Czechoslovak Mathematical Journal

Ján Jakubík

On isomorphisms of graphs of lattices

Czechoslovak Mathematical Journal, Vol. 35 (1985), No. 2, 188-200

Persistent URL:
http://dml.cz/dmlcz/102010

Terms of use:

© Institute of Mathematics AS CR, 1985

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

ON ISOMORPHISMS OF GRAPHS OF LATTICES

Jan Jakubík, Košice

(Received February 4, 1983)

All lattices dealt with in this paper are assumed to be locally finite. Isomorphisms of graphs of distributive lattices, modular lattices and semimodular lattices were investigated in the fifties (cf. [10], [5], [6]); these investigations were inspired by a problem proposed by G. Birkhoff ([1], Problem 8). Some sharpenings of the results of [5] were obtained in [8]. In the recent paper [3] concerning applications of universal algebra G. Birkhoff proved that projectivity of prime intervals is in a certain sense invariant under graph isomorphisms of modular lattices and appplied this result when investigating simple subdirect factors of modular lattices L and M of finite lengths having isomorphic graphs.

Isomorphisms of graphs of some types of partially ordered sets (semilattices, multilattices) were studied by M. Kolibiar [11], M. Tomková [12] and the author [7]; in all these considerations certain covering conditions were assumed.

In this paper graph isomorphisms of lattices are studied (without the assumption of modularity). The properties of some types of cycles, transposed intervals and subdirect decompositions under graph isomorphisms of lattices are established.

1. PRELIMINARIES

A lattice $\mathscr{L}=(L ; \leqq)$ is called locally finite if each bounded chain in \mathscr{L} is finite In what follows, all lattices are supposed to be locally finite. Given $a, b \in L$ we write $a<b$ (or $b>a$) if $[a, b]$ is a prime interval, i.e., if $a<b$ and $a<c<b$ for no $c \in L$; in such a case we also say that b covers a.

By the graph $G(\mathscr{L})$ we mean the (undirected) graph whose set of vertices is L and whose edges are those pairs $\{a, b\}$, which satisfy either $a<b$ or $b<a$. Let \mathscr{G}_{1} and \mathscr{G}_{2} be graphs whose sets of vertices are G_{1} and G_{2} and let $f: G_{1} \rightarrow G_{2}$ be a bijection such that, for each $x, y \in G_{1},\{x, y\}$ is an edge in \mathscr{G}_{1} if and only if $\{f(x), f(y)\}$ is an edge in \mathscr{G}_{2}. Then f is said to be an isomorphism of \mathscr{G}_{1} onto \mathscr{G}_{2}.

Let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$ be lattices. If f is an isomorphism of $G(\mathscr{L})$ onto $G\left(\mathscr{L}_{1}\right)$, then f is called a graph isomorphism of the lattice \mathscr{L} onto \mathscr{L}_{1}.

We denote by \mathscr{L}^{\sim} the dual of \mathscr{L}. The symbol \times is used for denoting the operation of direct product of algebras. The following result is valid:
(A) (Cf. [5].) Let \mathscr{L} and \mathscr{L}_{1} be modular lattices. The graphs $G(\mathscr{L})$ and $G\left(\mathscr{L}_{1}\right)$ are isomorphic if and only if there are lattices \mathscr{A} and \mathscr{B} such that $\mathscr{L} \cong \mathscr{A} \times \mathscr{B}$ and $\mathscr{L}_{1} \cong \mathscr{A} \times \mathscr{B}^{\sim}$.

Let us remark that the assumption of modularity of \mathscr{L} in (A) cannot be omitted (cf. [5], [6]); this concerns the assertion "only if" in (A). (The assertion "if" in (A) holds without assuming modularity (cf. [10], § 7.)

Without loss of generality we can assume that $L=L_{1}$ and that f is the identity on L. Let us apply the assumption that $L=L_{1}$ and let P and P_{1} be the set of all prime intervals in \mathscr{L} or in \mathscr{L}_{1}, respectively. We denote

$$
Q=P \cap P_{1}, \quad Q^{\prime}=P \backslash Q .
$$

Let $u, v, x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}$ be distinct elements of L such that (i) $u \prec$ $\prec x_{1} \prec x_{2} \prec \ldots \prec x_{m} \prec v, u \prec y_{1} \prec y_{2} \prec \ldots \prec y_{n} \prec v$, and (ii) either $x_{1} \vee y_{1}=$ $=v$, or $x_{m} \wedge y_{n}=u$. Then the set $C=\left\{u, v, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\}$ is said to be a cell in \mathscr{L}. A cell C is called proper if either $m \geqq 2$ or $n \geqq 2$. A cell C in \mathscr{L} is called regular if either each prime interval of C belongs to Q, or each prime interval of C belongs to Q^{\prime}. The notions of a cell in \mathscr{L}_{1} and the regularity of cells in \mathscr{L}_{1} are defined analogously.

2. CELLS AND GRAPH ISOMORPHISMS

Again, let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L ; \leqq{ }_{1}\right)$ be lattices. (The latt:ce operations in \mathscr{L} and in \mathscr{L}_{1} will be denoted by \wedge, \vee or by \wedge_{1}, \vee_{1}, respectively. If $a, b \in L$ and $a \leqq b$, then $[a, b]$ is the corresponding interval in \mathscr{L}; if $c, d \in L$ and $c \leqq{ }_{1} d$, then the interval of \mathscr{L}_{1} with the endpoints c and d will be denoted by $[c, d]_{1}$.) Consider the following conditions:
(a) There exist lattices $\mathscr{A}=(A ; \leqq), \mathscr{B}=(B ; \leqq)$ and a bijection $g: L \rightarrow A \times B$ such that g is an isomorphism of \mathscr{L} onto $\mathscr{A} \times \mathscr{B}$ and, at the same time, g is an isomorphism of \mathscr{L}_{1} onto $\mathscr{A} \times \mathscr{B}^{\sim}$.
(b) The identity mapping is a graph isomorphism of \mathscr{L} onto \mathscr{L}_{1}.
(c) All proper cells of \mathscr{L} and all proper cells of \mathscr{L}_{1} are regular.
2.1. Lemma. Let (a) be valid. Then (b) and (c) hold.

Proof. The relation $(\mathrm{a}) \Rightarrow(\mathrm{b})$ was proved in [10]. Assume that (a) is valid and let C be a proper cell in \mathscr{L} (under the same notation as in §1). Suppose that $x_{1} \vee y_{1}=v$ (if $x_{m} \wedge y_{n}=u$, we can apply a dual method). If $x \in L$ and $g(x)=(a, b)$, then we denote $a=x(A), b=x(B)$. Without loss of generality we can assume that $m>1$.

