1) _ .
' Ou,

If z, z,, z, are the roots of the equation (6.1°), then R(u, p) = o(u; —z) (uy — z,) .
(uy — 23) + wu,Q(u, ) + u3d(u, p). Therefore, for K = (z,0) we have
OR(K, p)fou; = o(z — z,)(z — z,), OR(K, p)[ou, = zQ(z, p). Since Q(0,0) = w =+
+ 0, there is a sufficiently small neighbourhood U of the point 0 € R* such that the
matrix L(K) has zero eigenvalue of multiplicity 1 (2) if and only if z #+ 0 (z = 0)
is the roof of the equation (6.1°) of multiplicity 2. For ye U\ 2 the matrix L(K)
has no zero eigenvalue. Obviously, the matrix L(K) has zero eigenvalue of multiplicity
2(1) if and only if pea’(ue D\ o).
The matrix L(K) has pure by imaginary eigenvalues if and only if

(6.4) Tr L(K) = 9’%{:&) = 20(z, 1) = 0,
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OR(K, ,u) 0.

(6.5) o,

Since w =+ 0, the equality (6.4) is satisfied in a sufficiently small neighbourhood U
of the point 0 € R® if and only if z = z(u) = 0. However, z is a real root of the equa-
tion (6.17) and therefore z = 0if and only if yj(x) = 0.1f z = 0, then OR(K, p)/du, =
= 0z,z, and z,, z, are the roots of the equation ox* + u3x + y‘;(u) = 0. Therefore
2,2, = 03(p) and thus OR(K, p)/ou, = y3(n). We have obtained that the conditions
(6.4), (6.5) are simultaneously satisfied for u sufficiently small if and only if

(6.6) yi() =0, y3(n) <0.

Proof of Theorem 2. Since & is the set of zeros of the discriminant of the cubic
equation (6.1°), the well known results concerning the roots of a cubic equation imply
the assertion of Theorem 2 concerning the number of critical points of the vector
field v§. Let U and V be as in Theorem 2. By [1, Theorem 6.2.1 (1)] the only critical
point (0, 0) of the vector field vg is a saddle and since for u € S; N U \ {0} the vector
field v: has exactly one critical point, this must also be a saddle. If w* — 8 < 0,
then by [1, Theorem 6.2.1 (3), (6)] the only critical point (0, 0) of the vector field vy
is a focus and if w? — 8 = 0, then this point is a critical point of v; with one elliptic
sector, two parabolic and two hyperbolic sectors (see Figure 15). For pe S, n
N U\ {0} the vector field v, has exactly one critical point K and it suffices to examine
some z with y7 () = 0. In this case we have K = (0, 0), 5 (1) < 0,

LK) = [)(’); (1) (1)]

and therefore K must be a focus. This means that for g€ S; n U \ {0} near the set G,
the only critical point of v, is a focus. This focus may be changed into a node for
some p€ S' N U {0} far from the set G,.

If pe S, 0 U, then the vector field v} has two critical points K = (z,0), K, =
= (21, 0) (the roots z,, z, of (6.1°) coincide) and from the considerations before this
proof we obtain that

L(K) = [g , Q(L’ ﬂ)], LK) = [a(z —021)2 zIQ(lzl,u)]'

Therefore K is a saddle node of the vector field vj. The eigenvalues of the matrix
L(K,)are Ay , = ¥(z,Q(z, p) + /d()), where d(u) = z3(Q(z, pn))* + 4o(z — z,)2.
Therefore K, is a saddle of the vector field u:{ for each pe S, "nU. If 60 = —1,
then K, is a focus fos d(u) < O (this is valid e.g. if * — 4 < 0 Ind pea™) and K,
is a node of the vector field v, for d(u) = 0.

