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1. INTRODUCTION 

There are many papers which deal with bifurcation problems concerning families 
of vector fields depending on a single parameter. A relatively extensive biblio­
graphy on bifurcations of one-parameter families of vector fields can be found in 
[16, 17]. However, there are only several results concerning generic bifurcations of 
vector fields depending on more-dimensional parameters (see e.g. [3, 4, 5, 7, 8, 9, 11, 
13, 14, 19, 20]). There are two basic reasons for this. The first is that the dimension 
of the bifurcation equation is growing along with the number of parameters in the 
generic cases. This causes difficulties concerning the computation of critical points. 
The second is that even for a three-dimensional central manifold very complicated 
topological structures of trajectories can occur also in generic cases. In such cases 
the so called ''strange" or "chaotic attractor" may appear, on which trajectories 
oscillate chaotically for long periods of time (see e.g. [18]). Despite of these dif­
ficulties a considerable progress, mainly in the theory of two-parameter bifurcations, 
has been made. Let us mention some articles devoted to these problems. 

V. I. Arnold [3] analyses generic bifurcations of two-parameter famihes of vector 
fields which are unfoldings of codimension two degenerate singularities. One of these 
unfoldings is described in detail by R. I. Bogdanov [7, 8]. He assumes that the matrix 
of the linear part of the given vector field is equivalent to the Jordan block with 1 
above the diagonal and zeros elsewhere and, moreover, some coefficients of the 
second order terms are nonzero. A similar singularity was also studied by F. Takens 
[20] (see also [11]) under some symmetry conditions. Versal deformations of two-
parameter families of vector fields in the plane, invariant with respect to rotations 
by an angle iKJn about the origin, are discussed by V. I. Arnold [4]. All these results 
can also be found in Arnold's book [5]. The paper of Takens [19] contains results 
on the Hopf bifurcation for a class of more-parameter famihes of vector fields in the 
plane. The paper of J. Guckenheimer [13] is devoted to two-parameter unfoldings 



of a vector field, having the matrix of its linearization at a critical point with simple 
eigenvalues 0, ±ij^, jß Ф 0 and none of the others pure by imaginary. 

We study germs of vector fields under the same assumptions on their Hnear parts 
as in [7], however, unlike Bogdanov's assumptions we assume that one coefficient of 
a second order term is equal to zero {q^ = 0, qi2 Ф 0, see [7, (5)]). These conditions 
define a degenerate singularity of codimension 3. This paper is also an attempt to 
answer Marsden's question "how should one break the symmetry in the Takens 
bifurcation and produce an associated structurally stable unsymmetric bifurcation" 
(see [17, p. 1143]). We use in this paper the approach employed by Bogdanov in [7]. 

2. NOTATION, DEFINITIONS AND MAIN RESULTS 

Definition 1. Two mappings/^,/2 e С°°(Я", R"^) are called (^-equivalent at a point 
X e Я", if there exists a neighbourhood 17 of x such that f^jV = fzjU. We call the 
class {g e С°°(Я", R"^) : g is 0-equivalent to fe C'^{R'', R"^) at x} the germ of the 
mapping f at x and denote it by /^, or [ / ]^ , or simply / . The set of all such terms is 
denoted by С^(Я', К'"). 

Definition 2. Two germs f,g e C^{R", R"") are called k-equivalent (1 g fe < 00) if 
for their representatives/, g we have/(x) = ^(x), D^'f{x) = D^ g{x)j = 1, 2 , . . . , fe. 
We call the class f f{x) = [g e С^(Я", R"") : g is fe-equivalent to / j the k-jet of the 
germ f at x or the k-jet of the mapping f at x, and denote it also by f f(x). The set 
of all such fe-jets is denoted by /^(x). 

Denote by Г°° = Г^ the set of all C°°-vector fields on R\ lï^e С then ^(x) = 
= (x, v{x)), where v e C°°(jR", Ä"). We identify such a vector field with the differential 
equation x = г;(х), or with the mapping v. We denote by G„ the set of all germs of 
vector fields from Г^ at 0, for which the origin is their critical point. The set of all 
fe-jets of germs of vector fields from the set G„ is denoted simply by J\. 

We can endow the set J^ (fe = 1,2,...) with the natural smooth structure induced 
by the following mappings: -

a^ : J i -^ i^"', a ^ ( / Î;(0)) = D t;(0) , 

a^:Jl-^ i^"' X i^("'-^")/^ , ^\j^ t;(0)) = {D i;(0), D^ v{0)) , etc. , 

so that the sets J^ are smooth manifolds, where dim j \ = n^, dim J^ = /7̂  + 
+ i(n^ 4- n), etc. 

Definition 3. Denote by 9^: i^" x î ^ -^ i^" the flow of the vector field v e Г^. 
Two germs v^, V2 e G„ are called topologically, or orbitally, C^-equivalent^ if for 
their representatives v^, V2, the following holds: There exist neighbourhoods U and V 
of ùe R^ and a homeomorphism h:U -^ V such that if x eU and ^^^(x, [O, tj) с U 
for some t > 0, then there exists a '̂ > 0 such that h((p^^(x, [O, tJ) = (p^J^h{x), [0, r']). 

Definition 4. Let veF^. The germ F at 0 of a fe-parameter family of vector fields 



V:U -^ Г^ such that F(0) = v, where I/ is a neighbourhood of 0 e R^, is called a /c-
parameter unfolding of the germ v. The neighbourhood U is called the basis of the 
unfolding. 

Definition 5. Let V^, V2 be two unfoldings of a given vector field v with the same 
basis и с: R^, The unfolding V2 is called C^-equivalent to the unfolding V^, if there 
exist their representatives V2 and V^, respectively, such that for all ÀeU the cor­
responding vector fields ^2(Я) and Fj(yl) are orbitally C^-equivalent, where the home-
morphism h(X) of this equivalence depends continuously on A. 

Definition 6. Let v e Г^ and К be an unfolding of the germ v with the basis U с R .̂ 
A mapping W:W-^U, where Ж is a neighbourhood of 0 e Я'", 'F(O) = 0, defines 
a new unfolding W^V of the germ i5, i.e. a germ of the m-parameter family of vector 
fields defined via W^V = Vo T. If the mapping T is of the class C, we say that the 
unfolding !F*Fis C-induced from V. 

Definition 7. An unfolding V of the germ i; e G„ is called topologically versai, or 
versai, if any unfolding of the germ v is C°-equivalent to an unfolding of v which is 
C^-induced from V. 

Definition 8. Let V:U -> Г^, U с R^, be a given family of vector fields and let N 
be a neighbourhood of the origin in the phase space i^". Assume that the vector field 
V{eo) (we shall often write V^ instead of F(e)) has a critical point x^ e N. This critical 
point is called a nonbifurcation point of the family Fif there exists a neighbourhood 
N' cz N of the point XQ and a neighbourhood U' a U of the point SQ such that for 
all sell' the vector field VjN' is orbitally C^-equivalent to V^jN' in N\ A critical 
point which is not nonbifurcation is called bifurcation. A point во e U is called 
a bifurcation value for the family V and for the neighbourhood N if there exists 
an s in an arbitrary small neighbourhood of eo such that the vector fields F̂  and F̂ ^ 
are not orbitally C^-equivalent in N. The bifurcation diagram of oritical points of 
the family F is the set of all bifurcation values for the family F and for the neigh­
bourhood N. 

Now let us recall the formulae for the so called first and second Ljapunov's focus 
number, which will be important for better understanding of our further con­
siderations. 

Consider the following plane system of differential equations: 

(2.1) X = ax + by + P(x, y), 

y = ex + dy + Q{x, y) , 
5 5 

where P{x, y) = Y Pi{^^ y) + ^ i ( ^ . У1 Q{^^ J^) = Z Qti^, У) + M^^ У% P^{x, y) = 
i = 2 ^ i = 2 

= a^o^' + а^_1дх^'-^ + ••. + ао1у\ Qi{x,у) = b^^x^ + b f - i a ^ ' - ^ + ••-• + Ь^У, 
i = 2 , 3 , . . . , 5 , RJEC'', Rj{x,y) = o{\x\' + \у\% j = 1, 2, a = a + ^ ^ 0, J = 
= ad — bc > 0. 



If /g = {{Q,0)ER^: О ^ ^ < e}, where г > 0 is sufficiently small and I^ = 
= {(Q, 0): Q ^ 0], then the Poincaré mapping H: /^ -> I^ is defined and by [2, (25), 
p. 253], we have 

(2.2) G{Q) = H{Q) - Q = (ê ^̂ /̂ *̂̂  - 1) + a^Q' + OC,Q^ + .•• • 

By [2, IX, § 24, Lemma 5], if d'G(0)/d^' = 0, i = 1, 2 , . . . , /c, then к must be even. 
If cr = 0, then dG(0)/dö = 0 and therefore also аз = d^G(0)/d^2 = 0. In this case 
the number L^ = oc^ is called the first Ljapunov's focus number. If also аз = 0, 
then a4 must be zero and in this case the number L2 = as is called the second 
Ljapunov's focus number. By [2, IX, (76), p. 263], 

(2.3) Li = - тг-ТТг { W ^ n + ^11^02 + «02^11) + ab{bi^ + Ь^^зо + 
4b ^A^ 

+ «11^20 + cX^ii«02 + ^аоз^ог) - 2ас(Ь^2 - «20^02) -
- 2ab(fl2o - ^20^02) - b^i^^iobio + ЬцЬзо) + {be - la^){b^^bç^2-

- ^ii«2o)] - (^^ + be) [3(cbo3 ~ Ьозо) + 2a(a2i + ^^2) + 
+ (cai2 - b2ib)]}. • 

By [6, p, 209], 

(2.4) L2 = ji^i^oibioi^^oibii + 10ao2Ö2o + 4bJi + llö2obii + ба^о " 
- 10Ь2оЬо2 - 4^11 - Па^Ьог - 6602) + ^20^02(6^02 - ^ацЬоз + 
+ 10bo2b2o - 2^11 - 5^11620 + 5a2obii - 6a2o - 10fl2o< ô2 + 
+ 2bii + 5ao2bii) + ^02^02(5^?! ~ al^ - 6011(202) -

- «2ôb2o(5<3n ~ bji - 6020^11) + ^n(«20 + ^02) -

-- bii(bo2 + b2o) - 5b^o(«i2 + ^^03) + ^02(3^21 - 6ai2 - 5«зо) + 
+ ^li{^12 + Ö30) + Ь2оЬо2(5Ь21 - 5(212 - 9^03 + 5(2зо) " 

- b2o«ii(4ai2 + 9Ьоз + 5азо) + bo2Öii(3b2i - «12 + 4азо) -
- 5(202(^21 + Зазо) + alo{^ai2 - ^b^ - 5Ьоз) + b?i(b2i + Ьоз) + 
+ a2oöo2(5öi2 - 5^21 - 9азо + 5Ьоз) " ^02^ii(4b2i + 9азо + 
+ ^^Оз) + <̂ 20 bii(3ai2 - Ь21 + 4Ьоз) + 4b2obii(2b3o + bi2) + 
+ bo2bii(7b3o - «21 + 5^12 + аоз) + 2aiibii(ao3 + Ьзо) + 
+ 2а2оЬ2о(8Ьзо - 5а21 - ^12) + 2а2оЬо2(4Ьзо " ^^и - 5bi2 + 
+ 4аоз) + < 2̂o<3ii{b30 + 5«21 - ^12 + '̂ '̂ оз) - 2ao2b2o(ö!2i + ^12) + 
+ 2002^02(8^03 - 5bi2 - «21) + 4ao2<^ii(2aô3 + «21) + 

+ bii(5bû4 - ^22 + 2fli3 - 3^40) + ao2(2b22 + 20bo4 + 5«i3 + 
+ 3/>1з) - aii(5a4o - «22 + 2^31 - 3ao4) + 3a2i(2a3o + Ьоз + 
+ ai2) - 3bi2(2bo3 + ^30 + ^21) + 3^03(012 + 3&оз) -
- ЗЬзо(Ь21 + ^^зо) - ^02(4^22 + 22a40 + 7Ьз1 - 6ao4 + 9Ь1з) + 
+ 3^41 + 3^23 + 15Ьо5 + 15а5о + Заз2 + 3ai4. 



We recall this very complicated formula for L2 because it is not generally known 
and nonetheless plays an important role in our considerations. 