Since $u \prec x_{1}$, we have either
(i) $u(A) \prec x_{1}(A)$ and $u(B)=x_{1}(B)$, or
(ii) $u(A)=x_{1}(A)$ and $u(B) \prec x_{1}(B)$.

Similar relations hold for u and y_{1}; let us denote them by (i_{1}) and (ii ii_{1}. Consider the case when (i) is valid.

If $\left(\mathrm{ii}_{1}\right)$ held, then we should have

$$
\begin{gathered}
v=x_{1} \vee y_{1}=g^{-1}\left(x_{1}(A), x_{1}(B)\right) \vee g^{-1}\left(y_{1}(A), y_{1}(B)\right)= \\
=g^{-1}\left(x_{1}(A), u(B)\right) \vee g^{-1}\left(u(A), y_{1}(B)\right)=g^{-1}\left(\left(\left(x_{1}(A), u(B)\right) \vee\right.\right. \\
\left.\vee\left(u(A), y_{1}(B)\right)\right)=g^{-1}\left(\left(x_{1}(A), y_{1}(B)\right) .\right.
\end{gathered}
$$

Because $\left(x_{1}(A), y_{1}(B)\right) \succ\left(x_{1}(A), u(B)\right)$, we obtain $v \succ x_{1}$ which is a contradiction. Hence (i_{1}) must hold and thus

$$
\begin{aligned}
g(v)=g\left(x_{1} \vee y_{1}\right)= & g\left(x_{1}\right) \vee g\left(x_{2}\right)=\left(x_{1}(A), u(B)\right) \vee\left(y_{1}(A), u(B)\right)= \\
& =\left(x_{1}(A) \vee y_{1}(A), u(B)\right),
\end{aligned}
$$

implying $v(B)=u(B)$. For each x_{i} and each y_{j} we have $u \leqq x_{i} \leqq v, u \leqq y_{j} \leqq v$, whence $x_{i}(B)=u(B)=y_{j}(B)$, and therefore (since $g: \mathscr{L}_{1} \rightarrow \mathscr{A} \times \mathscr{B}^{\sim}$ is an isomorphism) we get $u \prec_{1} x_{1} \prec_{1} x_{2} \prec_{1} \ldots \prec_{1} x_{m} \prec_{1} v, u \prec_{1} y_{1} \prec_{1} y_{2} \prec_{1} \ldots$ $\ldots \prec_{1} y_{m} \prec_{1} v$. Therefore C is regular.

The proof for the case (ii) is analogous. We have verified that all proper cells of \mathscr{L} are regular. Similarly we can verify that all proper cells of \mathscr{L}_{1} are regular. Hence (c) is valid.
2.2. Lemma. Let $C=\left\{u, v, x_{1}, y_{1}\right\}$ be a cell in \mathscr{L} (under the notation from $\S 1$). Let (b) hold. Then one of the following conditions is valid: (i) C is regular; (ii) $\left[u, x_{1}\right],\left[y_{1}, v\right] \in Q$ and $\left[u, y_{1}\right],\left[x_{1}, v\right] \in Q^{\prime}$; (iii) $\left[u, x_{1}\right],\left[y_{1}, v\right] \in Q^{\prime}$ and $\left[u, y_{1}\right]$, $\left[x_{1}, v\right] \in Q$.

Proof. Cf. [5], Lemma 5.
In the following lemmas $2.3-2.9$ we assume that the conditions (b) and (c) are fulfilled.
2.3. Lemma. Let $u, v, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$ be distinct elements of L such that (i) $u \prec x_{1} \prec x_{2} \prec \ldots \prec x_{m} \prec v, u \prec_{1} x_{1} \prec_{1} x_{2} \prec_{1} \ldots \prec_{1} x_{m} \prec_{1} v$, (ii) $u \prec y_{1} \prec$ $\prec y_{2} \prec \ldots \prec y_{n} \prec v$. Then $u \prec_{1} y_{1} \prec_{1} y_{2} \prec_{1} y_{3} \prec_{1} \ldots \prec_{1} y_{n} \prec_{1} v$.

Proof. (Cf. Fig. 2.3a and 2.3b.) By way of contradiction, assume that the as-

Fig. 2.3a.

sertion of the lemma does not hold. Since (b) is valid, the following condition (iii) is fulfilled:
(iii) there exists $j \in\{0,1,2, \ldots, n\}$ such that $y_{j} \succ_{1} y_{j+1}$.
(Here we denote $u=y_{0}, v=y_{n+1}$.) Suppose that $[u, v]$ is a minimal element (with respect to the partial order defined by inclusion) of the system of all intervals of \mathscr{L} which contain the elements $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{m}$ fulfilling the conditions (i), (ii) and (iii).

If $m=n=1$, then we have a contradiction with 2.2 . Hence either $m>1$ or $n>1$. First assume that $j=0$, i.e. $y_{1} \prec_{1} u$. Suppose that $x_{1} \vee y_{1}=v_{1}<v$. In view of the minimality of $[u, v]$, all prime intervals of $\left[x_{1}, v_{1}\right]$ belong to Q. Hence it follows that all prime intervals of $\left[u, v_{1}\right]$ belong to Q, which is a contradiction. Therefore $x_{1} \vee y_{1}=v$. Thus $C=\left\{u, v, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\}$ is a proper cell in \mathscr{L}. According to (c), C is regular. In view of (ii), $u\rangle_{1} y_{1}$ cannot hold. By a dual argument we can verify that $v \prec_{1} y_{n}$ cannot hold. Hence we have $u<y_{j}, y_{j+1}<v$.

Suppose that $x_{1} \vee y_{1}=v_{1}<v$. Then all prime intervals of the interval $\left[x_{1}, v\right]$ belong to Q, hence the same is valid for the intervals $\left[u, v_{1}\right]$ and $\left[y_{1}, v\right]$, which is a contradiction. Therefore $x_{1} \vee y_{1}=v$. Hence, again, C is a proper cell in L. From (c) and (ii) we infer that (iii) cannot be valid, completing the proof.