If pe Sy N U, then the vector field vf has three critical points K = (z,0), K, =
= (24,0), K, = (25, 0). It suffices to examine some p e S3 N U, for whichy{(x) = 0.
In this case we have y; (1) < 0 and y; () > 0. Direct computation of eigenvalues
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of the matrices L(K), L(K,), L(K,) shows that in this case K is a focus (a saddle)
and K, K, are saddles (foci) of the vector field v, (v, ). The foci may be changed into
nodes fos pe S; N U far from the sets H, and G, respectively. This completes the
proof of the theorem, except the assertion (4). Thesets H,, H,, G,, G, are obviously
graphs of smooth functions, the forms of which are well known from Thom’s cata-
strophe theory and whose pictures may be found e.g. in the book of T. Brécker and
L. Lander [10]. The assertion concerning the sets «* and o~ is then obvious. Thus the
proof of Theorem 2 is complete.

Bifurcations for v:. As we have shown in the proof of Theorem 2, the only critical
point of v, for ue S, is a saddle. Let P, be the plane passing through the point
(0, 43, 0) e H; and parallel to the (i, p3)-plane. Let w; = v for pe Py, i.e., w, is
a two-parameter family of vector fields with the parameter set P,. The set P, N &
consists of two lines d, =« H*, d, = H™ parallel to the us-axis. The curve h =
=Py,nH N (@ U 27) is the piece of the graph of the function u; = ho(u3) =
= —3(uSus + 55u3) included in the set Py N (2 U 7). For pe Int h, the matrix
L(K) corresponding to the focus K has pure by imaginary eigenvalues. Obviously
(see Figure 6), there are uj > 0, uj < 0 such that the points Q; = (ho(1s), 43, 43) €
edy, Qa(ho(us), 13, 13) € d, are the and-points of the curve h (we have d, = {u: gy <
<0, d; = {u:pu; > 0)). Obviously, the curve h touches the lines d;, d, at the
points Q; and Q,, respectively. Each of the vector fields “’5, and wgz has two critical
points: a saddle K, and a saddle node K, for which the matrix L(K,) has zero
eigenvalue of multiplicity 2. Since the signature (see Definition 10) corresponding
to the vector field w (wg,) is equal to o . pj(w. ;) and o = 1/{/|p| > 0 (see
Section 4), we obtain that the signature corresponding to the vector field wg,(wg,)
is positive (negative). Therefore by Lemma 1 there exist neighbourhoods Uy, U,, V
of Q,, O, and K,, respectively, such that the bifurcation diagram for the vector
field wg,(wg,) in U(U,) and the corresponding bifurcations in ¥ correspond to the
bifurcation diagram and the bifurcations of Bogdanov’s normal form (2.8) with
positive (negative) signature, i.e. with ¢ > 0 (¢ < 0). Denote f; = hnU,, i = 1,2.
For pe B, (e B,) two critical points are saddles and the third is a focus, which we
denote by K. The matrix L(K) has a couple of pure by imaginary eigenvalues. Now
we shall compute the sign of the first Ljapunov’s focus number L; = L,(u) cor-
responding to the focus K. Since for pef; (i = 1,2) we have y7(u) = 0 and
75 (1) < 0, the focus must be the point (0, 0). Using the formula (2.3) one can obtain
that L,(u) = —(n/4 /4% (—wps + 5 (1) (wbgy + byy — 3boz y3 (1)), Where by,
b, bys are the coefficients at u3, uiu,, u3, respectively, an the right-hand side of
the second equation of the system (5.13) and 4 = —y3 (k). Since lim y; (1) = 0

n=Qi

(i = 1, 2), we obtain that sign L,() = sign wu, for p sufficiently close to Q;. There-
fore, if the neighbourhoods U, U, are sufficiently small, then L,(x) > 0 for pe g,
and L,(u) < 0 for pe B,. This implies that the function L,(x) must change its sign
somewhere in the interior of the curve /.
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Lemma 14. There is exactly one point Qe h where the function L, = L,(u)
changes its sign.

Proof. If pe 97, then the equation (6.17) has three roots &y, &, &;. In this case
the known Cardano’s formulae are not suitable for the computation of the roots.
We shall use the known goniometric formulae for the roots of a cubic equation. Using
these formulae one can obtain that &, = —2cos ¢ — 4us, &, = 2r cos (60° — 1¢)—
— dps, & = 2rcos(60° + +¢) — tus, where coso = 1/+./—pu3, r= +/|u
sign r = sign ;. Let K = (&,, 0) be the focus (if &, or &3 is the first coordinate of
the focus, the proof is similar).