Now we formulate the known Bogdanov's results or two parameter families of 
plane autonomous ordinary differential equations of the form 

(2.5) >' - g{y, e), 

where y = {y^, У2У, g = (g^, ^2)* ^ ^°° 0- -̂ 9 is smooth in (y, e); w* is the transpose 
of w), g{y, Qi) = Ay -{- h(y), the matrix A is equivalent to the Jordan block 

and h(y) == ^(l|yp). Consider also the equation 

(2.6) y = g{y, 0)=^Ay + h{y). 

Definition 9. By a smooth regular transformation we mean a smooth mapping 
keeping the origin fixed and having a regular Jacobian matrix at the origin. 

Lemma 1 (Bogdanov [7]). (1) There exists a smooth regular transformation of 

Fig. 1. Bogdanov's bifurcation diagram. 



coordinates in the phase space transforming the system (2.6) into the form 

(2.7) Xj_ = X2 , X2 — (Tx, x) + JR(X) , 

(Tx, x) = tiiXi 4- Г12Х1Х2 + ^22^2 . R{^) = o{\\^V) • 

С 

Fig. 2. Bogdanov's bifurcation {q> 0). 

(2) / / the family (2.5) is norvdegenerate {see Definition 11; ш t/iis case t ^ ф 0, 
1̂2 + Ö)? ^^ '̂̂  t/iere exists a smooth regular transformation of coordinates 

(x, ju) = {Wi{y,8), ^2{^)) transforming the family (2.5) into the form 

iZ.o) .: Xĵ  = X2 5 

X2 = Ml + M2X1 + X\ + X i X 2 Ô ( X i , / i ) + Х2Ф(Х, ju) , 

w/iere Ô, Ф e C^, a(0, 0) - g = r,2/^u. 
(3) The family (2.8) (s versaL 



(4) The bifurcation diagram of the family (2.8) in a sufficiently small neigh­
bourhood и of the origin in the parameter space looks like that in Figure 1. / / 
^ > 0 then there are the following bifurcations (see Figure 2): For fie SQ there 
are no critical points, for fie S there is one critical point of the saddle-node type 

Fig. 3. Bogdanov's bifurcation (q < 0). 

and for fieU \ SQ there are two critical points: one is a saddle while the second 
is a focus. If fi moves in the direction В -^ С -> D crossing the curves R and P 
transversally the following bifurcations occur: If fi crosses the curve R the stable 
focus bifurcates into an unstable closed orbit and then this closed orbit bifurcates 
into a separatrix of the saddle for fxeP, which disappears for fieD. The 
first Ljapunov's focus number L^ is positive for fxe R, 

(5) The family (2.8) with q < 0 is obtained from a family of the form (2.8) with 
q > 0 by using the change of variables X2 -^ —Xo t -^ —t. The bifurcations 
of the family (2.8) with q < 0 looks like that in Figure 3. The first Ljapunov's 
focus number L^ is negative for this family. 



Definition 10. The number sign q is called the signature of the family (2.8). 
Now let us consider the following two-parameter family of the autonomous system 

of differential equations 

(2.9)я X = a(X) X + Ь(Я) у + P(x, у, Я), 

V = c{X) X + d{X) у + ß(x, у, X) , 

where X = {Х^, Х2)е R^, a,b,c,d, P.QeC^ (smooth in (x, yД)). Let (j(A) = 
= a{X) + d{X), AIX) = a{X) d{X) - b{X) c{X). We assume that (J(Â^) = 0, zi(A )̂ > 0, 
X^ = (Я?, Я )̂ and 17 is a neighbourhood of X^ in JR̂  for which the set I = {XeU: 
a(X) = 0} is a curve dividing U into two disjoint regions Г"̂  = {XeU: a(X) > 0], 
I~ = [XEU: (J(X) < 0]. The point X^ divides the curve Г into two connected com­
ponents I^ and 2*2. 

If Xel, then the first Ljapunov's focus number is defined and we denote it by 
L^{X), or simply L^. If Lj^(X) = 0, then also the second Ljapunov's focus number is 
defined and we denote it by Ь2(Я), or simply L2. 

Fig. 4. Bifurcations of the family (2.9)^ in a neighbourhood of Я° (L^U^) = 0, L2(A^) > 0). 

Lemma 2 ([6, p. 243]). Assume that L^{X^) = 0, L^{X) + Ofor Xel^^ I2 and 
^li^^) 4= 0. Then for a sufficiently small neighbourhood U of X^ in R^ the following 
assertions hold: 
(1) JfL2{X^) > 0 (Ь2(Я )̂ < 0), then there exists a curve Рдо which has one end-point 

8 



at Я^ and the other on the boundary dU of U. This curve together with the curve 
divide U into three disjoint regions l/i, [/j, ^"^ ^n i ' /^^ w/z/c/i Ui = I~, 
dUu - P;o^ji2^ß (^^11 = ^; .o^E, иß), ß cz du, c/„i = i:""\c/ii (c/i„ = 
= I~); see Figures 4,5. 

Ц 

Fig. 5. Bifurcations of the family (2.9)^ in a neighbourhood of Я^ (L^U^) = О, /.2(Я^) < 0). 

(2) Let Li(A) > 0 / o r Xel,, L^{X) < 0 /o r Я e I2 ««^^ ^2 = Ь2(Я^) > 0 Then the 
system (2.9);^ has one unstable closed orbit and one stable focus for Я e C/j. 
This stable focus bifurcates into a stable closed orbit (Hopf bifurcation) if Я 
crosses the curve 2"i, i.e. for Я e 11^ there is one stable and one unstable closed 
orbit and one unstable focus. These two closed orbits bifurcate into one semi-
stable closed orbit on the curve P;̂ o, which disappears when Я crosses the curve 
Рдо, i.e. for Я e Um there is an unstable focus and no closed orbits. 

(3) //Ь2(Я^) < 0, Li{X) > Ofor Я e I^ and Ь|(Я) < 0/or Я e ^25 ^hen the bifurcation 
diagram in U looks like that in Figure 5 and the structure of trajectories of 
(2.9)д in the corresponding regions U\, (Уц and С/щ is the same as we have 
described in (2) for L2 > 0. 

In this paper we consider an unfolding of a germ of vector fields, represented by 
the following 3-parameter family of vector fields in the plane: 

(2.10) x=f{x,8), 

where / = ( / i , ^ ) * e C°°, x = (x^, Х2У, s = (ej, £2? ̂ з)- We shall often write /^(x) 
instead o f / (x , e). We assume that for e = 0 the vector field (2.10), denoted by /0 , 



has the form 

(2.11) 

where the matrix 

Гх Л ^ Гх,1 ПРХ, X) + Р,{х) + h,{x)' 
,(x) + h^ix)^ 

is equivalent to the Jordan block 

= [0 oj' 
P = {Pij}' Q = (Чи) ärs symmetric matrices, (•, •) is the scalar product in R^, 
/i,.(x) = o( | |xp), i = 1, 2 and 

(2.12) 

(2.13) 

Pl\X) — U^QXI + ^03X2 + ^2^X1X2 + b]L2-^l-^2 5 

Ql\XJ = C^QXI + С03Х2 + C21XJX2 + <^.12^1-^1 • 

We denote by Я°° the set of all 3-parameter famihes of C°°-vector fields in the plane 
of the form (2.10) and endow this set with the C°°-Whitney topology (see [12]). 
Let us denote by Я"^ the set of all germs at 0 G R^ of all 3-parameter families of vector 
fields from Я ^ . 

Now let us formulate the main results of this paper. 

Theorem 1. There exists an open dense subset Hf of the set Я°° of all Ъ-рага m^'ter 
families of vector fields of the form (2.10) such that iff^ Я ^ , then f is nondegenerate 
{see Definition 12) and it is possible to transform this family by a smooth regular 
transformation (u, ft) = (x(x, г), ï'(e)) in a sufficiently small neighbourhood of 
the origin into one of the form 

Ui = U2, 

Û2 = r f (A^) + У2 (/^) ^i + l^zU 

± 2 / i i + //2/^3 + 27/^3 , 

yîin) = ±(3/̂ 2 + Ы) 

u\ + u^UiOiui, fi) + и\ф{и, JA) , 
where 
(2.14) 

(2.15) 

ß(0,0) = ca Ф 0. 
Let D{ß) = ßl + fj.1, S! = {neR^:D{ß) = O}, Si* = {ßeR^:D{n) > 0}, ^ ~ = 

= {ßeR^: D{pi) < 0}, Si = ®+ и [Oj, S^ = ^ \ { 0 } , S, = ^-, G, = {ß: yi;(ß) --= 
= 0}, G: = {ß-. y;{ß) > 0] , G[ = {ß: y^(ß) < 0), H, = {ß: y:{ß) = 0}, Я+ = 
= {ß: yt{ß) > 0], H~ = {ß: y^{ß) < 0] , к = 1,2 and let a" = Gi n G2, a"" = 
= H^ ГЛ H2 (see Figures 6, 7). By L{K) we denote the matrix of the linear part of 
a vector field computed at a critical point K. 

Theorem!. IffeHf and u* Is Us normal form (see Theorem l), then there exists 

10 



a neighbourhood U of the origin in the parameter space and a neighbourhood V 
of the origin in the phase space such that the following assertions hold: 
(1) If fiE Si n U, then the vector field v^(v~) has exactly one critical point in V, 

which is a saddle [a focus or a node; for jn = 0 it may also bt a critical point 
with one elliptic sector, two parabolic and two hyperbolic sectors (see Figure 16)). 

(2) / / fiE S2 r\ U, then the vector field v^(v~) has exactly two critical points: 
a saddle and a saddle node a saddle node and either a focus or a node). 

(3) / / /^б5з n (7, then the vector field v^(v~) has exactly three critical points: 
two saddles and one focus or three saddles (one saddle and either two foci or 
two nodes). 

(4) The sets H^, ^2(0^, G2) are smooth 2-dimensional submanifolds of R^ and 
a^(a~) is the curve along which the surface H^^Gi) touches the surface Q)\ 
see Figures 6, 7. 

(5) If fie ^ and К is the saddle node of thevector field v'^(v~), then the matrix L(K) 
has zero eigenvalue of multiplicity 2 if and only if /ae a^ (fie a~). 

Theorem 3 (bifurcations for v^). If f e Hf and U, Vare as in Theorem 2, then the 
following assertions hold: 
(1) / / fie ^ " , then the focus К of the vector field v'^ is degenerate (i.e. the matrix 

L(K) has pure imaginary eigenvalues) if and only if fi e Ж^ == H^ n H2 n S)~. 
(2) There exists a curve rj in the surface Ж^, which has one of its end-points at the 

origin, divides the surface Ж^ into two connected components Ж^,Ж2 ci^d 
the following assertions hold: 
(a) The first Ljpunov's focus number L^ = Li(fi) of the focus К is equal to zero 

if and only if fier]. 
(b) If fie ЖХ (fi e Ж 1 \ then Li(fi) > 0 (Li(fi) < O). 
(c) / / bij is the coefficient at u[u{ on the right-hand side of the second equation 

of the vector field VQ and fierj, then the second Ljapunov's focus number 
of the focus К is given by the formula 

24v[-72(/^)] 
where N = -bl^^i + ^11^21 - 7^02^11^30 + 3^30^21, i.e. sign L2(fi) = 
= sign N for ||/i|| sufficiently small. The number signN is invariant with 
respect to regular transformations of coordinates in the phase space. 

(3) Let PQ be the plane passing throguh the point (0, fi2, 0), fi^ < 0, and parallel 
to the (jUi, fi2)-plane. Then the set PQ n ^ consists of two lines d^, d2 parallel 
to the fi^-cixis. The closure of the set Po n H^ n Я ^ n ^~ is a curve h, which 
touches the lines d^, ^2 ^t its end-points Qi and Q2, respectively. The set rj n PQ 
consists of a single point Q (see Figure 6). 

(4) Let и I, и 2 and U be sufficiently small neighbourhoods of the points 6 1 , 6 2 
and Q, respectively, in the plane PQ. Let wX,W2 and w^ be two-parameter 
families of vector fields obtained from v^ by restricting the parameter set to 

11 



the sets C/j, U2 and U, respectively. Then there exist curves Pi (i = 1, 2) touching 
the curves Ri = hn 11^, Si = di n Ui at the points Qi, which form a complete 
bifurcation diagram for w^ in (7,-. (The curves P^, jRf, Si correspond to the curves 
P,R and So, respectively, which form Bogdanov's bifurcation diagram.) 