Analogously we can prove
2.3.1. Lemma. Let $u, v, x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}$ be distinct elements of L such that (i) $u \prec x_{1} \prec x_{2} \prec \ldots \prec x_{m} \prec v, \quad u \succ_{1} x_{1} \succ_{1} x_{2} \succ_{1} \ldots \succ_{1} x_{m} \succ_{1} v$, (ii) $u \prec y_{1} \prec y_{2} \prec \ldots \prec y_{n} \prec v$. Then $u \succ_{1} y_{1} \succ_{1} y_{2} \succ_{1} \ldots \succ_{1} y_{n} \succ_{1} v$.
2.4. Lemma. Let $u, v, x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}$ be distinct elements of L such that (i) $u \prec x_{1} \prec x_{2} \prec \ldots \prec x_{m} \prec v, u \prec y_{1} \prec y_{2} \prec \ldots \prec y_{n} \prec v$, (ii) there are $i \in\{1,2, \ldots, m\}, j \in\{1,2, \ldots, n\}$ such that $x_{i} \wedge y_{j}=u, x_{i} \vee y_{j}=v, u \prec_{1} x_{1} \prec_{1} \ldots$ $\ldots \prec_{1} x_{i}, u \prec_{1} y_{1} \prec_{1} \ldots \prec_{1} y_{j}$. Then we have $x_{i} \prec_{1} x_{i+1} \prec_{1} \ldots \prec_{1} x_{m} \prec_{1} v$ and $y_{j} \prec_{1} y_{j+1} \prec_{1} \ldots \prec_{1} y_{n} \prec_{1} v$.

Fig. 2.4.

Proof. (Cf. Fig. 2.4.) By contradiction, assume that the assertion of the lemma does not hold. Then the following condition is valid:
(iii) either there is $k \in\{i, i+1, \ldots, m\}$ with $x_{k} \succ_{1} x_{k+1}$, or there is
$k \in\{j, j+1, \ldots, n\}$ with $y_{k} \succ_{1} y_{k+1}$. (As above, we put $x_{m+1}=v=y_{n+1}$.) Suppose that $[u, v]$ is a minimal element (with respect to the partial order defined by inclusion) of the system of all intervals of \mathscr{L} which contain elements $x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}$ fulfilling the conditions (i), (ii) and (iii). From 2.2 it follows that $m>1$ or $n>1$. If $x_{1} \vee y_{1}=v$, then $C=\left\{u, v, x_{1}, \ldots, x_{m}, y_{1}, \ldots, y_{n}\right\}$ is a proper cell, thus C is regular; now (i), (ii) and (iii) give a contradiction. Thus $x_{1} \vee y_{1}=v_{1}<v$. Denote $a=x_{i} \vee$ $\vee v_{1}, b=y_{j} \vee v_{1}$.
Now by using repeatedly the minimality of $[u, v]$ and 2.3 , we obtain that all prime intervals of the following intervals belong to Q :

$$
\begin{array}{rll}
{\left[u, v_{1}\right],} & {\left[x_{1}, v_{1}\right],} & {\left[y_{1}, v_{1}\right],} \\
{\left[x_{i}, a\right],} & {\left[v_{1}, a\right],} & {\left[y_{j}, b\right],} \\
& {[a, v],} & {[b, v] .}
\end{array}
$$

Hence in view of 2.2 and 2.3, the condition (iii) cannot hold.
2.5. Lemma. Let $u, v, x_{1}, x_{2}, \ldots, x_{m}, y_{1}, y_{2}, \ldots, y_{n}$ be distinct elements of L such that the condition (i) from 2.4 is valid. Assume that there are $i \in\{1,2, \ldots, m\}$, $j \in\{1,2, \ldots, n\}$ such that $x_{i} \wedge y_{j}=u, x_{i} \vee y_{j}=v, u \succ_{1} x_{1} \succ_{1} \ldots \succ_{1} x_{i}, u \succ_{1}$ $\succ_{1} y_{1} \succ_{1} \ldots>_{1} y_{j}$. Then all prime intervals of $\left[x_{i}, v\right]$ and of $\left[y_{j}, v\right]$ belong to Q^{\prime}.

Proof can be performed by using a method analogous to that of 2.4 and by applying 2.3.

Also, the assertions dual to 2.4 and to 2.5 are valid.
2.6. Lemma. Let $u, v, x, y \in L, x \wedge y=u, x \vee y=v$. Assume that (i) all prime intervals of the interval $[u, x]$ belong to Q and (ii) all prime intervals of $[u, y]$ belong to Q^{\prime}. Then all prime intervals of the interval $[x, v]$ belong to Q^{\prime} and all prime intervals of $[y, v]$ belong to Q.

Proof. By way of contradiction, assume that the assertion of the lemma fails to hold and that $[u, v]$ is a minimal interval containing elements x and y with $x \wedge y=$ $=u, x \vee y=v$, such that either some pime interval of $[x, v]$ belongs to Q or some prime interval of $[y, v]$ belongs to Q^{\prime}. Then we obviously have $x \neq u \neq v$.
Choose $x_{1} \in[u, x]$ and $y_{1} \in[u, y]$ such that $u \prec x_{1}$ and $u \prec y_{1}$. Hence $\left[u, x_{1}\right] \in Q$ and $\left[u, y_{1}\right] \in Q^{\prime}$. Therefore in view of (c), the relation $x_{1} \vee y_{1}=v$ cannot hold. Thus we have $x_{1} \vee y_{1}=v_{1}<v$. Put $a=x \vee v_{1}, b=y \vee v_{1}$.

According to the minimality of $[u, v]$ we infer that all prime intervals of $\left[x_{1}, v_{1}\right]$ belong to Q^{\prime}. Hence we must have $x \wedge v_{1}=x_{1}$. Again, by the minimality of $[u, v]$ we get (by considering the interval $\left[x_{1}, a\right]$) that all prime intervals of $[x, a]$ belong to Q^{\prime} and all prime intervals $\left[v_{1}, a\right]$ belong to Q.

By a similar reasoning we infer that all prime intervals of $[y, b]$ belong to Q and all prime intervals of $\left[v_{1}, b\right]$ belong to Q^{\prime}. Hence we must have $a \wedge b=v_{1}$.

If we consider the interval $\left[v_{1}, v\right]$, then the minimality of $[u, v]$ implies that all prime intervals of $[a, v]$ belong to Q^{\prime} and all prime intervals of $[b, v]$ belong to Q.

Hence according to 2.3 and 2.3.1 all prime intervals of $[x, v]$ belong to Q^{\prime} and all prime intervals of $[y, v]$ belong to Q.

The assertion dual to 2.6 can be proved analogously.
2.7. Lemma. Let u, a, v be distinct elements of $L, u<a<v$. Assume that all prime intervals of $[u, a]$ belong to Q^{\prime} and all prime intervals of $[a, v]$ belong to Q. Then there is $b \in L$ such that $a \wedge b=u, a \vee b=v$, all prime intervals of $[u, b]$ belong to Q and all prime intervals of $[b, v]$ belong to Q^{\prime}.