>

If y, = uy — &, y, = u,, then the family v; becomes

Vi =Y,
Py = )’1()’1 - Ql) (J’1 - QZ) + élJ/ZQ(JH:H) + )’1)’2Q(}’1, N) + yg@(ya ,u.) s

(6.7)

where @, =& — &, 0 =& — &, O = Q0 + & n), (v, ) =
=&y, + 51,)’2:#): 01 =6 ¢ = V(3COS%€0 + \/3Sin%(p), 0 =& —¢& =
= (rcos ¢ — /3sin}p). From the formulae for ¢,, 0, one can simply obtain
the following relations, which will be useful later:

0, + 0, = 6rcosip,
(68) 1 2 3

010, = 3r*(4cos’ 1o — 1).
Since we have expressed cos ¢ as a function of the parameters p, and 5, it will be
suitable to use the following trigonometrical identity:
(6.9) cos ¢ = 4¢cos®>Lp — 3cos g
Let us rewrite the family (6.7) in the form
Vi =Yz,
P2 = 01021 + bi&iya — (00 + @) ¥ + yi +
+ (b“ + 2511721) Yiya2 + (boz + b1151) y:+
+ byoy1ys + b2yiva + bosys + S(v, ),

(6.10)

where b;; are the coefficients at yjyj of Taylor’s expansion of the right hand side of
the second equation (6.7), by; = w, & = &,0(¢,, 1) and S(y, p) contains only terms
of orders higher than 3. Using the formula (2.3) one can obtain that

T . .
(6.11) Ly = - T [(byy + 2&1byy) (01 + 2.+ bo20102) —
44
— 3bo3(0102)* + b210105)]
where 4 = —¢,0,. We have assumed that K = (&;, 0) is a focus of the system (5.13)
and therefore the origin must be a focus of the system (6.10). Thus 4 > 0. Using the
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above formulae for ¢4, 015 02 We obtain

T
(6.12) L, rWIE F(r, 0, 1),

where  F(r, @, 1) = rG(cos g, r, w), Gz, r, w) = (byy + byh(z, r, p) (6z +
+ 3r(4z% — 1) boy — 2Tbos3r*(4z% — 1)% + 3b,, (42> — 1)), h(z, r, p) = 2(—2rz —
— 1us) O(=2rz — $u3, 1), 1= £/(—p), B, <O, where we have +(—) if
s > 0(py < 0)and cos ¢ = p,[r3. The function G is obviously smooth, G(0, 0, 0) =
= 0 and 9G(0, 0, 0)/0z = 6b,, = 6w =+ 0. The Implicit Function Theorem implies
that there exists a smooth function z = ¥y(r, ) such that ¥,(0,0) = 0 and
G(¥o(r, 1), r, ) = 0 in a sufficiently small neighbourhood of the origin.

We are interested in a solution of the equation L,(u) = 0for u, < 0. This equation
is obviously equivalent to the equation G(cos i, +./(—p,), ) =0, pu, <0,
where we have +(—) if p; > 0 (u; < 0). From the uniqueness of the implicit
function ¥, it follows that this equation is equivalent to the equation

(6.13) cos 3¢ = Po(+ J(—p2) 1), n2<0.

Therefore, (6.9) and the definition of ¢ yield that the equation (6.13) is equivalent
to the equation

By

+J/(~w2)?

where we have +(—) if u; > 0 (1, < 0). Let us define a function ¥(u) as follows:
V() = 1y + (=) (A= (=), 1) = 3Po(= /(= 2), )

for u, <0, u, <0,

V() = py = (=1 (AE3(/(=112) 1) = 3¥o((/(=112), )
for 'M >0, p, <0 and ¥Y(u)=pu, for p,=0.