Fig. 6. Bifurcation diagram for v^. 

(5) / / the parameter fi circulates around the point 01(02)? we obtain bifurcations 
corresponding to the bifurcations of Bogdanov's normal form with q > 0 
(q < 0) where, besides the saddle and the focus arising from a saddle-node as 
in Bogdanov's bifurcation, there is another saddle (see Figures 10—11). 

(6) The point Q divides the curve h nU into two connected components ö^ and ö~, 
where for /ле ô'^ (fie ô~) we have Li(ß) > О (L^(fi) < 0). There is a curve PQ 
with one of its end-points at Q, which together with the curve h nU divides U 
into three connected components M^ M 2, M3, and the following assertion holds: 
ifL2(Q) > 0, then the bifurcations of the focus are the same as we have described 
in Lemma 2, where the curves PQ, Ô'^,Ô~ correspond to the curves Pxo,^i 
and l2i respectively, and the regions M^, M2 and M3 correspond to the regions 
C/j, Uli ^^d C/jni, respectively (similarly for L2(Q) < 0); see Figure 12. 

Theorem 4 (bifurcations for v^). IffeHf and U, Vare as in Theorem 2, then the 
following assertions hold: 
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pig. 7. Bifurcation diagram tor 

Fig. 8. Bifui'^^^^^" diagram for ^^ 
,'J' in the plane FQ. 
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(J) If fie ^~, then the vector field v^ has two foci K^ and K2. f he focus Kj^K2) 
is degenerate if and only if fie^^ = (G^ n G2 ) r\ ^~ n [l^ "= \l^u l^i^ f^sj-
ß, > 0) {fie<^2 = {G, n GJ) n^- n{ß = {fi,,fi2, /гз): /̂ з ^ ^D- ^"""^ ^^^' 
[fi e ^2) the first Ljapunov'sfocus number Li[fi) is positive (ned^tive)-

Fig. 9. Bifurcation diagram for v^ in the plane FQ. 

(2) Let PQ, ^ 1 , <̂2 ^^ ^^ l^ Theorem 3(3) AW J denote d^ = d2, d2 = d^. Then the 
set g = PQ n Gl n G2 consists of two connected components g^ and g~. 
The set g^(g~) is a curve with the end-point Q^ e ^1(62 ^ ^2) at which it touches 
the line di[32); see Figure 9. Let 0^, Ü2 be sufficiently small neighbourhoods 
of the points Qi and Q2, respectively, in PQ and let w[", wj be the two-para­
meter families of vector fields obtained from v~ by restricting the parameter 
set to the sets U^ and Ü2, respectively. Then there exist curves P^ (i = 1,2) 
touching the curves Ri = g n Oi, Sf = di r\ Üi at the point Qi, which form 
a complete bifurcation diagram for wf in Ui. (The curves P^, Ri, ŝ  correspond 
to the curves P, R and S^, respectively, which form Bogdanov's bifurcation 
diagram). When the parameter fi circulates around the point 01(62)? ^^ obtain 
bifurcations corresponding to the bifurcations of Bogdanov's normal form 
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with ^ > О (g < 0) where, besides the saddle and the focus arising from a saddle 
node as in Bogdanov's bifurcation, there is another focus; see Figures 13, 14. 
The Hopf bifurcation in Bogdanov's bifurcation near Q^ concerns the focus K^ 
(see the assertion (1)), while the same bifurcation near Q2 concerns the focus K2^ 

Fig. 10. Bifurcations of the family v^ near the point Q^. 

(3) / / ju e ^ ^ , the only focus К of the vector field v~ is degenerate if and only if 
fj.e^" = Gl n G2 n Q)"^. There exist three curves rj^, f/2, f/3 in ^~ all having 
one end-point at the origin, which divide the surface ^~ into four connected 
components ^i, ^1, ^ J , ^1 and the following assertions hold: 

(a) The first Ljapunov's focus number Li{fi) for the focus К is equal to zero if 
and only if ßerii и r]2 и Ц^-

(b) If ixe ^l u ^ ; (/ie ^2 ^ ^3^). ^^en L^ip) > 0 {Li{ß) < 0); see Figure 7. 

(c) If jnerji и f]2^ ^3, then the same assertion as the assertion (2) —(c) from 
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Theorem 3 is valid, where in the formula for L2{ß) we have y2(1^) instead 
ofytiß)-

(4) The curve 9'^{g~) intersects the curve ^1(^/2) precisely at one point Q^{Q~). 
Let l/"^, l/~ be sufficiently small neighbourhoods of the points Q^ and Q\ 

Fig. I I . Bifurcations of the family v'^ near the point 02-

respectively. Let w"̂ , w~ be the two-parameter families of vector fields obtained 
from v~ by restricting the parameter set to the sets V^ and U~, respectively. 
Then the following assertion holds: The point Q^ divides the curve g'^ r\U^ 
into two connected components ô'^ and ô~, where we have L^(fi) > 0 for /ле ô^ 
and L^^jLi) < 0 for fieS~. There exists a curve PQ+ with one end-point at Q^, 
which together with the curve g^~ n W^' divides V^' into three connected com­
ponents Ml, M2, M^ and the following holds: If L2(ß"^) > Oy then the bifur­
cations of the focus of the vector field w'^ are the same as we have described in 
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Lemma 2, where the curves PQ+, Ô^, Ô~ correspond to the curves P^o, ̂ i and Г2, 
respectively, and the regions M^, M2 und M^ correspond to the regions l/i, Un 
and Vub respectively (similarly for L 2 ( ô ^ ) < 0 ) . The same assertion is valid 
for a neighbourhood U~ of the point Q~ in P^; see Figures 4, 15. 

Fig. 12. Bifurcations of the family v^ near the point Q. 

(5) If Pi is the plane passing through the point (0, ßl, 0), ßl > О, parallel to the 
plane PQ, then Pi n G^ is a curve, which intersects the curve r]^ precisely at one 
point Q^. There exists a neighbourhood U^ of the point Q^ in Pi such that if w^ 
is the two-parameter family of vector fieds obtained from v~ by restricting the 
parameter set to the set U^, then the same assertion on bifurcations in U^ 
is valid for w° as the above assertion (4) for the bifurcations of w^ in V^. 

(6) The family of vector fields v^ with negative Ljapunov's focus number L2 may 
be obtained from the family of the same form with L2 > 0 by using the change 
of variables u^ Â i • M b Мз -/̂ 3 and t -^ —t. 

R e m a r k 1. Since Theorems 3, 4 are vaHd for any plane PQ or P^, respectively, 
sufficiently close to the (/г ,̂ Дз)-р1апе, there must exist surfaces ^i, ^i, ^{Mi, ^ ; , ^) 
such that ^^nUi = R,, ^inUi = P^, i = 1,2, ^ nUQ = PQ^^ nÛi = Ri, 

^.nU\ = Pt, i = 1,2, 
Figure 6 (Figure 7). 

n Uo. = P, Ö+' n UQ- = PQ- n UQO = PQO)', see 
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Fig. 13. Bifurcations of the family v^ near the point ß^. 

2f 

Fig. 14. Bifurcations of the family v^ near the point ö^. 
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Remark 2. Since we have imposed no symmetry condition on the families of vector 
fields, there are simultaneously terms ЬцМ^^з and ±ul in the second equation of the 
family v^. Therefore there is no scahng like in the cases studied by Bogdanov [7] 

Fig. 15. Bifurcations of the family v^ near the point 0 ^ -

Fig. 16. Critical point of the vector field t'o (one of the possibilities; the second on is a focus). 

and Takens [20] (see also J. Carr [11]), reducing the families v'^ and v~ to small 
perturbations of some Hamiltonian systems. This is why the problem concerning the 
global properties of the surfaces ^i, ^i, ^i, ^i, ^ , ^ seems to be not easy. We 
conjecture that these surfaces probably look hke those in Figures 6, 7, because in 
this case all the local bifurcations described in Theorem 3 and Theorem 4, respectively, 
form a harmonic whole. 

Remark 3. The functions yf(ij), yj(A*) ^^d the terms 620^1, b^^u{U2, ^02^2? ±"i» 
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b2iu\u2 give us all the necessary information for the determination o^ the local bifur­
cations of the families i;^, as we have described in Theorems 1 — 4. We conjecture 
that this information is sufficient for the determination of the global properties of 
the surfaces Mi, ^^, .^,, ^^, i — 1, 2, ^ , ^ mentioned in Remark 1. Let us regard 
the functions /r(/Xi, /^2, li^) = ±^-^^3 + -kßif^l + 437/^t fiil^i^ /^2, /̂ 3) = 
= ±(3/12^3 + Ißl) as unfoldings of the functions 4 -̂7/̂ 3 and ±lfil, respectively 
(see e.g. [lO, 21]), where /̂ 3 is a state variable and jUj, ^2 ^^e parameters. By Thom's 
theorem on the seven elementary catastrophes (see [21, Theorem 5.1]) these un­
foldings are universal. Since ôf^jdfi^ = 7?(A*)(^/f/^/^з = уЦи))^ ^^^ sets Я^, G^ 
from Theorems 3, 4 (Я2, G2) are the domains of the catastrophe maps xî - ^i -^ 
"^ (/*i5/^2)-pläne and 7^: Gl ~> (/^1,/i2)"Pl^îi^5 respectively, which are defined as 
the projections of these sets (Z^ : Я2 -> /i2-axis, /2 • ̂ 2 "^ /i2-axis). The set a"^(a~) 
is the set of all non-regular points of the catastrophe map xtili)- The projection of 
the set a'^(a~) into the (/x^,/X2)-plane is the catastrophe map, which is obviously 
a cusp. The universality of the above mentioned unfoldings is another very weighty 
argument allowing us to conjecture that the following families are versai: 

(±,>^) 
t i l = M2 , 

"2 = yf (/0 + У2 (M) Wi + 1ХъЩ ± Wi + />iiWiM2 + ^02^2 + b2iW?M2 , 

where X = signN,N = ~fe?ibo2 + ^li^ii + ^^ог^и^ъо + ^^30^21 Ф 0. Sincethe 
normal forms ( + , —1), (—, —1) may be obtained from the families ( + ,1) and 
( —, 1), respectively, by using the change of variables u^ -^ — w ,̂ /i^ -> —/i^, /̂ 3 -> 
-^ — /̂ 3 and t -^ —t, it suffices to prove the versality of the families ( + , 1) and 

3. PRELIMINARY LEMMAS 

Lemma 3 ([7, Lemma 1]). There exists a linear transformation of coordinates 
у = Nx, transforming the system (2.10) into the form 

У1= У2+ {Py, y) + Pi{y) + 9i{y), 

У2 = {Qy. y) + Qi{y) + diiy) , 
where 

(3.1) 

[{РУ,'У)~\ _ ^ RiV-i)* PN-'y, y) 

^ -* Ьт ^Löi(^-v)J' 
9i{y) = o{\yY), i = l , 2 , iV = P ^ l , if ЬФО and N 

if с Ф 0, (JV~')* is the transpose of N~^. 
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Let P = (p^j), Q = {q,j), P,{y) = Ь,ОУ1 + h^yl + Ьг^уЪг + b,^y,yl Q,{y) = 
= ^30^? + C^^yl + С21У]У2 + С12У1У1-

Lemma 4. The matrix T and the function R(x) from the righthand side of the 
system (2.7) have the form 

T=Q+P, P = | ^ / j 4 , R{x) = t.o^l + t2ixlx2 + t^^x.xl + 
iPii 2pi2j ^ 

+ ^03^2 + K^) у y^here t^^ = С30 + 2pi2?ii » 

til = qii + 2(^22 - P12) §11 + ЗЬзо and h{x) = o( | |xp) . 

Proof. We introduce new coordinates via the following dififeomorphisra: 
^1 = У и ^2 = У2 + {Ру. у) + Pi{y) + 9i{y)- Obviously, H'^: y^ = x^, у 2 = 
= X2 - (Px, x) + ö( | |xp) and by direct computation one can easily show that the 
new system has the form 

X2 = {йх,х) + 0,(x) + 2p^^X^X2 + 2jPi2X2 + 2^12^11^1 + 

+ Й21 + 2(^22 - ^12)^11 + З^зо] XIX2 + t^2X^xl + ^03^2 + K^) . 

where h{x) = o(l|x||^). 
We have obtained a smooth regular transformation of coordinates Ф = Я о iV, 

which transforms the system (2.11) into the form (2.7). 