Proof. According to the assumption, we have $a<_{1} v$ and $a<_{1} u$. Moreover, from the dual of 2.3 (if the roles of \mathscr{L} and \mathscr{L}_{1} are interchanged) we infer that all prime intervals of $[a, u]_{1}$ belong to Q_{1}^{\prime} and all prime intervals of $[a, v]_{1}$ belong to Q_{1}. Hence we must have $u \wedge_{1} v=a$. Put $b=u \vee_{1} v$. According to 2.6, all prime intervals of $[v, b]_{1}$ belong to Q_{1}^{\prime} and all prime intervals of $[u, b]_{1}$ belong to Q_{1}. Thus in view of 2.3 , we have $u<b<v$, all prime intervals of $[u, b]$ belong to Q and all prime intervals of $[b, v]$ belong to Q^{\prime}. Therefore $a \wedge b=u, a \vee b=v$.
2.8. Lemma. Let $a, b \in L, u=a \wedge b, v=a \vee b$. Assume that all prime intervals of $[u, a]$ belong to Q. Then all prime intervals of $[b, v]$ belong to Q.

Proof. If $u=b$, then the assertion is trivial. Let $u<b$. There exist elements $y_{0}, \ldots, y_{n} \in L$ with $u=y_{0} \prec y_{1} \prec y_{2} \prec \ldots \prec y_{n}=b$. If $n=1$, then the assertion is valid according to 2.4 and 2.6. Suppose that the assertion holds for $n-1$. Put $v_{1}=a \vee y_{n-1}$. Then all prime intervals of $\left[y_{n-1}, v_{1}\right]$ belong to Q. We have either $v_{1}=v$, or $v_{1} \wedge b=y_{n-1}$ and $v_{1} \vee b=v$. Hence in view of 2.4 and 2.6 , all prime intervals of $[b, v]$ belong to Q.
2.9. Lemma. Let a, b, u, v be as in 2.8. Assume that all prime intervals of $[u, a]$ belong to Q^{\prime}. Then all prime intervals of $[b, v]$ belong to Q^{\prime}.
The proof is the same as in 2.8. The assertions dual to $2.7,2.8$ and 2.9 are also valid.

3. DIRECT DECOMPOSITIONS

Let us assume that the conditions (b) and (c) from $\S 2$ are fulfilled. Let $a, b \in L$. We put $a R b$, if all prime intervals of $[a \wedge b a \vee b]$ belong to Q. Analogously, we put $a R^{\prime} b$, if all prime intervals of $[a \wedge b, a \vee b]$ belong to Q^{\prime}.

From 2.2, 2.4 and the dual of 2.4 we infer that $a R b$ is equivalent with each of the following two conditions:
$\left(\alpha_{1}\right)$ All prime intervals of $[a \wedge b, a]$ and of $[a \wedge b, b]$ belong to Q.
$\left(\alpha_{2}\right)$ All prime intervals of $[a, a \vee b]$ and of $[b, a \vee b]$ belong to Q.
A similar equivalence (with Q replaced by Q^{\prime}) is valid for the relation R^{\prime}. In an analogous way we can define the relations R_{1} and R_{1}^{\prime} on L by taking the operations \wedge_{1} and \vee_{1} instead of \wedge and \vee. It is easy to verify (by using 2.3) that R_{1} ooincides with R and R_{1}^{\prime} coincides with R^{\prime}.
3.1. Lemma. R and R^{\prime} are equivalence relations on L.

Proof. R is obviously reflexive and symmetric. Let $a R b, b R c$. Put $a \wedge b=u_{1}$, $b \wedge c=u_{2}, u_{1} \wedge u_{2}=u$. In view of $\left(\alpha_{1}\right)$, all prime intervals of $\left[u_{1}, a\right],\left[u_{1}, b\right]$, $\left[u_{2}, b\right],\left[u_{2}, c\right]$ belong to Q. Hence all prime intervals of $\left[u_{1}, u_{1} \vee u_{2}\right]$ and [$u_{2}, u_{1} \vee u_{2}$] belong to Q. According to the dual of 2.4, all prime intervals of [u, u_{1}] and $\left[u, u_{2}\right.$] belong to Q. In view of 2.3 , all prime intervals of $[u, a]$ and $[u, c]$ belong to Q as well, hence the same holds for $[a \wedge c, a]$ and $[a \wedge c, c]$. Therefore $a R c$ and so R is an equivalence relation. The proof for R^{\prime} is analogous.
3.2. Lemma. R and R^{\prime} are congruence relations on \mathscr{L} and on \mathscr{L}_{1}.

Proof. Let $a, b, c \in L, a R b$. In view of 3.1 it suffices to verify that $a \vee c R b \vee c$ is valid (the remaining cases are analogous). Put $u=a \wedge b, v=a \vee b$. According to the definition of R we have $u R v$. Denote $c \vee u=u_{1}, c \vee v=v_{1}, v \wedge u_{1}=u_{2}$. All prime intervals of $\left[u_{2}, v\right.$] belong to Q, hence according to 2.8 , all prime intervals of $\left[u_{1}, v_{1}\right]$ belong to Q. Since $a \vee c, b \vee c \in\left[u_{1}, v_{1}\right]$, we infer that $a \vee c R b \vee c$.

Let us denote by 0 and I the least or the largest equivalence relation on \mathscr{L}, respectively.
3.3. Lemma. $R \wedge R^{\prime}=0$ and $R \vee R^{\prime}=I$.

Proof. The first identity follows from $Q \cap Q^{\prime}=\emptyset$. If $[a, b]$ is a prime interval in \mathscr{L}, then we have eher $a R b$ or $a R^{\prime} b$; since \mathscr{L} is locally finite, $R \vee R^{\prime}=I$ is valid.
3.4. Lemma. R and R^{\prime} are permutable.

Proof. If we apply 2.7, 2.8 and their duals, then by the same method as in [5], Lemma 7 we obtain the permutability of R and R^{\prime} (Alternatively, we can use also [2], p. 163, Ex. 10.)