(6.14)

= 4P (x/(—n2), ) — 3¥o( V(=) 1) 5

Obviously, the function ¥ is of the class C', ¥(0,0,0) = 0, 0¥(0, 0, 0)/ou, = 1.
The Implicit Function Theorem implies that there exists a C'-function p; = H(u,, i3)
such that H(0,0) = 0 and Y(H(us, 13), #z, p3) = 0 in a sufficiently small neigh-
bourhood of the origin. Thus we have obtained that L,(x) = 0 if and only if u is
situated on that part of the graph of the function H for which u, < 0. Since H € C!
and obvisouly H(u,, i3) = 0'for u, = 0, we obtain that if U is a sufficiently small
neighbourhood of the origin, then the graph of H transversally intersects the survace
UnH; n (2 u{0}) at a curve n passing through the origin. Obviously, there is
exactly one point Q at which the curve # intersects the curve h. Thus we have proved
that there is exactly one point Q where the function L,(x) changes its sign.

Let Q and & be as in Lemma 14. If we wish to describe the bifurcations for u near
the point Q, we need to compute the sign of the second Ljapunov’s focus number
L, = L,(Q) at Q (see Lemma 2). If Q = pen N h, then ;' (1) = 0 and the vector
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field v; has the form

iy = u,,
72 (W) uy + psui + byyuguy + bosu + byoui + bosui +
+ byulu, + byyugu; + g4(”1a u,) + gs(“xa “2) + g(u, ﬂ) s

(6.15)

Uy

where g(u, 0) = of|[u]*), g4, g5 are homogeneous polynomials in u,, u, of degree 4
and 5, respectively, with coefficients b;; at ujuj, b3y = 1, by; = w, byy = bso = 0.
Obviously, the point K = (0, 0) is the only focus of the system (5.13), for which we
have computed that L,(Q) = 0. Let us introduce new variables: §, = u,, 9§, =
= —u,[x, T = xt, x = /(=75 (1)). Then the vector field (6.15) becomes
31 = -3,
85 =9y + 03097 + b119,9, + Bop93 + b3o33 + bo393 +

+ b5,919, + b,9,93 + 54(31, 92) + 95(91: 92) + 5(91, 35, #) s
where g(9,,9,,0) = o((\/(% + 93))°), §s,§s are homogeneous polynomials of
degree 4 and 5, respectively, with coefficients b;; at 9{9],

(6.16)

- U - b - ~ b ~ b
bzo:—za by, = — —, bos = boz b30:__329, b21=—21,
% % X %
Bis = —biss boy = #bos, bag =0, by = — 231
12 = 125 Doz = %Do3, D40 =Y, b3y =
~ " ~ ~ ~ b
bys = —byy, by3=unbyy, boy = —x*bys, bsy =0, b41=—~-:!,

T r_ Fo_ L2 ro_ .3
bys = #by3, b3y = byy, by =x"biy, bos = #>bys .

Putting the coefficients b; ; into the formula (2.4) one can obtain that

n
(6.17) Ly(Q) = Ly(u) = —— [N + O(|u|)]-
24
where N = —b3,by, + b3 by — Thyyby1bse + 3b3ob,, nad therefore
(6.18) sign L,(Q) = sign N

for Q sufficiently close to the origin.

Lemma 15. The number sign N is invariant with respect to regular transfor-
mations of coordinates in the phase space.

Proof. It suffices to consider the system (6.15) for p'= 0, i.e. the system
l"‘l = Uy,
iy = boguy + byyugty + byoui + byyuiuy + byjusul + bosuz +

+ 94(u1a “2) + gs(up uz) + g(u, 0) ,

(6.18)
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where ¢4, g5 and g are as above, and to prove the invariance of the number sign N
with respect to the mappings R and ¢ (see (3.4) and (3.5)). First let us prove the
invariance of sign N with respect to the mapping ¢. This mapping transforms the
system (6.18) into the form (3.1), where p,; = 0, p,, = +b,;,eA7%, G,y = 0, f3o =
= b30827%, 30 = b3od™% Gy = by A7 = 327 3%bsg, §ny = bosd™! — byl 2.
By Lemmas 1 and 4 there exists a smooth regular transformation of coordinates
transforming this system into the form (2.7), where t;; =0, t;, = 2§,, + P;; =
= by A7 1y =gy 4+ 2512 = bordT t30 = 30 + 2P12G11 = G30 = baA 7,
ta1 = 42y + 2(P22 — P12) d11 + 3P0 = 21 + 3P30 = b2;A7% Thus we have ob-
tained a system of the form (6.18), where instead of b;; we have the coefficients
biisboy = 15 = bopd™h, by =ty = by A7, byo =130 = b3oh7% by =1y =
= b,;47 % This means that the number N is chinged by the mapping ¢ into the
number N = —b3,by, + b3,b,, — 7byyb,,b50 + 3b30b; = A7*N and thus
sign N = sign N.
Let the mapping R have the form
Zy = Xy + 0p0X7 b By XX + 0gaX3 + %30X] F Uy XXy + ...,