Lemma 5. Let T — (tu) and R{x) be as in Lemma 4. Then the following assertions 
hold: 

(1) The property t^^ = 0 is invariant with respect to smooth regular transformations 
of coordinates. 

(2) If ti^ = 0, then the number p — t2Qltl2 is invariant with respect to smooth 
regular transformations of coordinates, i.e., it does not depend on any choice 
of coordinates in \yhich the system (2.11) has the form (2.7). 

Proof. The assertion (l) follows immediately from the proof of [7, Lemma 3]. 
Since we shall use the idea and some relations from this proof also in the proof of 
the assertion (2), we give the proof of (l). 

Let N be the matrix from Lemma 3 and H the mapping from the proof of Lemma 4. 
Then the mapping Ф = H oN transforms the system (2.11) into the form (2.7). 
If Ф' is another mapping transforming the system (2.11) into the form (2.7), then 
Ф' о Ф~^ is the regular transformation, transforming the system (2.7) into the same 
form. Therefore it suffices to prove the invariance of p with respect to the regular 
transformations transforming the system (2.7) into the same form. An arbitrary 
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transformation with this property is composed of the mappings H о Q and R, where Q 
is a Mnear mapping which does not change the Hnear part of the system and jR is 
a nonlinear mapping having its linear part equal to the identity and transforming the 
system (2.7) into the same form. Let the mapping R be defined as follows: 

R: y, = X, + X,{x) + Y,{x) + o{\\x\\'), 
(3.4) 

У2 = X2 + X2{x) + Y2{x) + 0( | |xf ) , 

where X , 7 , i = 1, 2 are homogeneous polynomials of degree 2 and 3, respectively. 
The mapping Q must be of the form 

(3.5) ^̂ ^ = [oiJ^' 
where Я, e are real numbers, Я Ф 0. 

Since the mapping jR transforms the system (2.7) into the same form and in new 
coordinates we obtain that 

П-У2-Х2{у) + ^-^У2^0{\\у\\^), 

ду, 

the function X2 must satisfy the equality X2{y) = (^^i(y)/^yi) У2- Therefore we have 

У2 = {Ty,y) + ^ ^ У2 + o(l[j;||^) = {Ту, у) + ^ ^ k + o{\\y\\^) 
Syi dyl 

and this proves that the mapping R does not change the numbers t ^ , ^j2-

If j i = Axi + 8X2, у2 = ^^2, /̂ , ее R^, A Ф 0, then X2 = A"̂ 3̂ 2? ^1 == ̂ ~^Ji ~" 
— еА~^'У2. In these new coordinates we obtain a system of the form (3.1), where 
P u = еЯ'^^и, Pi2 = i(^i2^~^ß - 2e^X-^tj^^), ^ ^ = ГЧ^^, q^2 = H^'^hi ~ 
— 2sX~^t^^), С30 = Я~^^зо. By Lemma 1 and Lemma 4, there is a smooth regular 
transformation transforming this system into the form X ^ — X2? X2 = {TX, X) + 
+ Г3.0Х1 + 'Гз(х) + й(х), where 

0 ß i i 

Pli 2pi2 
Ьо — ^30 + 2p^2Ull т=(У = ß + 

Therefore we have 

(3.6) til == л hl ? hl — ^^ hl » , 

3̂0 = ^~^ho + 2{ti2^-h ~ 2e4-'tii){r4ii). 

Thus the property Гц = 0 is invariant with respect to the mappings R and Q. If 
hi = öj then (3.6) implies that t^o = ^"^bo» 1̂2 = ^"^^12 ^i^^ thus the number p 
is also invariant with respect to the mapping Q. NOW, it suffices to prove the invariance 
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of p with respect to the mapping jR. In the coordinates defined by R we have 

y2 = UTX, X) + t,o4 + T,(x) + ^ ' - X2 + ^ (TX, X) + ^ X2 + 
I dxi 0X2 ox^ 

Therefore if t,^ = 0, then J2 = {Ту, y) + t^^yl + ЫУ) + oQyl^), where f^{y) 
is a homogeneous polynomial of degree 3 in y^, у2, which does not contain any term 
with y^, i.e. the number 3̂0 is invariant with respect to the mapping Ĵ . We have sHown 
above that the number 1̂2 î  invariant with respect to R and so the number p is also 
invariant with respect to this map. This completes the proof. 

4. TRANSFORMATION INTO THE NORMAL FORM 

Using Lemma 1 we can rewrite the system (2.10) into the form 

/41) v: ^^ ^ ^^ "̂  ^i(^'^)> 
•^2 ~ ^12-^1^2 "^ ^22-^2 "^ ^30-^1 "^ Qsy-^) ~^ ^iKp^f ^) •> 

where v^, V2 e C°°, v^(x, 0) = 0, f2(x, 0) = o(|jxp), оз(х) is a homogeneous poly­
nomial of degree 3 in x^, X2 which does not contain the power x^. We assume t ^ = 0, 
h2 + 0, Г30 Ф 0. 

Let us choose new coordinates: у = .J\p\ t^2^- Then we obtain 

J l = Ĵ 2 + ^l{y, e) , 

У2 - -7ГТ bi>^2 + — У2 > + (sign p) y\ + йъ{у) + V2{y. e), 

where t;i, ^2 and 2з have the same properties as v^, V2 and gg, respectively. Therefore 
we may assume that (4.1) has the form 

Xi = X2 + i5i(x, s ) , 

JC2 = ШХ1Х2 + CO02X2 + Ox\ + 6 з ( х ) + 02(x , &) , 

where со = I/A/I^?! is the invariant of the germ represented by the family (2.10), 
и = sign p, ^3 and v^, Ь have the same properties as Ô3 and v^, V2, respectively. 

After introducing new coordinates y^ = x^, У2 = ^1 + v^(x,s), (4.2) becomes 

У1 = У2, 

У2 = соУхУ2 + «^02^2 + ^yl + из{у) + ^'i{y. e) , 

where Q^ and v'2 have the same properties as Q3 and V2, respectively. We can rewrite 
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this system into the form 

У1 = У2, 

У2 = F{y, e) + У2й{Уи e) + УШУ, «), 
(4.3) 

where 

ду^ dyl 

Щ^.в.. 5 2 M , » . 3(0,0) = 0. 
dyl ду^ 

Lemma в. If со ^ 0, then there exists a smooth regular transformation z — 
= z{y, e), z(0, 0) = 0 transforming the system (4.3) into the form 

(4.4) 

where 

Zi — ^2 

±2 = F{z^, e) + ZiZ2G(zi, г) + Z2 5'(z, e) , 

dz^ dz\ 

Щ ^ = 6а, G(0,0) = co. 
dzl 

Proof. If Zi = y^ — а(г), Z2 = У2, then 

^2 = % i , e) + ^26(^1, e) + J2^(y , e) = F{z, + (x(e), г) + 

+ 3^20(^1 + <e). e) + У1Ч^ + a(e). e) • 

We iiave Q{z^ + об(г), г) = О(а(г), e) + z^Qiz^, e), where 6(0, 0) = 0, ^0(0, 0)ldoc -
= со, 0,(0, 0) = CO. Since со Ф О, the Impüoit Function Theorem imphes that there 
exists a neighbourhood U of Об-R^ and a smooth function oc'.U -^ R^ such that 
a(0) = 0, Q{a(e), e) = 0 for all sell and we obtain a system of the form (4.4). 

Lemma 7. If со Ф 0, then there exists a smooth regular transformât!cm и = 
= w(z, e), w(0, 0) = 0 transforming the system (4.4) into the form 

(4.5) zii = W2 , 

"2 = ^i(^) + ^2(^)^1 + с>з(е)м? + crul + 

+ ^i^iQii^u e) + îi2^i(w, e) , 

w/zere Ф, e C^, cp,(0) = 0, i = 1, 2, 3, 61 , ^ i e C^, ßi(0, 0) = со. 

Proof. Let the function F be the function from Lemma 6. Then the Malgrange-
Weierstrass preparation theorem (see [15, V, p. 82] and also [lO,Theorem 6.3]) 
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impHes that there exist smooth functions (^,(e), / = 1, 2, 3, 5(zi , г) such that Çi{{)) = 
- 0, Ï = 1, 2, 3, Б(0, 0) = 1 and F{Z,,E) = [crz^ + (p^{s) z\ + ср2{г) z^ + q>^{e}\ . 
. B{z^, e) for (zj, e) from a sufficiently small neighbourhood of the origin. Ifui ^ Zj, 
^2 = ^zlyj^i^i^ ß)j tben the system (4.4) becomes 

«1 = W2Ö(wi,e), 

^2 = [</?!(£) + (Pli^) ^1 + <^з(^) ^1 + ÖTl/.̂  + UiM2ßi(Wi, г) + 

+ и\Ф^{г1, в;] 6)(w^, г) , 
where 

Öi(t4, в) == ^ ^ ^ , Ф, е С - , 6)(и,, в) == V ^ ( " i ' ^) • 

Using the transformation of time s = a{t) — Jo 6>(WI(T), e) dr we divide the system 
by 0(^1 , г) and thus obtain the system (4.5). 

5. BASrC ALGEBRAIC MANIFOLDS 

Let M(ij) be the set of all / x j-matrices and M(/c) = M(k, k). We can identify 
any 2-jet a e J\{x) with a couple of matrices (L, K), where L e M(2) and К e M\2, 3). 
More precisely, if/: î ^ -> î ^ is a smooth mapping, then j ^ / ( x ) = (L(/) (x), iC(/) (x)), 
where 

/ = ( / . , / 2 ) , b ( / ) (x) = Df{x) = I ^ ^1 e M(2) and 

''««=[::::: 2 P22 
2 ?22 

« n = 
ОУ2(Х) 

с J 

Pi 2 = 

^12 ^22 = 

dxi 6x2 
P22 -^Mâ 

ôxi 

дх^ дх^ dxi ÔX2 

Let us define the following subsets of Jj ~ Jl{ù): 

(5.1) Tj, = { ( L , K ) E J I : F{UiC) = 0 , f = 1, 2 , F3 = Fj,{UK) = tj, = 0 , 

rank L = 1} , (7, k) = (1, 1), (1 ,2) , Fl = Tr L - a + Ь , 

F2 = det L = ас/ — be , 

(5 2) «и = ар, 2 _ - p^^ + P22 + b ^ i i - 2ö^i2 + V 
b b^ b 

^22 

(5.3) ^12 = 2 p i i - 2 - ]7i2 + 2^12 - 2 - ^ 2 2 
b b 

under the assumption b Ф 0. Since rank L = 1, we have b^ + c^ Ф 0. If с 7̂  0, 
then using Lemma 3 one can show that Гц has the form (5.2), where the variables in 
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this expression are changed as follows: b -^ c, р ц -> ^22» Pi2 ~̂  ^12? JP22 ~̂  4iu 
P u -^ P22. ^12 -^ P12. ^22 -^ Pii- Similarly for 1^2'- Ь -^ c, p^^ -> ^22. P12 ~^ ^12. 
^12 -^ P12? ^22 -^ Pu- If с Ф 0, then similarly to the sets T^^, T12 we can define 
the sets f^^ and fi2, respectively. Denote F = (F^, F2, F^): R^^ -> R^. 

Lemma 8. The sets Т^^, l\i, T12, Т^г ^ '̂̂  smooth submanlfolds of j \ of codi-
mens ion 3. 

Proof. We will prove the assertion of Lemma 8 for the sets T^^ and T12. The 
proof of the assertion for the sets 'fiu ^̂ 12 is analogous. It suffices to show that 
rank DF = 3. Let H^ = (h^j), i = 1, 2, where 

hu 
da 

^4i = 

h ~ ^ - h ~ 

àFu 

да 
^Ь2 == дс *33 

^ - 1 , 2 , 

Then de tHi = —Ь^ and det Я2 == — 2Ь. Therefore the mapping F corresponding 
to the set T^^ and also to the T^2 satisfies rank DF = 3. 