From 3.2, 3.3, 3.4 and Thm. 5, Chap. VII, [2] it follows that the natural bijections
(1) $\mathscr{L} \rightarrow(\mathscr{L} \mid R) \times\left(\mathscr{L} \mid R^{\prime}\right)$,
(2) $\mathscr{L}_{1} \rightarrow\left(\mathscr{L}_{1} / R\right) \times\left(\mathscr{L}_{1} / R^{\prime}\right)$
are isomorphisms.
Let x_{0} be a fixed dement of L. Put

$$
A=\left\{x \in L: x R x_{0}\right\}, \quad B=\left\{y \in L: y \in R^{\prime} x_{0}\right\} .
$$

Then $\mathscr{A}=(A ; \leqq)$ and $\mathscr{B}=(B ; \leqq)$ are convex sublattices of \mathscr{L}, and $\mathscr{A}_{1}=\left(A ; \leqq{ }_{1}\right)$, $\mathscr{B}_{1}=\left(B ; \leqq_{1}\right)$ are convex sublattices of \mathscr{L}_{1}. In view of the definition of the relations R and $R^{\prime}, \mathscr{A}_{1}=\mathscr{A}$ and $\mathscr{B}_{1}=\mathscr{B}^{\sim}$. For $z \in L$ there exist uniquely determined elements $x \in A$ and $y \in B$ such that $z R y$ and $z R^{\prime} x$. Put $f(z)=(x, y)$. From (1) and (2) we obtain:
3.5. Lemma. The mapping f is an isomorphism of the lattice \mathscr{L} onto $\mathscr{A} \times \mathscr{B}$; at the same time, f is an iomorphism of \mathscr{L}_{1} onto $\mathscr{A}_{1} \times \mathscr{B}_{1}$.
3.6. Corollary. Let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L ; \leqq{ }_{1}\right)$ be lattices fulfilling the conditions (b) and (c). Then \mathscr{L} and \mathscr{L}_{1} satisfy the condition (a).

Now let us omit the assumption that the lattices \mathscr{L} and \mathscr{L}_{1} are defined on the same set L; let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$. Suppose that $h: L \rightarrow L_{1}$ is a bijection. A proper cell C of \mathscr{L} is said to be regular under h, if either $f\left(x_{1}\right) \prec_{1} f\left(x_{2}\right)$ for each prime interval [x_{1}, x_{2}] of C, or $f\left(x_{1}\right) \succ_{1} f\left(x_{2}\right)$ for each prime interval [x_{1}, x_{2}] of C. Analogously we define regularity of proper cells in \mathscr{L}_{1} (with h replaced by h^{-1}).

From 2.1 and 3.5 we immediately obtain:
3.7. Theorem. Let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$ be lattices. Let $h: L \rightarrow L_{1}$ be a bijection. Then the following conditions are equivalent:
$(\alpha) h$ is a graph isomorphism of the lattice \mathscr{L} onto \mathscr{L}_{1}, all proper cells of \mathscr{L} are regular under h and all proper cells of \mathscr{L}_{1} are regular under h^{-1}.
(β) There exist lattices $\mathscr{A}=(A ; \leqq)$ and $\mathscr{B}=(B ; \leqq)$ and direct representations $f: \mathscr{L} \rightarrow \mathscr{A} \times \mathscr{B}, g: \mathscr{L}_{1} \rightarrow \mathscr{A} \times \mathscr{B}^{\sim}$ such that $h=g^{-1} f$.

From the well-known covering conditions for modular lattices we infer:
3.8. Lemma. If $\mathscr{L}=(L ; \leqq)$ is a modular lattice, then there are no proper cells in \mathscr{L}.

From 3.8 it follows that Theorem (A) of § 1 is a particular case of Theorem 3.7. In [8] Theorem (A) was sharpened as follows:
(A_{1}) (Cf. [8].) Let \mathscr{L} be a modular lattice and let \mathscr{L}_{1} be a lattice. The graphs $G(\mathscr{L})$ and $G\left(\mathscr{L}_{1}\right)$ are isomorphic if and only if there are lattices \mathscr{A} and \mathscr{B} such that $\mathscr{L} \cong \mathscr{A} \times \mathscr{B}$ and $\mathscr{L}_{1} \cong \mathscr{A} \times \mathscr{B} .^{\sim}$

Hence if \mathscr{L} and \mathscr{L}_{1} are lattices with isomorphic graphs and if \mathscr{L} is modular, then \mathscr{L}_{1} is modular as well. The possibility of setting conditions only on \mathscr{L} (when studying graph isomorphisms of \mathscr{L} and \mathscr{L}_{1}) suggests to formulate the open question whether the condition (α) of Thm. 3.7 is equivalent to the condition
$\left(\alpha^{\prime}\right) h$ is a graph isomorphism of the lattice \mathscr{L} onto \mathscr{L}_{1} and all proper cells of \mathscr{L} are regular under h.

For the notion of the weak product of abstract algebras cf. Grätzer [4]. If $\left\{A_{\imath}\right\}$ $(i \in I)$ is a system of algebras of the same type and if and algebra A is isomorphic to the weak product of this system, then we shall write

$$
\begin{equation*}
A \rightarrow(w) \prod_{i \in I} A_{i} ; \tag{3.1}
\end{equation*}
$$

we also say that (3.1) is a weak product decomposition of A. If the set I is finite, then (3.1) implies that $A \cong \prod_{i \in I} A_{i}$.

The following result is easy to verify:
3.9. Lemma. Let \mathscr{L} and $\mathscr{L}_{i}(i \in I)$ be lattices with card $\mathscr{L}_{i}>1$ for each $i \in I$ and suppose that $L \rightarrow(w) \prod_{i \in I} L_{i}$. Assume that \mathscr{L} is of finite length. Then all \mathscr{L}_{i} are of finite length and the set I is finite.
3.10. Theorem. (Cf [9].) Let \mathscr{L} be a (locally finite) lattice. Then there are lattices $\mathscr{L}_{1}(i \in I)$ such that (i) all \mathscr{L}_{1} are directly indecomposable, and (ii) \mathscr{L} has a weak product decomposition $\mathscr{L} \rightarrow(w) \prod_{i \in I} \mathscr{L}_{i}$.

From 3.7 and 3.10 we obtain:
3.11. Theorem. Let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$ be lattices. Let $h: L \rightarrow L_{1}$ be a bijection. Suppose that the condition (α) from 3.7 is valid. Then there exist weak product decompositions $\mathscr{L}_{1} \rightarrow(w) \prod_{i \in I} \mathscr{L}_{i}$ and $L_{1} \rightarrow(w) \prod_{i \in I} \mathscr{L}_{i}^{1}$, such that (i) all \mathscr{L}_{i} and all \mathscr{L}_{i}^{1} are directly indecomposable, and (ii) for each $i \in I$, either $\mathscr{L}_{i} \cong \mathscr{L}_{i}^{1}$, or $\mathscr{L}_{i} \cong\left(\mathscr{L}_{i}^{1}\right)^{\sim}$.