R.
: 2 2 3 2
Zy = X F UpeX] + 0y1X1Xy + UgpX5 + U3eX] T X XiXy + ...

One can easily show that this mapping transforms the system (6.18) into the form
(3‘1), where Piq = —Pao, P12 = 2030 — B11, P22 = %11 — Poa, 530 =283 +
+ Bri%ao — 2030Ba0s G2 = biy + 2B20s G2z = box + Bi1s 30 = b3o — 230 —
— Baobyy, €31 = by + 020byy — 2B20by,. Since the mapping R does not change
the form of the system (6.18), the coefficients o0, B20, Bozs %11, 11 must satisfy
the identities: 2050 — 1y = 0,0y — Bos = 0, B2 = 0,230 + 11020 — 2020f20 =
= 0. These identities are obviously satisfied if o,q = P20 = Po2 = &gy = 11 = O.
This implies that the mapping R does not change the number N at all and thus the
proof is complete. ) :

Proof of Theorem 3. The assertions of Theorem 3 are consequences of Lemmas
1, 2, 14, 15 and the considerations presented in Section 6.

Bifurcations for v, . By Theorem 2 the only critical point K = (0, 0) of the vector
field v, is either a focus or a critical point with one elliptic sector, two parabolic
and two hyperbolic sectors. For ue 27 the only critical point K, = (z(u), 0) of v,
is a focus. From the equation (6.17) we obtain that dz(u)/du; = 4 and this implies
that z(u) > 0 for pe G and z(u) < 0 for pe G7. Since —x> + pyx® + y; (u)/x +
+ 97 (#) = —(x — z) P(x), where P(x) > 0, we have L(K,) = (c;;), where ¢,y = 0,
¢ =1, ¢33 = =P(2), ¢35 =z0(z, ), z = 2(n), Q(0,0) = w > 0. This yields
that for y sufficiently close to the set G; N 2, the matrix L(K,) has complex eigen-
values with the real parts equal to 4z(x) Q(z(x), 1) and therefore the focus K, is
unstable for g e Gf and stable for u e G7.

Let L, = L(u) be the first Ljapunov’s focus number of the focus K = (0, 0) for
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peG, n2*, and let L, = L,(p) be the second Ljapunov’s focus number, which
is defined for y satisfying the identity L,(x) = 0.
The vector field v, , 4 € G, has the form

al = Uy,
(6.19) . _ 5 ) N 5
Uy =79, (,u) uy + pauy + byuguy + boyuy + byguy + bosus +
+ byyutu, + byyugul + g4(“1, uy) + 95(“1, “2) + g(us H) s
where by, = —1, by; = @ > 0 and g, gs. g are functions as in the system (6.15).

Lemma 16. There exist two C'-curves 0y, 1z in Gy 0 2% A {p: p, < 0} such that
the following assertions hold:

(1) The origin is an end-point of the curves 1y, 1,.

(2) The curve ny(n,) divides the set G; 0" D" n{uip, £0, py > 0;(G,n 2" N
A {uip, £0, py <0}) into two connected components Fy, Fy(Fs, F,), where
OF, =nyua U{0} (0F; =n,uaU{0}), a ={pea :p; >0, 0, =
={pea :p; <0}, a” =G, NG,

(3) If Ly(p) is the Ljapunov’s focus number of the only focus K of the vector field v,
pe D, then Li(p) = 0 for pe 2%, uy < 0if and only if pen, L n,.