We can identify any 3-jet ß e Jl{x) with a triple of matrices (L, K, M), where 
(L.K) e Jl{x) and M e M(2, 4). More precisely, if/: i^^ -> î ^ is a smooth mapping, 
then ff{x) = (L(/) (x), K{f) (x), M( / ) (x)), where 

(L(/) (x), K{f) (x)) E J^(x) , M( / ) (x) = ^^^ ' '' ' '' ^ '' 12 ' 1 3 

•^42 -^IS "^14 

S i l =^ 

ÖX? ^ 

d%{x) 

dxl 

' 1 2 

^12 

5 X i ^ X 2 

^ ^ 
^Xi dX2 

,,3 = ^ÏlM., 
^ X ^ C)X2 

dxi dxl 

riA = 

Si3 = 

dxl ' 

d%{x) 
dxl 

Let us define the following subsets of Jl = Jl{0): 

Т30 = {(L, i^, M)eJl: F.{U K) = 0, / = 1, 2, F4(L, i^, M) = 0, rank L = I] , 

Т3Д = {(L, X, M)eJl: F,{L, K) == 0, i = 1,2, F, = Fj^L, К) = 0, 

F^ = F4.{L,K, M) - 0 , rank L = 1} , 

{;, k) = (1, 1), (1, 2), F{L,K), i = I, 2, jP,.fc(L, iC) are defined as above and F^ -
= 3̂0 = ^30 + 2pj2?u (see Lemma 4), where 

, 2 

P12 = " | P l 2 
a 

P 2 2 

b. 30 

- a / a 

Ь о з ( ^ ) + ^ С з о 

]'2 2 
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a^ 
2 

C^ 

«' 
^^12 -^ • 

С 

If с Ф 0, then one can show that 

<̂3o = £>3o -7 + ^^03 + ^21 — + bi2Ö ~ С30 —- - асоз ~ Ci^ 
с с с 

Similarly we can express P12 ^^^ <?ii- Ii^ this case we can define sets f^o and f^jk in 
a similar way as we have defined the sets Г30 and Г3Д. 

Lemma 9. T/ie 56̂ 5 Г З Ц , T^iz, ?з1ь ^3i2 <̂ ß̂ smooth submanifolds of Jl of 
codimension 4 and the sets Т30, Т30 ^''^ smooth submanifolds of Jl of codimension 3. 

Proof. We will prove the assertion of Lemma 9 for the sets Т^ц, T^i2 and T^Q 
only. The proof for the sets Тзц, ?312» ?зо is analogous. Let F^ = (F^, F2, F^^, F^): 
R^^ -> jR"* be the mapping with the components defined in the definition of the set T^^ 
(i = 1, 2) and let Я^ = (h^j), where 

^F, aF, aF, 5F, 
da ОС dq^i ÔC^Q 

/с: = 1, 2, 4, /î3i = -—-, /Î32 = —— , 1^ъъ = - — , ^Ь4 = - — • 
да ОС dq^i дс^о 

Then det Н^ = ~b and det Я2 = - 2 . Therefore rank DF^ = 4 and rank DF2 = 4 
and thus the sets Т^ц and Г312 are smooth submanifolds of J2 of codimension 4. 
The proof for the set T^^ is similar to the cases of the sets T^ and T^2 (see the proof 
of Lemma 8). 

Let us define the following sets: T^ = {(0,0)} x Т^̂ , f^ = {(0,0)} x f^ ^ 
czR^ X Jl i = и 2, Гз = {(О, 0)} X Тзо, fs = {(О, 0)} x Гзо с: R^ x Jl T,j = 
= {(0, 0)} X T31J, f^j = {(0, 0)} X Тз1 .̂ с: R^' X Jl j = 1,2. As 3. consequence 
of Lemmas 8 ano 9 we have 

Lemma 10. The sets T^, Г2, î \ , 'Гг ^^^ smooth submanifolds of R^^ x Jl of 
codimension 5 and the sets T3, T31, T32, Î3, F31, Î32 ^^^ smooth submanifolds 
of R^ X Jl where codim T3 = 5, codim T2, = 5, codim T31 = codim T31 = 
= codim F32 = codim T32 = 6. 

Denote by Щ the set of all 2-parameter families of smooth vector fields of the 
form (2.5) and by Щ = Я°° the set of all 3-parameter families of smooth vector 
fields ofthe form (2.10). 

Given any g e Щ we define the mapping д(д): (x, г) -> (g(x, s), П25(х,е))> where 
<^(x,ay {y, ß) -^ 9{^ + y,£ + ß) - Ф^ s). G^x,s) is the germ of %,з) at (0, Ù)eR^ x 
X R^ and П2: G2 -^ Jl is the natural projection (here we have dim г = 2!). 

Lemma 11 ([7, Lemma 4]). The set 

I^ = L = r^ ^1 E M(2): « -f rf = 0 , a^ - be = 0 , a' + b^ -h c^ -i- d^ =^ 0] 

is a smooth submanifold in M(2) of codimension 2. 
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This lemma implies that the se: I = {(0,0)) x I^ a R^ x R^ x M(2) is a smooth 
submanifold in R^^ x R^ x M(2) of oodimension 4. 

Definition 11. A two-parameter family g e Щ is called nondegenerate, if we have 
1̂1 . 1̂2 + 0 for the vector field g^ (see (2.7)) and 

(5.4) ^ (^ )п (о ,о )^ , 

i.e. the mapping д(д) transversally intersects the set I at (0, 0)e R^ x jR .̂ 
Given any 3-parameter f ami ly /еЯ°° and any natural number /*, we define the 

mapping 

(5.5) Qi{f): {x, ß) -^ ( /(x, г), щР^^^^,^), 

where F^^^,y{y,ß)->f(x + y,s + ß)-f{x,a),P^^^,y is the germ of F^^,,) at 
(0, 0)e R^ X R^ and тг̂ : G2 -> ^2 î  the natural projection (here we have dim e = 3!). 

Definition 12. A 3-parameter family feH"^ is called nondegenerate, if we have 
1̂2 • bo + 0 for the vector field/0 (see (2.7) and Lemma 4) and 

(5.6) ^2(7) П (o.o)'^i , ^2(7) Й (o,o)'?i . 

As a consequence of Lemma 10 and Thom's transversality theorem (see e.g. [21^ 
Theorem 3.1]) we obtain 

Lemma 12. (l) There exists a residual subset HQ of H"^ such that if feH^, then 

(^з(/)) ^ (^3) <^o^^^^^ ^f isolated points and are mutually disjoint. The sets 
Ы/)УЧТз^), ( е з ( / ) ) ' ' {Tsj), J = 1, 2 are empty. 

(2) If X cz R^ X R^ is a compact set, then there is an open dense subset HQ(X) 
ofW^ such that iffeHo{X), then the sets {{Qiif))'^ (Tt)) n X, ((^2(/))"4^0) ^ 
nX, i = 1,2, {{Q,{f))-'{T,))nX, {{Q,{f))-'{f^))nX consist of a finite 
number of points and are mutually disjoint. The sets ((^з(/))~^ (Гз^)) n X, 
((оз(/))~ ' (f^j)) nX,j =1,2 are empty. 

As a direct consequence of this lemma we have 

Lemma 13. The set of all nondegenerate ^-parameter families of vector fields 
H^ cz H"^ is open dense in H"^, IffeH^, then the set {(x, E)eR^ x R^: Q2{f) (x, &) e 
ETI^ !Z\} consists of isolated points. 

For each g e H^ V^/Q can find its normal form of the form (4.5). Let us denote by 
^ii(^e) ^^^ coefficient at uf in the second equation of this normal form. For / from 
Lemma 7 we have rii(/e) = <Рз(е). 

For any g e H^ define the mapping a^: R^ -^ R^, (jg{x, s) = (g(x, e), Tr D^ ö^e(x), 
det D^gJ^x), t^^{g,)). The condition (5.6) impHes that det Dcr^O, 0) Ф 0. 

Let us compute the Jacobian matrix of the mapping сгу for the family / which 
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is in the normal form (4.5). Since 

du 2 
T r D J = ^ , det DJ = ^ . hiife) = (Рз{^), 

we have 

DaXO) = 

ô£i(o) gffliÇo) aç)i(o) 
dsi 082 de 2, 

едо) Що) 
du.duj ди\ 

ô^fM ^^гЩ SJEM ^JPM 
duiôu2 ds^ 082 ^^3 

# з ( 0 ) ôcp,{0) ôcp,{0) 
0 

г̂̂  dsy de 3 J 
and therefore 

det D ö-y(O) = - ^-Ш! det D (^(0) ф 0 , 
dUiôih 

where cp = ((p^, cp2^ Я^з)- S i n c e / е Я ^ we have ^^2(0)/^^! ^^2 = 1̂2 + ^ î̂ <i there­
fore det D(p(0) Ф 0. This enables us to introduce new coordinates in the parameter 
space 
(5.7) \\ = (Pi{e) , г = 1, 2, 3 . 

The family (4.5) can be written in the form 

Ûi = U2 , 
(5 8) 1 ^ ' 

11^ = Vi + V2W1 + V3W1 + ö-Mi + u{U2Q{ui, v) + и\ф[и, v) , 
where Q,$EC'^, Q ( 0 , 0) = Ш. 

The critical points of the family (5.8) have the form (z, 0), where z is a real root 
of the algebraic equation 

(5.9) ax^ + v^x^ + V2X + Vi = 0 . 

If у = X + (l/3cr) V3, then 
(5.10) y' + 3py + 2q^0, 

where p - p{v) = i{av2 ~ ivl), q = q{v) = ^{av^ - i-V2Vs + (Т j^vl), v = (v^, V2, V3). 
Let us introduce new coordinates in the parameter space via the diffeomorphism 

(5.11) U: /il = ^(v) , ß2 = p{y), /̂ 3 = ^3 • 

Direct computation shows that 

^2 = 72(1^) = ö-(3/X2 + ifil) , V3 = /̂ 3 . 

(5.12) 
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In these new coordinates the discriminant of the equation (5.10) has the form 
D = D[ß) = fil + ßl. In the /^-coordinates the family (5.8) has the form 

(5 n^ ûi = U2, 

Û2 = y1{l^) + yiiß) " i + iUaWi + ö-Ui + UiUiQiu^, fi) + и1Ф{и, fi), 

where Q,Фe C°°, Q(0, 0) = со. This is the normal form from Theorem 1 and thus 
Lemma 13 completes the proof of Theorem 1. 

6. BIFURCATIONS NEAR CRITICAL POINTS 

Now we are interested in bifurcations of the vector field v^ (see Theorem 1), 
which we also denote by v^. The first coordinates of critical points of this vector field 
are real roots of the equation 

{6,r) ax^ + ß,x^ + Jliß) X + yl{ß) = О, 

where yl, у\ (denoted also by y\, 72) ^^^ defined by (2.14), (2.15). 
Let 9, ^" ' , ^ " , Si S2, 5з, Gfc, öfc"", Gfc", Е^.Я^, Щ, к =-- 1, 2 and a* (denoted also 

by a*") be defined as in Section 2 before Theorem 1. We remark that 9 == H^ и H~, 
where H^ = {fi: ßi = ±h[ß2)}^ ^(/^2) = ( — /̂ 2)̂ ^̂ ? ßi S^ (see Figure 6). 

Denote by R{u, /г) the right hand side of the second equation of the family (5.13) 
and let L{K) be the matrix of the linear part of the vector field i;̂  at a critical point K. 
Then 

Г 0 1 -
(6.2) L{K) = dRJK^ß) dRJK^ii) 

L du^ du2 _ 

Since det L{K) = —дК(К, iLi)ldu^, the matrix L[K) has at least one zero eigenvalue 
if and only if 

(6.3) M : M = 0. 

If z, Zj, Z2 are the roots of the equation (6.F), then R(u, ц) = а{ы^ — z) (u^ — z^) . 
. (wj — Z2) + U^U2Q{U, fi) + и\Ф{и, JA). Therefore, for J^ = (z, 0) we have 
dR{K, ii)ldu^ = o{z - Zi) (z - Z2), dR{K, /i)/ôw2 = zQ{z, fi). Since ß(0, 0) = со ф 
Ф О, there is а sufficiently smp.ll neighbourhood U of the point Oe R^ such that the 
matrix L(K) has zero eigenvalue of multiplicity 1 (2) if and only if z ф 0 (z = 0) 
is the roof of the equation (6.1*") of multiplicity 2. For JJLEUX^ the matrix L(K) 
has no zero eigenvalue. Obviously, the matrix L[K) has zero eigenvalue of multiplicity 
2(1) if and only if /x e а^(/г e ^ \ a''). 