4. TRANSPOSED INTERVALS AND GRAPH ISOMORPHISMS

Let us recall the following notions (cf. [2]). Let $\mathscr{L}=(L ; \leqq)$ be a lattice, $a, b, u, v \in$ $\in L, a \wedge b=u, a \vee b=v$. Then the intervals $[u, a]$ and $[b, v]$ are said to be (mutually) transposed; in such a case we write $[u, a] \sim_{t}[b, v]$ or $[b, v] \sim_{t}[u, a]$. Intervals $\left[a_{1}, b_{1}\right]$ and $\left[a_{2}, b_{2}\right]$ of \mathscr{L} are called projective if there exist intervals $\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right], \ldots,\left[x_{n}, y_{n}\right]$ in \mathscr{L} such that $\left[x_{1}, y_{1}\right]=\left[a_{1}, b_{1}\right],\left[x_{n}, y_{n}\right]=\left[a_{2}, b_{2}\right]$ and $\left[x_{i}, y_{i}\right] \sim_{t}\left[x_{i+1}, y_{i+1}\right]$ for $i=1,2, \ldots, n-1$. The projectivity of $\left[a_{1}, b_{1}\right]$ and $\left[a_{2}, b_{2}\right]$ will be denoted by $\left[a_{1}, b_{1}\right] \sim\left[a_{2}, b_{2}\right]$.

Similarly as in $\S 2$ let us assume that $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L ; \leqq{ }_{1}\right)$ are lattices with the same underlying set. Let Q, Q^{\prime}, Q_{1} and Q_{1}^{\prime} be defined as in $\S 2$. Let us consider following condition:
$(\mathrm{d}(\mathscr{L}))$ If $[a, b]$ is an interval in \mathscr{L} which is transposed to a prime interval $\left[p_{1}, p_{2}\right]$ of \mathscr{L} and if $q_{1}, q_{2} \in[a, b], q_{1} \prec q_{2}$, then (i) $\left[p_{1}, p_{2}\right] \in Q \Rightarrow\left[q_{1}, q_{2}\right] \in Q$, and (ii) $\left[p_{1}, p_{2}\right] \in Q^{\prime} \Rightarrow\left[q_{1}, q_{2}\right] \in Q^{\prime}$.

Let $\left(\mathrm{d}\left(\mathscr{L}_{1}\right)\right)$ be defined analogously and let us denote by (d) the condition saying that both $(\mathrm{d}(\mathscr{L}))$ and $\left(\mathrm{d}\left(\mathscr{L}_{1}\right)\right)$ are valid. Let $(\mathrm{a}),(\mathrm{b})$ and (c) be as in $\S 2$.

4.1. Lemma. Let (b) and (d) be valid. Then (c) holds.

Proof. (Cf. Fig. 4.1.) Assume that the conditions (b) and (d) are fulfilled. Let C be a proper cell in \mathscr{L}. We use the analogous notation for C as in $\S 2$ and $\S 3$. Without loss of generality we can suppose that $x_{1} \vee y_{1}=v$. (In the case $x_{m} \wedge y_{n}=u$ the dual argument can be used.) Also, we can assume that $m>1$. Assume that $\left[u, y_{1}\right]$ belongs to Q. Since $\left[u, y_{1}\right] \sim_{t}\left[x_{1}, v\right]$, according to (d) we infer that all prime intervals of $\left[x_{1}, v\right]$ belong to Q; in particular, we have $x_{m-1} \prec_{1} x_{m}$. In order to prove that C is regular it suffices to verify that $u \prec_{1} x_{1}$ (since we can then imply that $y_{1} \prec_{1} y_{2} \prec_{1} \ldots \prec_{1} y_{m} \prec_{1} v$ is valid).

By way of contradiction, assume that $u \succ_{1} x_{1}$ holds. Then in view of (d), all prime intervals of $\left[y_{1}, v\right]$ belong to Q^{\prime}. If $x_{m} \wedge y_{n}=u$ then $\left[y_{n}, v\right] \sim_{t}\left[u, x_{m}\right]$, hence (d), implies that $x_{m-1} \succ_{1} x_{m}$, which is a contradiction. Thus $x_{m} \wedge y_{n}=u_{1}>u$. There exists $u_{2} \in\left[u, u_{1}\right]$ with $u \prec u_{2}$. Since $x_{1} \neq y_{n}$ and $y_{1} \neq x_{m}$, we must have $x_{1} \neq u_{2} \neq$
$\neq y_{1}$. Hence $x_{1} \wedge u_{2}=u=y_{1} \wedge u_{2}$. Put $z_{1}=x_{1} \vee u_{2}, z_{2}=y_{1} \vee u_{2}$. Then we have
$\left(\alpha_{1}\right) x_{1}<z_{1}$ and all prime intervals of $\left[x_{1}, z_{1}\right]$ belong to Q,
$\left(\alpha_{2}\right) y_{1}<z_{2}$ and all prime intervals of $\left[y_{1}, z_{2}\right]$ belong to Q^{\prime}.

Fig. 4.1.

But in view of (d) this is impossible, since $\left[u, u_{2}\right] \sim_{t}\left[x_{1}, z_{1}\right]$ and, at the same time, $\left[u, u_{2}\right] \sim_{t}\left[y_{1}, z_{2}\right]$.

From 4.1 and 3.6 we infer
4.2. Lemma. Let (b) and (d) be valid. Then (a) holds.
4.3. Lemma. Let (a) be valid. Let $a, b, u, v \in L, a \wedge b=u, a \vee b=v, u<a$. If $u<_{1} a$, then $b<_{1} v$ and all prime intervals of $[b, v]$ belong to Q.

Proof. We have $b<v$. Let A and B be as in $\S 3$. According to the definition of B we have $u(B)=a(B)$, hence $v(B)=(a \vee b)(B)=a(B) \vee b(B)=u(B) \vee b(B)=$ $=b(B)$ and $v(A) \geqq b(A)$. Thus $v>_{1} b$. If $[x, y]$ is a prime interval of $[b, v]$, then $b(B) \leqq x(B) \leqq y(B) \leqq v(B)=b(B)$ and $b(A) \leqq x(A) \leqq y(A) \leqq v(A)$, hence $x \prec_{1} y$ and $x, y \in[b, v]_{1}$.
4.4. Lemma. Let (a) be valid. Let a, b, u, v be as in 4.3. If $u>_{1} a$, then $b>_{1} v$ and all prime intervals of $[b, v]$ belong to Q^{\prime}.
The proof is analogous to that of 4.3. The duals of 4.3 and 4.4 are also valid. Hence we obtain:
4.5. Corollary. $(\mathrm{a}) \Rightarrow(\mathrm{d})$.

As a consequence of $3.6,4.1$ and 4.5 we get
4.6. Corollary. Let (b) be valid. Then $(\mathrm{a}) \Leftrightarrow(\mathrm{d})$.