(4) Ly(n) > 0 for pe Fy U Fyand Ly(u) < 0 for pe F, U Fj.

(5) If pen, U Ny, then the second Ljapunov’s focus number of the focus K = (0, 0)
is given by the formula

Ly() = ———

24y(=7: (w)
where N = —b3 by, + b3 ,byy — Tbyyb b3 + 3b3obsy, the number sign N

is invariant with respect to regular transformations of coordinates in the
phase space.

(N + O([ul)),

Proof. If ue 27, then the equation (6.17) has one real root &, and two complex
conjugate roots &,, &5 = &,. We shall use their goniometric form. For g, < 0 they
are given by the formulae

¢i=—2rchip +dpus, &5 =rchip+ips £i(3)rshie,

ch ¢ = — = +/(—p), signr =signpy, .

, F
(=)
Ify,=u; — ¢, y,=u,and g = &, — ¢&,, then the vector field v, becomes

(6.20) V1= =2,

I

V2= =lef yi + by& iy + 2Re ) 3 — ¥} +
+ (byy + 251[721)}'1.)’2 + (boz + bl]El) ¥3 + bayyi +

. 2 ~ ~
B b21yiya + besy3 + Go(vy, va) + G5y va) + 30, 1),
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where 51 = 61@(.})1’ I"), Q(yls /'l’) = Q(yl + 61’ ,LL), b11 = , g4, gS are homo-
geneous polynomials of degrees 4 and 5, respectively, and §(y, 0) = o(” y|?)-
Using the formula (2.3) we obtain that

(6-21) Ll(ﬂ) = [(bu + 251b21)( 2Reg— boleP) - b03|Q| - b21|Q| ]

| °
le|> = 3r*(4ch* ¢ — 1), 2 Re @ = 6rch 1¢ and therefore

Ly(n) =

IQI ——F(r, 0, 1), F(r, o, 1) = rG(ch 3o, 7, u),
where G(z, r, p) is the function defined in the proof of Lemma 14, r = 4./(—u,),
4z < 0, where we have +(—)if 4y, > 0(u, < 0)and ch @ = p,[r3. Let z = ¥(r, p)
be the function from the proof of Lemma 14, defined as a solution of the implicit
equation G(z, r, u) = 0.

We are interested in a solution of the equation L,(u) = 0 for pe 2%, u, < 0.
From the uniqueness of the implicit function ¥, it follows that this equation is
equivalent to the equation

(6.22) chip = Yo(+/(—ta), ), ne2*, pu, <0,
where we have +(—)if g, > 0 (g, < 0).

Now using the known identity ch ¢ = 4 ch® ¢ — 3 ch ¢ (compare with (6.9))
and the definition of ¢, we obtain that the equation (6.22) is equivalent to the equation
(6.14). Let ¥ = ¥(u) and p; = H(u,, p3) be the functions from the proof of Lemma
14. We remark that the function L,(x) given by the formula (6.21) and the functions
defining the equation (6.22) are defined not only for e 2™ n {u: p, < 0} but on
the whole set {y: p, < 0}, and we consider the equation L,(x) = 0 on this set. The
results obtained in the proof of Lemma 14 immediately yield that L,(x) = 0 if and
only if u is situated on that part of the graph of the function H where u, < 0. Since
H(p,, ps) = 0 for p, = 0, there exists a neighbourhood U of the origin such that the
graph of the function H does not intersect the surface G; N G; N (2 U 2 )nU
and it must intersect the surface G; N 2% N U exactly at two curves 7, 1, in such
a way that the assertions (1)—(3) of the lemma hold.

If y7 (1) = 0, i.e. if u € Gy, then the equation (6.17) has one zero root and the other
roots can be computed from the equation —x> + pyx + y; (u) = 0. Using these
formulae for the roots, one can easily show that for pe G; n 9™ we have

Litw) = = m [—ous + 5 (1) (0boy + byy) — 3(y7 (W))* bos] =
= — L YT " o .
4 (=72 (w) [y;(ﬂ) + (@boz + bay) — 33 (k) bos]

Since y; (1) = 0 for pea”, @ > 0 and y; (1) < 0 for pe G, A 2* we obtain that
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sign L,(u) = sign p; for jue G, n 2™ sufficiently close to the curve «~. This proves
the assertion (4) of the lemma. The proof of the assertion (5) of the lemma is the same
as the proof of the assertion (2)—(c) of Theorem 3, where the invariance of the
number sign N follows from Lemma 15, and thus the proof is complete.