The matrix L{K) has pure by imaginary eigenvalues if and only if 

(6.4) Tr L{K) = ~ ^ ( ^ l ^ ) = zQ{z, /i) = 0 , 
ÔU2 
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(6.5) ^^М )̂<0. 

Since со Ф О, the equality (6.4) is satisfied in a sufficiently small neighbourhood U 
of the point Oe R^ if and only if z = z(ß) = 0. However, z is a real root of the equa­
tion (6.1^) and therefore z = Oifandonlyif);^(/^) = O.Ifz - O^ÛiQn ÔR{K, fi)ldu j^ = 
= (JZ1Z2 and z^, Z2 are the roots of the equation ax^ + /̂ 3% + 72(/^) = Ö. Therefore 
z^Z2 = (jyl{fj) and thus ôR(K, ii)ldu^ = ^^(i")- We have obtained that the conditions 
(6.4), (6.5) are simultaneously satisfied for /г sufficiently small if and only if 

(6.6) y ^ = 0 , 7^( /* )<0 . 

P r o o f o f T h e o r e m 2 . Since Q) is the set of zeros of the discriminant of the cubic 
equation (б.!'^), the well known results concerning the roots of a cubic equation imply 
the assertion of Theorem 2 concerning the number of critical points of the vector 
field г;̂ . Let U and F be as in Theorem 2. By [ l , Theorem 6.2.1 (1)] the only critical 
point (0, 0) of the vector field VQ is a saddle and since for /г e 5^ n L/ \ {0} the vector 
field v'^ has exactly one critical point, this must also be a saddle. If ш^ — 8 < 0, 
then by [1, Theorem 6.2.1 (3), (6)] the only critical point (0, 0) of the vector field v^ 
is a focus and if cô  — 8 ^ 0 , then this point is a critical point of VQ with one elliptic 
sector, two parabolic and two hyperbolic sectors (see Figure 15). For ße S^ n 
n U\ {0} the vector field v~ has exactly one critical point К and it suffices to examine 
some ß with yï{in) = 0. In this case we have К = (0, 0), 7^(/х) < О, 

L{K) •° J ] J2 (f^) 

and therefore К must be a focus. This means that for fie S^ nU \ {0} near the set G^ 
the only oritical point of v~ is a focus. This focus may be changed into a node for 
some ße S^ nU\{0] far from the set Gj. 

If ßE S4. n U, then the vector field v^ has two critical points К = (z, 0), K^ = 
= (zj, 0) (the roots Zj, Z2 of (6.1* )̂ coincide) and from the considerations before this 
proof we obtain that 

^ ( ^ ) = |_0 zQ{z, ^^)\ ' ^ (^^) = [a{z - z,f z,Q,{z„ ^t)J ' 

Therefore К is a saddle node of the vector field i;̂ . The eigenvalues of the matrix 
L(Xi) a r e l j Д - \{z^Q{z,, ß) ± ^/d{ß)), where d{ß) = zl{Q{z^, ß)y + 4(T(Z - z^f. 
Therefore K^ is a saddle of the vector field i?^ for each ßeS2 nU. If cr = — 1 , 
then Ki is a focus fos d{ß) < 0 (this is valid e.g. if cô  ~ 4 < 0 Ind ß e a~) and K^ 
is a node of the vector field v~ for d(ß) ^ 0. 

If ßE S2 n U, then the vector field г;̂  has three critical points К = (z, 0), K^^ = 
= (z^, 0), K2 = {z2, 0). It suffices to examine some ße S^ nU, for whichyl(ß) = 0. 
In this case we have yt{ß) < 0 ^^^^ yïif^) > Ö- Dhect computation of eigenvalues 
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of the matrices L[K), L(Ki), L{K2) shows that in this case К is a focus (a saddle) 
and Ki,K23iXQ saddles (foci) of the vector field ^^{р~). The foci may be changed into 
nodes fos /i G ^3 n C/ far from the sets H^ and G ,̂ respectively. This completes the 
proof of the theorem, except the assertion (4), The sets H^,H2,G^, G2 are obviously 
graphs of smooth functions, the forms of which are well known from Thom's cata­
strophe theory and whose pictures may be found e.g. in the book of T. Bröcker and 
L. Lander [10]. The assertion concerning the sets a"̂  and a~ is then obvious. Thus the 
proof of Theorem 2 is complete. 

Bifurcations for v:^. As we have shown in the proof of Theorem 2, the only critical 
point of v^ for /i G Si is a saddle. Let PQ be the plane passing through the point 
(0, /^2, 0) G H2 and parallel to the (fi^, /1з)-р1апе. Let w^ = v'^^ for fi e PQ, i.e., w^ is 
a two-parameter family of vector fields with the parameter set PQ. The set PQ n ^ 
consists of two lines d^ cz H"^, d^ cz H~ parallel to the /13-axis. The curve h = 
= PQ n H^ n ( ^ u ^ ~ ) is the piece of the graph of the function ^^ = ^о(/^з) = 
= -i(/^2i"3 + jjfJ>l) included in the set PQ n ( ^ u ^~). For ßelnt h, the matrix 
L(K) corresponding to the focus К has pure by imaginary eigenvalues. Obviously 
(see Figure 6), there are ^3 > 0, /X3 < 0 such that the points Q^ ^ (/1о(/^з), /̂ 2? /^з) ^ 
^ <̂ ij 02(^о(/^з)? /^2' ßz) e <̂2 ^1'^ the and-points of the curve h (we have d^ a {/z: fi^ < 
< 0], ^2 ^ {ß'-ßi > ^])' Obviously, the curve h touches the lines ^1,(^2 ^^ the 
points ß i and Q2, respectively. Each of the vector fields nv̂ , and WQ^ has two critical 
points: a saddle i^i and a saddle node K2 for which the matrix L(i^2) ^^^ zero 
eigenvalue of multiplicity 2. Since the signature (see Definition 10) corresponding 
to the vector field WQ^^QI) ^̂  equal to œ . 1л'^{а) . /̂ з) and со = l / V b | ^ ^ (̂ ^^ 
Section 4), we obtain that the signature corresponding to the vector field ^2X^02) 
is positive (negative). Therefore by Lemma 1 there exist neighbourhoods [/1, U2, V 
of Qu 62 ^ïi^ ^2? respectively, such that the bifurcation diagram for the vector 
field WQX\V^J in 1/1(^/2) ^^^ the corresponding bifurcations in F correspond to the 
bifurcation diagram and the bifurcations of Bogdanov's normal form (2.8) with 
positive (negative) signature, i.e. with ^ > 0 (^ < 0). Denote ßi = h n JJ\, i =• 1,2. 
For ß G ßi (ju G ß2) two critical points are saddles and the third is a focus, which we 
denote by K. The matrix L(X) has a couple of pure by imaginary eigenvalues. Now 
we shall compute the sign of the first Ljapunov's focus number L^ = Ь^(/|) cor­
responding to the focus K. Since for [leßi (i = 1,2) we have y'l{ii) = 0 and 
T2 (A )̂ < 0, the focus must be the point (0, 0). Using the formula (2.3) one can obtain 
that Li(/i) = -{nlA^A^){-(Dii^ + 7^(^)(cobo2 4- ^21 - З^оз 72 (/^))' where bo2, 
^21? ^03 ^^e the coefficients at ul, u\u2, ul, respectively, an the right-hand side of 
the second equation of the system (5.13) and A = — 72(/^)- Since НтузС/^) = 0 

(f = 1, 2), we obtain that sign Ь^^и) = sign со/̂ з for ß sufficiently close to Qi. There­
fore, if the neighbourhoods Ui, U2 are sufficiently small, then L^^ß) > 0 for /i G ^1 
and Li(/i) < 0 for ß G ß2. This implies that the function Li(/i) must change its sign 
somewhere in the interior of the curve h. 
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Lemma 14. There is exactly one point Qeh where the function L^ = Li(/i) 
changes its sign. 

Proof. If jLi E Q)~, then the equation (б.!"^) has three roots ^i , ^2? ^ъ- ^^ this case 
the known Cardano's formulae are not suitable for the computation of the roots. 
We shall use the known goniometric formulae for the roots of a cubic equation. Using 
these formulae one can obtain that ^^ — —2 cos \ip — \ii^^ ^2 — ^^ ^^^ (^0° "~ i^^)~ 
- j/^3. <?3 = 2rcos(60° + i(p) - ifi^, where cos 9 = ll±^-fil, r = ±V|/^2|. 
sign r = sign //^. Let К = (^j, 0) be the focus (if ^2 or {3 is the first coordinate of 
the focus, the proof is similar). 

If у I — t/i — (̂ 1, у 2 = ^2, then the family v^ becomes 

(6.7) '^=''' . - , 
V'2 = yiiyi - Qij bi - Q2) + ^1У2й{Уи ß) + У1У2и{Уи ß) + уЩу. /^), 

where Q^ = ^2 - ^1, Q2 = ^з ~ ^u й{Уи ß) = й{У1 + ^u ß\ ^{у. ß) = 
- Ф{у^ + (̂ 1, у2, fi), Qi = ^2 - il = г{Ъ cos ^(р + ^Ъ sin ^(р), ^2 = f 3 - ^1 = 
= (rcosjc/) — л̂ /З sin |(/?). From the formulae for QI,Q2 one can simply obtain 
the following relations, which will be useful later: 

Qi + Qi = 6r cos > , 

^1^2 = 3r2(4cosH(p - 1). 

Since we have expressed cos 9 as a function of the parameters /i^ and /Z3, it will be 
suitable to use the following trigonometrical identity: 

(6.9) cos Ф = 4 cos^ | ф — 3 cos \(p . 

Let us rewrite the family (6.7) in the form 

(6.10) ^ ^ = ' ^ ' , , 
V2 = ^1^23^1 + ^11(^1^2 - (^1 + Qi)yi + J? + 

+ ( Ь ц + 2lib2,)y,y2 + (bo2 + ^11^1)3;^ + 

+ ^12^1^2 + Ь2гУ]У2 + Ьоз3^2 + ^{У.1Л), 

where b^j are the coefficients at y\y[ of Taylor's expansion of the right hand side of 
the second equation (6.7), h^^ = со, f ^ = iiQ{ii, ß) and S(v, ß) contains only terms 
of orders higher than 3. Using the formula (2.3) one can obtain that 

(6.11) Li = - - - ^ [(Ьц + 21^2I){QI + Qi.+ bo2QiQ2) ~ 

- 3^03(^1^2)^ + ^21^1^2)] . 

where Л = —QiQ2' We have assumed that К = {^i, 0) is a focus of the system (5.13) 
and therefore the origin must be a focus of the system (6.10). Thus J > 0. Using the 
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above formulae for ^u ^i> Ö2 we obtain 

n (6.12) L, = -^^F{r,cp,fi), 

where F{r, cp, /i) = rG(cos ^(p, r, ft), G{z, r, ja) = (Ьц + b2ih{z, r, /л)) {6z + 
+ 3r{4z^ - 1) bo2 - 27^03^3(42^ - 1)^ + 3b2,r{'^z^ ~ 1))' K^^ ^ /0 = 2(~2rz -
- тА^з)б(-2г2 - i/^3,A^)), г = ± ^ ( - / ^ 2 ) , /̂ 2 < 0, where we have + ( - ) if 
/̂ 1 > 0 (fii < 0) and cos (p = /^j/r^. The function G is obviously smooth, G(0, 0, 0) = 
= 0 and ôG{0, 0, 0)/5z - бЬ^^ = бсо Ф 0. The Imphcit Function Theorem implies 
that there exists a smooth function z = ^o{^> и) ^^^'^ ^^^^ *^o(0, 0) = 0 and 
G(WQ{r, fi), r, fi) = 0 in a sufficiently small neighbourhood of the origin. 

We are interested in a solution of the equation Li(/S) = 0 for /̂ 2 < 0. This equation 
is obviously equivalent to the equation G(cos}(p, ±лУ( —/̂ 2)5/̂ ) = 0, /̂ 2 < 0, 
where we have + ( —) if Д1 > 0 (/̂ ^ < ^)- From the uniqueness of the implicit 
function WQ it follows that this equation is equivalent to the equation 

(6.13) cos i(p = П ( ± V(-/^2), ß), /̂ 2 < 0 . 