Now let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$ be lattices and let $h: L \rightarrow L_{1}$ be a bijection. Consider the following condition:
$\left(\mathrm{d}_{h}(\mathscr{L})\right)$ If $[a, b]$ is an interval in \mathscr{L} which is transposed to a prime interval [p_{1}, p_{2}] of \mathscr{L} and if $\left[q_{1}, q_{2}\right.$] is a prime interval of $[a, b]$, then (i) $h\left(p_{1}\right) \prec_{1} h\left(p_{2}\right) \Rightarrow$ $\Rightarrow h\left(q_{1}\right) \prec_{1} h\left(q_{2}\right)$, and (ii) $h\left(p_{1}\right) \succ_{1} h\left(p_{2}\right) \Rightarrow h\left(q_{1}\right) \succ_{1} h\left(q_{2}\right)$.

Let $\left(\mathrm{d}_{h}\left(\mathscr{L}_{1}\right)\right)$ and $\left(\mathrm{d}_{h}\right)$ be defined analogously (cf. the definitions of $\left(\mathrm{d}\left(\mathscr{L}_{1}\right)\right)$ and $\left.(\mathrm{d})\right)$.
From 4.6 we obtain:
4.7. Theorem. Let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$ be lattices. Let $h: L \rightarrow L_{1}$ be a graph isomorphism. Then the condition (β) from 3.7 is equivalent to the condition $\left(\mathrm{d}_{h}\right)$.
4.8. Lemma. Let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$ be modular lattices and let $h: L \rightarrow L_{1}$ be a graph isomorphism of \mathscr{L} onto \mathscr{L}_{1}. Then the condition $\left(\mathrm{d}_{h}\right)$ is fulfilled.

Proof. Since \mathscr{L} and \mathscr{L}_{1} are modular, they have no proper cells, hence the condition (α) from 3.7 is valid. Thus (β) of 3.7 is valid as well. In view of 4.5 we infer that $\left(\mathrm{d}_{\boldsymbol{h}}\right)$ holds.

The assertion "only if" of Theorem (A) (cf. § 1) is a corollary of 4.7 and 4.8.

5. SUBDIRECT DECOMPOSITIONS

The following result is due to G. Birkhoff ([3], § 5):
(B) Let Land M be any two modular lattices of finite lengths and let their graphs $G(L)$ and $G(M)$ be isomorphic. Let L_{1}, \ldots, L_{r} and M_{1}, \ldots, M_{s} be the "simple" subdirect factors of Land M, respectively. Then $r=s$, and we can so order the M_{j} 's that $M_{j} \cong L_{j}$ or $M_{j} \cong L_{j}^{\sim}$.

The proof of (B) was established by investigating the properties of pairs of projective prime intervals under graph isomorphisms ([3], Lemma 12).

Let us now consider the subdirect product decompositions with subdirectly indecomposable factors in the case when neither the condition concerning finite length nor modularity is assumed.

Let $\mathscr{L}=(L ; \leqq)$ be a lattice, card $L>1$. The system of all congruence relations of \mathscr{L} is denoted by Con \mathscr{L}. Let x and y be distinct elements of L and let $K(x, y)$ be the system of all $\theta \in \operatorname{Con} \mathscr{L}$ such that $x \theta y$ fails to hold. Let $K_{m}(x, y)$ be the set of all maximal elements of $K(x, y)$. Further let $\theta_{0}(x, y)$ be a fixed element of $K_{m}(x, y)$ and let $\left\{\theta_{i}\right\}(i \in I)$ be the set of all such $\theta_{0}(x, y)$ (for all pairs of distinct elements x and y of L). Then all lattices \mathscr{L} / θ_{i} are subdirectly indecomposable. Let I_{1} be a subset of I such that $\bigwedge_{i \in I_{1}} \theta_{i}=0$. Then \mathscr{L} is a subdirect product of the lattices $\mathscr{L} \mid \theta_{i}\left(i \in I_{1}\right)$ (cf., e.g., [1], Chap. VII, 6, or [2], Chap. VII, 8).

We obviously have $K(x, y)=K(x \wedge y, x \vee y)$. If the intervals $\left[x_{1}, y_{1}\right]$ and [x_{2}, y_{2}] are projective, then $K\left(x_{1}, y_{1}\right)=K\left(x_{2}, y_{2}\right)$. Hence we may choose $\theta_{0}(x, y)$
in such a way that $\theta_{0}\left(x_{1}, y_{1}\right)=\theta_{0}\left(x_{2}, y_{2}\right)$ is valid whenever $\left[x_{1}, y_{1}\right]$ is projective to $\left[x_{2}, y_{2}\right]$. Let this condition be fulfilled.

Now we apply the assumption that \mathscr{L} is locally finite. Put $I_{0}=\left\{i \in I: \theta_{i}=\right.$ $=\theta_{0}\left(x_{1}, y_{1}\right)$ for some prime interval $\left[x_{1}, y_{1}\right]$ of $\left.\mathscr{L}\right\}$. Then we clearly have $\wedge_{i \in I_{0}} \theta_{i}=$ $=0$. Hence \mathscr{L} is a subdirect product of lattices $\mathscr{L} / \theta\left(i \in I_{0}\right)$. This subdirect decomposition of \mathscr{L} will be called canonical; we also say that the system $\left\{\theta_{i}\right\}\left(i \in I_{0}\right)$ is canonical for L.

Let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$ be lattices with isomorphic graphs. As above, without loss of generality we can suppose that $L_{1}=L$ and that the identity mapping is a graph isomorphism of L onto L_{1}. In what follows we shall assume that the condition (c) is valid; hence (a) holds as well.
5.1. Lemma. Let $x, y \in L$. Assume that $x<y$ and $x \prec_{1} y$. Then there is a prime interval $\left[x_{1}, y_{1}\right]$ of \mathscr{A} which is projective to $[x, y]$.

Proof. Let x_{0} be as in the definition of A and B (cf. § 3, Lemma 3.5). Put $x_{1}=$ $=x(A), y_{1}=y(A), u=x \wedge x_{1}, v=y \wedge y_{1}$. Elementary calculations show that $[x, y] \sim_{t}[u, v]$ and $[u, v] \sim_{t}\left[x_{1}, y_{1}\right]$. Hence $\left[x_{1}, y_{1}\right]$ is projective to $[x, y]$.

Analogously we can verify
5.2. Lemma. Let $x, y \in L$. Assume that $x \prec y$ and $x \succ_{1} y$. Then there is a prime interval $\left[x_{1}, y_{1}\right]$ of \mathscr{B} which is projective to $[x, y]$.
5.3. Corollary. Let the system $\left\{\theta_{i}\right\}\left(i \in I_{0}\right)$ be canonical for \mathscr{L}. Then for each $i \in I_{0}$ there exists a prime interval $\left[x_{1}, y_{1}\right]$ of \mathscr{L} such that (i) $\theta_{i}=\theta_{0}\left(x_{1}, y_{1}\right)$, and (ii) either $x_{1}, y_{1} \in A$ or $x_{1}, y_{1} \in B$.