Lemma 17.1f ue 9, then the vector field v, has three critical points: a saddle K
and critical points K,, K5 which are either nodes or focuses, and the following
assertions hold:

(1) If pe Gy n 27, then the critical points K,, K; are either nodes or non-
degenerate foci, where K, is stable and K5 is unstable.

(2) The focus K,(Ks) is degenerate if and only if pe F*¥ =G, nG; N2~ n
An{pips >0} (peF~" =G, nG; n D™ n{pp, <0}

(3) 1f Ly(u) is the first Ljapunov’s focus number of the focus K,(K3) for pe F*
(we F~), then Ly(n) > 0 for all pe F* (Ly(n) < O for all pe F~).

Proof. From the results proved at the beginning of this section it follows that if
the matrix L(K;) (i€{1,2,3}, K; = (z;,0)) has purely imaginary eigenvalues, then
z; = 0. This implies that it suffices to find out the type of the critical points for
preG, NI .

Ifue G, NGy n 2 ,thenK, = (0, 0)is a saddle and K, = (z5, 0), K5 = (z3, 0),
where z,3 = 3(us £ /), 6 = u3 + 4y5(p) > 0. Since z, 5 + 0, the real parts
of the eigenvalues of the matrices L(K,), L(K ;) are nonzero forallpe G, n G n 9~
and therefore it suffices to find out the type of the critical points K,, K; for some
1weGyn Gy N2~ with u; = 0. Under the assumption u3 = 0 we have z, 3 =
= 72 (1) and L(K;) = (i) (i =2,3), where ¢i; =0, ¢, =1, ¢5; = 2} —
— 95 (1), ¢hy = z;0(z;, ). The matrix L(K,)(L(K;)) has the eigenvalues 1, , =
=4(xy £ /01) (2 £ /85)), where ;5 = + /73 () Q(£/7 (1), 1), 012 =
= ((Q(£+/77 (1), »))* — 8) y5(n). This implies that K,, K are either nodes or
nondegenerate focuses, acgording to the signs of d; and d,, respectively. Since
w > 0, we also obtain that K, is stable and K5 is unstable. This proves the assertion

1).
( )Let F* and F~ be as in the lemma. First assume p € F*. Then the vector field v,
has three critical points: K; = (z,,0), K, =(0,0), K; = (z3,0), where z, =
= Hus — /6). z3=Hus +/9). 6 =u}+4y5(n) > 0. Since y;(u) <0, the
critical point K, = (0, 0) must be a degenerate focus. The matrix L(K,) has eigen-
values B, , = ¥(z,0(zy, u) £./4), where 4 = z3(Q(z,, p))* + 4z, /5. Obviously
z, > 0 and therefore B;, B, are real, f; > 0, f, < 0. This means that the critical
point K, is a saddle. Without any computation we already know that the third
critical point K5 must be either a node or a nondegenerate focus. The proof for pe F~
is analogous.

It remains to prove the assertion {3). We may use the same method which we have
used in the proof of Lemma 14. Using the formula (2.3) one can obtain a formula
for the function L,(u) corresponding to the focus K,, which does not essentially
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differ from the formula (6.11). By the same argument as that used in the proof of
Lemma 14, it is possible to show that the set of zeros of the function L(u) is a C'-
surface which does not intersect the surface F*. The same is valid for the function
L,(n) corresponding to the focus K3, p€ F~. Similarly to the proof of the assertion
(4) of Lemma 16, one can show that L,(u) > 0 (Ly(u) < 0) for pe F* (neF)
sufficiently close to the curve . Since the function L,(u) does not change its sign
on the surface F* or F~, respectively, the proof of the assertion (3) is complete.