Therefore, (6.9) and the definition of cp yield that the equation (6.13) is equivalent 
to the equation 

(6.14) — Т Г ^ з = 4f^(±V(-M2), ß) - ЗПС+УС-Мг), t^) . 

where we have +(—) if jUj > 0 (jUj < 0). Let us define a function !P(/i) as follows: 

•P(M) = Ml + {-^^2У" (4'P^(-V(-M2), M) - зп(-V(-/^2), M)) 
for /il < 0 , /̂ 2 < Ö , 

ПЙ = /̂ 1 - (-/^2) '^ ' (4'F^(V(-/^2), /i) - 3 n ( V ( - / ^ 2 ) , Â )) 

for /il > 0 , /̂ 2 < 0 and ^(/i) = /il for /i2 è 0 . 

Obviously, the function W is of the class C\ ï^(0, 0, 0) = 0, dW{0,0, 0)1 dfi^ = 1. 
The Implicit Function Theorem implies that there exists a C^-function /i^ = H(ß2^ ßz) 
such that Я(0, 0) = 0 and 4^{H(fi2, ^з)> ßi^ ßs) = О in a sufficiently small neigh­
bourhood of the origin. Thus we have obtained that L^[ß) = 0 if and only if /.(> is 
situated on that part of the graph of the function H for which ß2 < Ö. Since H e C^ 
and obvisouly Н{ц2, ßz) — О for /i2 ^ 0, we obtain that if C/ is a sufficiently small 
neighbourhood of the origin, then the graph of H transversally intersects the survace 
и n Hi n {ß~ и {0}) at a curve ц passing through the origin. Obviously, there is 
exactly one point Q at which the curve ц intersects the curve h. Thus we have proved 
that there is exactly one point Q where the function L^^ji) changes its sign. 

Let Q and h be as in Lemma 14. If we wish to describe the bifurcations for /i near 
the point g , we need to compute the sign of the second Ljapunov's focus number 
L2 = 1-2(0) at Q (see Lemma 2). If ß = /i G ̂  n /i, then yt{ß) = 0 and the vector 
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field v'^ has the form 

(6.15) ' I 

+ b2iU\u2 + ^12^1^2 + 0^4(^1, U2) + 0^5(^1' ^2) + 9{U^ ß) . 

where g(u, 0) = o(|wP), g^, g^ are homogeneous polynomials in i/^, 1/2 of degree 4 
and 5, respectively, with coefficients bij at и\и{, b^o = 1, b ^ = со, ^40 = b^o = 0. 
Obviously, the point К = (0, 0) is the only focus of the system (5.13), for which we 
have computed that L^(Q) = 0. Let us introduce new variables: S^ = Wi, &2 = 
= —1/2/̂ 5 T = xt, X = Y(~72 (i^))- Then the vector field (6,15) becomes 

(6.16) ' \ 
S2 = 9,+ 020^1 + b,,S,S2 + bo2^l + Ьзо̂ ? + Ьоз̂ 2 + 

+ b2,SlS2 + b,2^,Sl + ^4 (^1 , ^2) + ^5(^1 , ^2) + ^ ( ^ 1 , ^ 2 , ß) , 

where ^^(^i, S2, 0) = o((^^(ßl + ^2))^)? 0̂ 4? â's ^^^ homogeneous polynomials of 
degree 4 and 5, respectively, with coefficients b,j at S|^^, 

h - ^ h ~ -^'' h - h ь - - ^30 г „ ^21 
^20 — 7 3 ^11 — ? ^02 — ^02 ? t̂ 3Ô — " 7 ' ^^21 — у 

^ b^i 
^12 = ~bi2 , Ьоз = 5̂ bô3 , ^40 = О, Ьз1 = - , 

^22 = -Ь22 , bi3 =- 2<bi3 , Ьо4 = -Х^Ьо4 , Ьзо = О , 641 = " "-̂ - , 

^23 = ^^23 , Ьз2 = Ьз2 , bi4 = ><^Ь^^ , Ьо5 = Х^Ьо5 • 

Putting the coefficients bij into the formula (2.4) one can obtain that 

(6.17) L , (e ) = Ui^^) = - f^ [iV + 0(| | / . | )] . 
24x 

where N = —bl^bo2 + ^11^21 — '7^02^11^30 + ^^30^21 i^^^ therefore 

(6.18) signL2(ô) = signiV 

for Q sufficiently close to the origin. 

Lemma 15. The number signN is invariant with respect to regular transfor­
mations of coordinates in the phase space. 

Proof. It suffices to consider the system (6.15) for /г = 0, i.e. the system 

(6.18) 
"2 = KlUl + bj^^UiUj + bioul + b21«l«2 + ^12"1"2 + '^ОЗ«! + 

+ 9л{ч1, "2) + asiui, «2) + 9{u, 0) , 
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where 04, g5 and g are as above, and to prove the invariance of the number signiV 
with respect to the mappings R and Q (see (3.4) and (3.5)). First let us prove the 
invariance of signiV with respect to the mapping Q. This mapping transforms the 
system (6.18) into the form (3.1), where p^^ = 0, P12 = i^ii£>^~^5 ^11 = 0, Рзо = 
= ЬзoßA~^ ^30 = ЬзоЯ"^, ^21 == biiX'^ - ЗЯ"^гЬзо, <?22 = bo2^~^ - ЬцвЯ"^. 
By Lemmas 1 and 4 there exists a smooth regular transformation of coordinates 
transforming this system into the form (2.7), where Г̂ ^ = 0, ti2 = 2^12 + Pii ~ 
= bi^À~\ t2 = q22 + 2ßi2 = Ьо2^~\ ЬО = ^30 + 2pi2^ii = ^30 = ЬзoЯ~^ 
hl = î2i + 2(^22 - 1*12)511 + ЗРзо = ^21 + Зрзо = b2iA~^ Thus we have ob­
tained a system of the form (6.18), where instead of bij we have the coefficients 
bii,bQ2 = ^22 — bQ2^ , b^i = ti4, = b^^k , Ьзо = ^30 = ^зоЯ , ^ 2 ^ = ^21 " 
= ^21^"^. This means that the number N is chlnged by the mapping Q into the 
number N = —Hiboi + ^11^21 — 75o2bii53o + 3630621 == k~'^N and thus 
signiV = signiV. 

Let the mapping R have the form 

Z^ = Xi + GC20^l + «11X1X2 + O602X2 + О630Х1 + «21X1X2 + . . . , 
R- 2 2 3 2 

22 = X2 + «20-^1 '^ 06^^X1X2 + «02^2 ~J" ^ 3 0 ^ 1 "^ ^21-^1''^2 + ••• . 

One can easily show that this mapping transforms the system (6.18) into the form 
(3.1), where Pii = -ß2ö. Pi2 = ^^2o~ ßiu P22 = cc^i - ßö2. ho ='^ßlo -^ 
+ 1̂10̂ 2̂0 - 2a2ô/?40. 5l2 = ^ 1 1 + 2/?20. ^22 = ^02 + ßlU ^30 = ^30 - 2^20 -
~ P2Ô^^11J ^'21 ~ ^^21 + 0̂ 20̂ 11 - 2ß2obo2' Since the mapping jR does not change 
the form of the system (6.18), the coefficients «20? î 20? î 025 ^ii? i^ii must satisfy 
the identities: 2a2o - ßn = 0, « ц - ßo2 = 0,^20 = ^^ßlo + ^11^20 - 2a2oi52o = 
= 0. These identities are obviously satisfied if a2ô = î 20 = î 02 = o îi = i^n = 0 . 
This implies that the mapping R does not change the number N at all and thus the 
proof is complete. 

P r o o f of T h e o r e m 3. The assertions of Theorem 3 are consequences of Lemmas 
1, 2, 14, 15 and the considerations presented in Section 6. 

Bifurcations for v~. By Theorem 2 the only critical point К = (0, 0) of the vector 
field VQ is either a focus or a critical point with one elliptic sector, two parabolic 
and two hyperbohc sectors. For JLLG ^'^ the only critical point K^ = (z(/i), 0) of v~ 
is a focus. From the equation (6.1 ~) we obtain that dzi^fijlôjÂ^ = j and this implies 
that z(/i) > 0 for /i e G^ and z(/x) < 0 for /г G G "̂. Since — x^ + jx^x^ + 72 (i")/^ + 
+ Tï{/^) = — (x ~ z) P(x), where P(x) > 0, we have L{K^ = (c,.y), where Сц =: 0, 
^12 = 1. ^21 = -K^)^ ^22 = ^Q{z,ß). z = z(/x), 0(0,0) = CO > 0. This yields 
that for /i sufficiently close to the set Gi n ^'*", the matrix L{K^ has complex eigen­
values with the real parts equal to iz(/i) ö(z(^u), /г) and therefore the focus K^ is 
unstable for fie G^ and stable for ße GÏ. 

Let Li = Li(/i) be the first Ljapunov's focus number of the focus К = (0, 0) for 
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jj>e Gl n ^'^, and let L2 = L2{JJ) be the second Ljapunov's focus number, which 
is defined for fi satisfying the identity Lj(/i) = 0. 

The vector field v~, iie G^ has the form 

ill — Ui , 

"2 = 72(/^)^1 + 1^Ъ^\ + biiUiU2 + Ьо2^2 + 3̂0̂ 1̂ + ^03^2 + 

+ b2iU\u2 + bi2^iU\ + 0^4(^1, W2) + Qsi^l, U2) + Ö'C«. /̂ ) . 

where Ьзо = — 1, ^ii = со > 0 and 0̂ 4, ^^5, ö' are functions as in the system (6.15). 

Lemma 16. There exist two C^-curves r]^, r\2 In G^ n ^^ n [pi: ^2 S Ö} such that 
the following assertions hold: 
(1) The origin is an end-point of the curves Ц^Цг-
(2) The curve rji{f]2) divides the set G^ n 9^ n {/x: /̂ 2 ^ 0, /̂ ^ > 0} (G^ n ^"^ n 

n {//: ^̂ 2 ^ Ö? j"i < Ö}) '̂ '̂ ^̂  ^^^ connected components F^, ^2(^3, F4), w/iere 
öFj = ?7i u (Xi u {0} (^Fa = ri2 ^ cci ^ {0}), â  = {̂u e a" : /̂ 3 > 0}, a2 = 
= {/xe a~: /X3 < 0}, 06~ = Ĝ  n G2. 

(3) If Lj^ii) is the Ljapunov'sfocus number of the only focus К of the vector field v~, 
/ле 9^, then Li{ß) = Ofor ße ^"^, ^2 < 0 if and only if fie r]^ u rj2. 

(4) Li(/x) > Ofor ße Fj^u F4 anJ Li(/i) < Ofor jiieF2^ F3. 

(5) If ße ц^ u /̂25 ^^^^ ^^^ second Ljapunov's focus number of the focus К = (O, 0) 
is given by the formula 

b2W = I ^ ; r V p ^ ( ^ + ^ W ) ' 
24v(-72W ) 

vv/iere iV =̂  — ^11602 + ^11^21 — 1Ь(^2^х\^ъо + ^^30^21? ^^^ number ügnN 
is invariant with respect to regular transformations of coordinates in the 
phase space. 

Proof. If ßE 9"^, then the equation (6.1~) has one real root ^^ and two complex 
conjugate roots (J2, ^3 = ^2- We shall use their goniometric form. For ß2 < ^ they 
are given by the formulae 

(̂ 1 - - 2 r ch }(p + 1/̂ 3 , C2,3 = r ch > + ^ /^3+1 ^(3) r sh -̂ф , 

o h ( p = = : ~ ~ i ^ l — - , r = ± ^ / ( - / i 2 ) , sign г = sign/il . 
±VV~/^2J 

(6.20) 

If Ух — u^ — ^i, У2 = U2 and ^ = ^2 — Ci, then the vector field v^ becomes 

>'i = = У2, 

>*2 = -1^1'3^1 + Ь,,^1У2 + 2(Re(?)>'î - }i + 

H- (bji + 2^,621) J1V2 + (f?02 + bii<Ji) J^ H- bl2JiV2 + 

+ b2i3 ?̂V2 -f Ьсзу^ -f ^^^ (̂vj, j s ) + ^5(3^1, y,) + ^(j;, ß), 
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where | i = ^iU{yuß), й(Уи f^) = 6 ( j i + С ь / 0 ' ^ n = ^ ' 0̂ 4,0̂ 5 are homo­
geneous polynomials of degrees 4 and 5, respectively, and g{y, 0) = o(||};p). 