For each $\theta \in \operatorname{Con} \mathscr{L}$ we define the relation $\left.\theta\right|_{A}$ by putting, for $a_{1}, a_{2} \in A,\left.a_{1} \theta\right|_{A} a_{2}$ if $a_{1} \theta a_{2}$; let $\left.\theta\right|_{B}$ be defined analogously. Conversely, let $\theta_{1} \in \operatorname{Con} \mathscr{A}, \theta_{2} \in \operatorname{Con} \mathscr{B}$. For $z_{1}, z_{2} \in L$ we put $z_{1} \theta_{1}^{*} z_{2}$ if $z_{1}(A) \theta_{1} z_{2}(A)$; similarly we set $z_{1} \theta_{2}^{*} z_{2}$ if $z_{1}(B) \theta_{2} z_{2}(B)$. Then $\left.\theta\right|_{A} \in \operatorname{Con} \mathscr{A},\left.\theta\right|_{B} \in \operatorname{Con} \mathscr{B} ; \theta_{1}^{*}$ and θ_{2}^{*} belong to $\operatorname{Con} \mathscr{L}$.

If $\left\{\theta_{i}\right\}_{i \in I_{0}}$ is a canonical system for \mathscr{L}, then we denote $I_{1}=\left\{i \in I_{0}: \theta_{i}=\theta_{0}\left(x_{1}, y_{1}\right)\right.$ for some prime interval $\left.\left[x_{1}, y_{1}\right] \subseteq A\right\}, I_{2}=\left\{i \in I_{0}: \theta_{i}=\theta_{0}\left(x_{1}, y_{1}\right)\right.$ for some prime interval $\left.\left[x_{1}, y_{1}\right] \cong B\right\}$. In view of 5.1 and 5.2 we have $I_{1} \cap I_{2}=\emptyset, I_{1} \cup I_{2}=I_{0}$.

The following lemma is an immediate consequence of (a):
5.4. Lemma. (i) Let $\left\{\theta_{i}\right\}_{i \in I_{0}}$ be a anonical system for \mathscr{L}. Then $\left\{\left.\theta_{i}\right|_{A}\right\}_{i \in I_{1}}$ is a canonical system for \mathscr{A} and $\left\{\left.\theta_{i}\right|_{B}\right\}_{i \in I_{2}}$ is a canonical system for \mathscr{B}.
(ii) Let $\left\{\theta_{i}\right\}_{i \in I 1^{\circ}}$ be a canonical system for \mathscr{A} and let $\left\{\theta_{i}\right\}_{i \in I_{2}{ }^{\circ}}$ be a canonical system for \mathscr{B}. Then $\left\{\theta_{i}^{*}\right\}_{i \in I_{1}{ }^{0} \cup I_{2}{ }^{\circ}}$ is a canonical system for \mathscr{L}.

The following assertion is obvious:
5.5. Lemma. If $\theta \in \operatorname{Con} \mathscr{B}$, then $\theta \in \operatorname{Con} \mathscr{B}^{\sim}$ and $\mathscr{B} \mid \theta$ is dually isomorphic to $\mathscr{B}^{\sim} / \theta$.

If $\left[x_{1}, y_{1}\right]$ is a prime interval in \mathscr{A} and $\theta=\theta_{0}\left(x_{1}, y_{1}\right)$, then for each pair of elements $x_{2}, y_{2} \in B$ we have $x_{2} \theta y_{2}$; hence $\mathscr{L} / \theta \cong \mathscr{A} /(\theta / A)$. Similarly, if [x_{2}, y_{2}] is a prime interval in \mathscr{B} and $\theta=\theta_{0}\left(x_{2}, y_{2}\right)$, then $\mathscr{L} / \theta \cong \mathscr{B} /\left(\left.\theta\right|_{B}\right)$. Thus 5.3, 5.4 and 5.5 yield:
5.6. Theorem. Let $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L ; \leqq{ }_{1}\right)$ be lattices fulfilling (b) and (c). Let a canonical subdirect representation of \mathscr{L} with subdirect factors $\mathscr{L} \mid \theta_{i}(i \in I)$ be given. Then $\left\{\theta_{i}\right\}(i \in I)$ is a canonical system for \mathscr{L}_{1} and for each $i \in I$, either $\mathscr{L} \mid \theta_{i}$ is isomorphic to $\mathscr{L}_{1} \mid \theta_{i}$ or $\mathscr{L} \mid \theta_{i}$ is dually isomorphic to $\mathscr{L}_{1} \mid \theta_{i}$.

If the lattices $\mathscr{L}=(L ; \leqq)$ and $\mathscr{L}_{1}=\left(L_{1} ; \leqq{ }_{1}\right)$ and the bijection $h: L \rightarrow L_{1}$ fulfil (α), then an assertion analogous to 5.6 holds.

References

[1] G. Birkhoff: Lattice theory, first ed., Amer. Math. Soc., Providence, 1940.
[2] G. Birkhoff: Lattice theory, 3rd ed., Amer. Math. Soc., Providence, 1967.
[3] G. Birkhoff: Some applications of universal algebra. Colloquia Math. Soc. J. Bolyai, 29. Universal algebra (Esztergom 1977), North Holland, Amsterdam 1982, 107-128.
[4] G. Grätzer: Universal algebra, Van Nostrand, Princeton, 1968.
[5] Я. Якубик: О гвафическом изоморфизме структур. Чехослов. мат. ж. 4 (1954), 131-141.
[6] J. Jakubik: On graph isomorphism of semimodular lattices. (Slovak.) Matem. fyz. časopis 4 (1954), 162-177.
[7] J. Jakubik: Graph-isomorphism of multilattices. (Slovak.) Acta fac. Rer. Nat. Univ. Comenianae, Mathematica 1 (1956), 255-264.
[8] J. Jakubik: Unoriented graphs of modular lattices. Czech. Math. J. 25 (1975), 240-246.
[9] J. Jakubik: Weak product decompositions of discrete lattices. Czech. Math. J. 21 (1971), 399-412.
[10] Я. Якубик, М. Колибиар: О некоторых свойств $2 \times$ пав структур. Чехослов. мат. ж. 4 (1954), 1-27.
[11] M. Kolibiar: Semilattices with isomorphic graphs, Coll. Math. Scc. J. Bolyai, 29. Universal algebra (Esztergom 1977), North Holland, Amsterdam 1982, 473-481.
[12] M. Tomková: On multilattices with isomorphic graphs. Math. Slovaca 32 (1982), 63-74.

[^0]
[^0]: Author's address: 04001 Košice, Karpatská 5, Czechoslovakia (MÚ SAV).