Lemma 18. There exists a C'-curve n; in the set E = G, n 2" n {u:pu, =2 0;

such that the following assertions hold:

(1) The origin is an end-point of the curve ns and this curve divides the set E into
two connected components E*, E™.

(2) If Ly(u) is the first Ljapunov’s focus number of the only focus K of the vector
field v, , ueE, then L,(n) = O for pe E if and only if pens.

(3) Ly(n) > 0 for pe E* and L,(u) < 0 for pe E™.

(4) If pens, then the second Ljapunov s focis number of the focus K = (0, 0) is
given by the same formula as in the assertion (5) of Lemma 16.

Proof. If ue 2™ n {u: p, > 0}, then the equation (6.17) has one real root &,
and two complex conjugate roots &,, &, = &,, which may be expressed by the fol-
lowing formulae (compare with the case pe 2% N {u: p, < 0)):

¢ = —2rshie + pu;, &3 =rsh (P+3ﬂ3+1\/(3)"°h3€0,

My / : :
shgp = ————, =+, signr =signp,.
‘ ST
Analogously to the case u, < 0, one can show that
Ly(n) = E(r, o, 1),

l I°
where [gll =3r’(4sh*1p — 1). FE(r, o, u) = rG(sh ¢, r, p), G(z, r, ) is the func-
tion defined in the proof of Lemma 14. Let z = ¥(r, u) be the solution of the
implicit equation G(z, r, u) = 0 (see the proof of Lemma 14). Then L(x) = 0 for
peD* n{u:p, > 0} if and only if ship = ¥o(r, ). Since sh = 4sh®1p —
— 3sh }¢ we obtain that the equation L,(u) = 0 is equivalent to the equation

(6.23) BL o 43 Jpas ) — 3¥o( 0 1) s

RN
where we have +(—) if gy > 0 (4, < 0). Let us define a function '1’(;4) (compare
with the function ¥(u) from the proof of Lemma 14) as follows:

Pu) = 1 + w32 (4¥5(=(12), 1) — 3¥o(=/(2), ) for p, <0, p, >0,
P(u) = 1 — w32 (4¥3 (12), 1) = 3¥o(V/(82)s ) for py >0, p, >0 and
P(u)=p, for p, 0.
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Obviously, the function ¥ is of the class C', ¥(0,0,0) = 0, %(0, 0, 0)/on, = 1.
The Implicit Function Theorem implies that there exists a C!-function u, = H(,uz, us)
such that f(0,0) = 0 and P(H(u,, p3), tyy #3) = 0 in a sufficiently small neigh-
bourhood of the origin. Thus we have obtained that Ly(u) = 0 for pe 2" n
N {pu: p, > 0} if and only if u is situated on that part of the graph of the function H
for which p, > 0. Since H € C! and obviously A(u,, u3) = 0 for u, < 0, we obtain
that if U is a sufficiently small neighbourhood of the origin, then the graph of the
function f transversally intersects the surface U n G, n (2% U {0;) exactly at one
curve, which we denote by 575. The origin is an end-point of this curve and this proves
the assertions (1) and (2) of the lemma.

Let E* be the component which is situated on the left of the curve g, (see Figure
7). Let n* < E* (n~ = E”) be a curve with an end-point at the origin and suf-
ficiently close to the curve f = {ue G,: p, = 0} If o= (pys oy p3)en™ (pen™),
then obviously g3 > 0 (u3 < 0). For e G, n 2% we have the formula for the first
Ljapunov’s focus number L,(u) given in the proof of Lemma 16. This formula
implies that L,(x) > 0 (L,(1) < 0) for each pen™ (uen™) sufficiently close to the
origin. Since the function L,(u) changes its sign on the curve 5 only, we obtain that
Ly(u) > 0 for all ue E™ and L,(u) < O for all e E™. This proves the assertion (3)
of the lemma.

The proof of the assertion (5) is the same as the proof of the assertion (2)—(c)
of Theorem 3 and thus the proof of the lemma is complete.

Proof of Theorem 4. The assertions of Theorem 4 are consequences of Lemmas
1,2, 16, 17, 18.

The author is thankful to Dr I. Vrko¢ for his very valuable comments and sug-
gestions.
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