Using the formula (2.3) we obtain that 

(6.21) L,{ß)= - ~[(Ь,, + 2^,b,,){-2Rce - bo2\e\')- bo,\e\^ - b,,\e\'], 

j^j2 ^ 3^2^4 çĵ 2 1^ __ 1^2 RQ Q = вг ch ^(p and therefore 

Li(/i) = - —— F(r, (p, ß) , F{r, (p, /л) = rG(ch }(p, r, fi) , 

where G{z, r, /л) is the function defined in the proof of Lemma 14, r = ±^(—/^2)? 
1Л2 < 0, where we have + ( - ) if jÛ  > 0 (/̂ 1 < 0) and ch ç = fiijr^. Let z = !Fo(^ i") 
be the function from the proof of Lemma 14, defined as a solution of the impMcit 
equation G(z, r, pt) = 0. 

We are interested in a solution of the equation Li(/i) = 0 for / i e ^"^, /̂ 2 < 0. 
From the uniqueness of the implicit function XJ/Q it follows that this equation is 
equivalent to the equation 

(6.22) ohi(p=Wo{±^{-fi2),f^), ße^^, fi2<0, 

where we have •b{—)ifßi > 0 (/x̂  < 0). 

Now using the known identity ch ^ = 4 ch^ <̂p ~ 3 ch ^cp (compare with (6.9)) 
and the definition of cp, we obtain that the equation (6.22) is equivalent to the equation 
(6.14). Let T = !Р(/г) and ц^ = H{fi2,113) be the functions from the proof of Lemma 
14. We remark that the function Li{fi) given by the formula (6.21) and the functions 
defining the equation (6.22) are defined not only for fie ^'^ n [ft: ^2 < 0} but on 
the whole set {ft: fi2 ^ 0}, and we consider the equation L^{fi) = 0 on this set. The 
results obtained in the proof of Lemma 14 immediately yield that Lj^(fi) == 0 if and 
only if fi is situated on that part of the graph of the function H where /̂ 2 < 0. Since 
H[fi2, ßs) = 0 for fi2 ^ 0, there exists a neighbourhood U of the origin such that the 
graph of the function H does not intersect the surface G^ n G2 n (^ и ^~) nU 
and it must intersect the surface G^ n ^'^ nU exactly at two curves ^ 1 , /̂2 in such 
a way that the assertions (1) —(3) of the lemma hold. 

If y^(fi) = 0, i.e. if fie G^, then the equation (6.1~) has one zero root and the other 
roots can be computed from the equation — x^ + ^зХ + yj(At) = 0. Using these 
formulae for the roots, one can easily show that for fie G^^ n ^'^ we have 

-^1^^) "̂  ~ 7 ~ 7 7 — ^ 7 ^ 1-(0Цз -h yr(/i)((«bo2 + ^21) - 3(yJ(/i))^ Ьоз] = 

71 *^^^ + (ш&02 + b2t) - 3yj(/i) bosl. 
4 7 ( -У2(я ) ) biifi) 

Since ^^(At) = 0 for ju e a", a» > 0 and 7j(/t) < 0 for цеС^глЗ!* we obtain that 
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SJgn Li (jw) = sign fi^ for i^eG^nS)^ sufficiently close to the curve a . This proves 
the assertion (4) of the lemma. The proof of the assertion (5) of the lemma is the same 
as the proof of the assertion (2) —(c) of Theorem 3, where the invariance of the 
number signiV follows from Lemma 15, and thus the proof is complete. 

Lemma 17. If iie Q)~, then the vector field v~ has three critical points: a saddle К i 
and critical points i^2?^3 ^hich are either nodes or focuses, and the following 
assertions hold: 

(1) If fieGj (^ ^ " , then the critical points K2, K^ are either nodes or non-
degenerate foci, where K2 is stable and K^ is unstable. 

(2) The focus ^^2(^3) ^^ degenerate if and only if fieF^ = G^ n G2 c\ ^~ r^ 
n [11: /̂ 3 > 0) (ße F~ = G^ r\ G2 n ^~ n {fi: /i^ < 0}. 

(3) / / Li(//) is the first Ljapunov's focus number of the focus Х2(^з) /^^ fie f^ 
(fie F"), then Lj^fi) > Q for all fie F^ (^liß) < ^for all fie F~). 

Proof. From the results proved at the beginning of this section it follows that if 
the matrix L{K^ {i e {1, 2, 3], Ki = (zi, 0)) has purely imaginary eigenvalues, then 
z. = 0. This implies that it suffices to find out the type of the critical points for 
fieG^n^'. 

IffieG^nG^n^-, then K^ = (0, 0) is a saddle and K2 = (^2, 0), K^ = (23, 0), 
where ^2,3= i{fis ± ^Jô), ô = fil + 4y^(/i) > 0. Since 22,3 ф О, the real parts 
of the eigenvalues of the matrices L(K2), Ь(Е^з) are nonzero for all // € G^ n G2 n ^ ~ 
and therefore it suffices to find out the type of the critical points i^2>^3 for some 
jLi e Gl n G2 г\ ^~ with fi^ = 0. Under the assumption /̂ 3 = 0 we have 22,3 = 
- ±7У2~(/^) and L{K,) - (c},) (i - 2, 3), where c\i = 0, 0̂ 2 = h 4 i = -z] -
~ liil^y ^ 2 = ^iQi^i^ß)' The matrix L(i^2)(M^3)) ^^s the eigenvalues Â  2 = 
••= i{>Ci ± V^^i) (i(%2 ± V^2)X where Xî 2 = ± ^lil^) Qi + ̂ ^^yiiß), ß\ ^1,2 = 
= {{и{±\/У2{и)> ßjY ~ ^)У2{и)- This implies that К2 ,Кз are either nodes or 
nondegenerate focuses, according to the signs of ô^ and Ô2, respectively. Since 
<x) > 0, we also obtain that K2 is stable and K^ is unstable. This proves the assertion 

Let JF"*" and F be as in the lemma. First assume fieF'^. Then the vector field v^ 
has three critical points: K^ = (zi, 0)^ K2 = (0,0), K^, = (^3,0), where z^ = 

= i(/^3 - ^/Я ^3 = iifh + V^)' <5 = /i^ + 4 72 (î ) > 0. Since 72 (i") < 0, the 
critical point К2 == (O, 0) must be a degenerate focus. The matrix L^K^) has eigen­
values j^i 2 = K^i6(^b/^) ±^/^), where Л = z\{Q{zi,fi)y + 4zi ^ ^ . Obviously 
Zi > 0 and therefore ßx, ß2 are real, ß^ > 0, ^̂ 2 < 0. This means that the critical 
point i^i is a saddle. Without any computation we already know that the third 
critical point K^ must be either a node or a nondegenerate focus. The proof for fie F~ 
is analogous. 

It remains to prove the assertion (З). We may use the same method which we have 
used in the proof of Lemma 14. Using the formula (2.3) one can obtain a formula 
for the function L|(/i) corresponding to the focus К2, which does not essentially 
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differ from the formula (6.11). By the same argument as that used in the proof of 
Lemma 14, it is possible to show that the set of zeros of the function L^^JLI) is a C^~ 
surface which does not intersect the surface F"*". The same is valid for the function 
Li(/.t) corresponding to the focus K^, це F~. Similarly to the proof of the assertion 
(4) of Lemma 16, one can show that L^^fi) > 0 {L^(fi) < 0) for fieF^ {ßeF~) 
sufficiently close to the curve a". Since the function L^^ß) does not change its sign 
on the surface f^ or F~, respectively, the proof of the assertion (3) is complete. 

Lemma 18. There exists a C^-curve t]^ ^^ the set E = G^ r\ ^^ n [fi: ß2 è-. 0} 
such that the following assertions hold: 
(1) The origin is an end-point of the curve rj^ and this curve divides the set E into 

two connected components E'^, E~. 
(2) If Lj^fx) is the first Ljapunov^s focus number of the only focus К of the vector 

field v~, fie E, then Li(/i) = Ofor fie E if and only if fie ц^, 
(3) Lj^fi) > Q for fie E^ and L^(fi) < Ofor fie E~. 
(4) If fierj2, then the second Ljapunov s focus number of the focus К = (0, 0) is 

given by the same formula as in the assertion (5) of Lemma 16. 

Proof. If fie^'^ n {fii fi2 > 0] , then the equation (6.1") has one real root ^^ 
and two complex conjugate roots (̂ 2? ^з = I2? which may be expressed by the fol­
lowing formulae (compare with the case fie Q)"" n {/x: /̂ 2 ^ Oj)* 

^1 - - 2 r sh \(p + i/гз , ^2,3 = r sh \(p + /̂̂ 3 ± ч/(3) ^ oh ^^ , 

sh Ф = , r = ±Jfi2 , Sign r = sign fi^ . 
± VA4 

Analogously to the case fi2 й 0, one can show that 

4|̂ |̂  
where \Q\^ = 3r^(4sh^ }(p - 1) . P(r, cp, fi) = rG(sh }(p, r, fi), G{z, r, ß) is the func­
tion defined in the proof of Lemma 14. Let z = ^oi^^ и) be the solution of the 
implicit equation G{z, r, ß) = 0 (see the proof of Lemma 14). Then L^{ß) = 0 for 
ße ^'^ n [ß: ß2 > 0} if and only if sh }(p = *Fo(r, ß). Since sh ^ = 4 sh^ Icp — 
— 3 sh ^ф we obtain that the equation L^(ß) = 0 is equivalent to the equation 

(6.23) - ^ = ^n{±^/lh. fi) ~ 3To(±/^2, ß) , 

where we have ч-( —) if ß^ > 0 {ß^ < 0). Let us define a function 'P(fL) (compare 
with the function 4'(ß) from the proof of Lemma 14) as follows: 

W{ß) = ß,+ ßr{4Wl{-^{ß2% ß) - ЗП(-V( /^2) , Â )) for ß,<0, ^2 > 0 , 

^ß) = ß,--ßri4Wl{^{ß2lß)-3WoU{ß2),ß) for ß,>0. ß2>0 and 

f{ß)^ ßx for ß2 SO. 
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Obviously, the function W is of the class C^ ^ (0 ,0 ,0 ) = 0, dW{U,0,Ö)ldßi = 1. 
The Implicit Function Theorem impHes that there exists a С ̂ -function ß^ = H(fi2, /̂ 3) 
such that Я(0, 0) = 0 and ?'(Я(/(2, А^з),/̂ 2 /̂̂ 3) = О in a sufficiently small neigh­
bourhood of the origin. Thus we have obtained that Ь^(/г) = 0 for ^еВ'^ гл 
n {/г: /̂ 2 > 0} if and only if /i is situated on that part of the graph of the function Я 
for which }i2 > 0. Since H e C^ and obviously H(pt2, ̂ 3) = 0 for ^2 й 0, we obtain 
that if и is a sufficiently small neighbourhood of the origin, then the graph of the 
function H transversally intersects the surface U n G^ n (^"^ u (Oj) exactly at one 
curve, which we denote by rj^. The origin is an end-point of this curve and this proves 
the assertions (l) and (2) of the lemma. 

Let £^ be the component which is situated on the left of the curve rj^, (see Figure 
7). Let 1]'^ cz E'^ {rj~ c z £ ; ~ ) b e a curve with an end-point at the origin and suf­
ficiently close to the curve ß = [fie G^: /(2 = 0}. If ß = (/i^, fi2, fh) erj^ (fie rj~), 
then obviously /I3 > 0 (^3 < 0). For pie G^ n £^^ we have the formula for the first 
Ljapunov's focus number L^(ß) given in the proof of Lemma 16. This formula 
implies that Li(fi) > 0 {L^(jn) < 0) for each ß-eri'^ (//G^y") sufficiently close to the 
origin. Since the function Li(/i) changes its sign on the curve rj^ only, we obtain that 
Li(/i) > 0 for all fie E^ and L^[fi) < 0 for all /ле E~. This proves the assertion (3) 
of the lemma. 

The proof of the assertion (5) is the same as the proof of the assertion (2) —(c) 
of Theorem 3 and thus the proof of the lemma is complete. 

P roo f of T h e o r e m 4. The assertions of Theorem 4 are consequences of Lemmas 
1,2 ,16,17,18. 

The author is thankful to Dr I. Vrkoc for his very valuable comments and sug­
gestions. 
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