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Czechoslovak Mathematical Journal, 35 (110) 1985, Praha 

COMMON CONSEQUENTS IN DIRECTED GRAPHS 

STEFAN SCHWARZ, Bratislava 
(Received June 1, 1983) 

Let V = {^1, «25 •••? ^n} be a finite set with n ^ 2 different elements. By a binary 
relation on F we mean a subset Q ofV x V. Let B„(V) be the set of all binary relations 
on V (including the empty relation). Then under the usual multiplication of binary 
relations B„(V) becomes a semigroup. 

Let M„ denote the set of all n x n matrices over the Boolean algebra {0, 1}. 
Then M„ is a semigroup under the Boolean matrix multiplication. The map 

(1) Q -^ М{д) = {m,j), 

where т,.у = 1 if (â -, a^eq and Шц — 0 otherwise, is an isomorphism of J5„(F) 
onto M„. In particular, 

^ . 0- -> M{Q) . M(o) = M{Q . cr) . 

Bj(V) is closed under the set-theoretical union Q\J a and M„ admits an addition 
M' + M" (the sum of Boolean matrices). The map (1) preserves these operations, i.e. 

QKj a -^ M(Q) + M{(T) = M{Q U cr) . 

Let Gniy) be the set of all directed graphs with n vertices (a^, «2 , . . . , a^ with 
allowable loops and simple directed edges. Each matrix in M„ can be considered as 
the adjacency matrix of a directed graph Я in Gn{V) and determines H uniquely up 
to an isomorphism. Conversely, each graph in G„(F) with labelled vertices determines 
a unique Boolean matrix in M„ as its adjacency matrix. 

We have a one-to-one correspondence between J5„(F), M„ and G„(F): 

Q ^ M{Q) <-> G{Q) . 

Here G{Q) is the graph corresponding to the matrix M{Q), 
In the following we shall freely use these obvious correspondences. 
If Q is given and «,• e F, we define a^q = {xeV: (at, х)ед], И К is a non-empty 

subset of F, we put Kg = \J UIQ, 
ateK 

The next notions concern the (finite directed) graph G(Q). A sequence of vertices 
<̂ io> ^»'i' • • •' ^1кУ is a path of length к in G{Q) if every pair of adjacent vertices in this 
sequence is in Q. An edge is a path of length 1. 
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A vertex aj is a consequent of length к of a vertex a^ if there is a (directed) path 
of length к beginning with â  and ending with aj. This is equivalent to the statement 
a J e ÜIQK 

A path of the form (а^ ,̂ а^^,..., â )̂ is called a cycle. If all its elements with the 
exception of the last one are pairwise different, the cycle is called a circuit of length k. 
A circuit <a,-, a,) is a loop. 

Suppose there is a circuit going through a fixed chosen vertex a^ e F, i.e. a^ e ÜIQ^ 
for some integer A: > 0. Denote by ft^ the least integer such that л,- e a^g^^ (i.e. 
flf^ a^Q^ for h < hi). Then any circuit of length hi going through a,- will be called 
an elementary circuit belonging to the vertex üi (or an elementary circuit going 
through a,.). 

Definition. Let Q be given. We shall say that a pair of vertices (a ,̂ öy), ÜI + â , has 
a common consequent (c.c?) if there is an integer / > 0 such that 

(2) üiQ^ n üjQ^ Ф 0 . 

In terms of Boolean matrices this means: The rows corresponding to â  and aj 
in M{Q^) have a 1 in the same column. 

Example 0,1. Let F = {a^, «2? <̂ з} aii<i let ^̂  be defined by 

/0 0 1\ 
M(ßi)= 1 0 0 . 

\ l 1 0/ 

M(e^)= 0 0 1 , M{e\) 

We have 

The pair (a^, a2) has a common consequent of length 3 since 

«1^1 ^ ^iQi = (* » CI^QI n a2Ql = 0 , «1^^ n a2^i = {aJ Ф 0 . 

We shall often use diagrams of the form 
üi -^ a^ -^ Ü2 -^ a^ , 

«2 -^ ^1 -> ^3 -» a^ , 

to specify the paths by which the сс can be reached. 
Let again V = {ai, Ö2> «3} and let ^2 be defined by 

/0 0 1 \ . 
M{e,) = ii 0 0 . 

\o 1 0/ 

It is easy to see that none of the pairs (a^, ^2), (^2, Ö3), (0̂ 1, Ö3), have a common 
consequent. 
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Example 0,2. This example shows that some care is necessary. Let V = {a^, аз, a^} 
and let Q be defined by 

Then 
M(e^) = 

Hence a2Q n a^Q = {̂ 1} ф 0, while a2Q^ n a^Q^ = 0. 
We show that this situation cannot occur if M{Q) has no zero row. 
By the first projection П(о) of Q we mean the subset of F consisting of all â  e V 

for which üiQ Ф 0. 
If П{о) = Fand ÜiQ — {üj^, ai,...}, then aiQ^' = ÜIQ . Q = {а,̂ ? cii, ••-} Q Ф Ф and, 

repeating this argument, we obtain П(д^) = F for any / > 0. 
If П(о) = F, then a^Q^ n ÜJQ^ Ф 0 implies the existence of an a^eV such that 

aj,eaiQ\ a^eajQ^ hence a^g^ с aiQ^'^\ a^q^ с ajQ^^\ whence а̂ ^̂ "̂ '* n a^q^^^ ф 0 
for any integer f > 0. We state this fact explicitly: 

Lemma 0Д. / / П{о) = F, f/zen â -̂ ^ n ÜJQ^ ф 0, {â -, â } 6 F, implies ÜIQ^^^ n 
n öŷ "̂̂ ^ Ф 0/ОГ аиу integer Г > 0. 

Definition. Let ^ e J5„(F), F = (a j , . . . , a„}. If â -, â  have a common consequent, 
then the least integer / ^ 1 for which ÜIQ^ n QJQ^ ф 0 will be denoted by Ь(а^, a^. 

To shorten the terminology, if a,-, â  have a common consequent, we shall say that 
L{ai, aj) exists. 

If there is at least one couple (a ,̂ Uj) for which L{ai, aj) exists, we define L{Q) = 
= max L{ai, aj), where (a ,̂ aj) runs through all couples for which Ь((Я̂ , a )̂ exists. 
If M = M(Q) is the Boolean matrix corresponding to Q in the correspondence (1), 
we shall write L{M) = L{Q). If, finally, there is no couple (a ,̂ aj) for which L(a/, aj) 
exists, we define L(^) = L{M) = 0. [Note that in contradistinction to this definition 
L{ai, aj) is either ^ 1 or does not exist.] 

The cardinality of a set Q will be denoted by |ö|. 
The following lemma is known. (See A. Paz [1], p. 89.) 

Lemma 0,2. Let g e B„(V), V = [a^, ..., a„}, (a^, aj} e F / / Ь(а^, â ) exists, then 
L{ai, aj) й in{n - 1). 

Proof essentially repeats that given in [ l ] . We include it not only for the sake of 
completeness, but rather since the modifications of the method used here will be used 
several times in the sequel. 

Denote t = L(a,., â ) and consider the paths 
a, = a\'^ -> a\'^ -^ ,.. a['-'^ -^ a\'^ = a , 
a J = af^ ~> а̂ .̂ > -> ... а^^ >̂ -^ af = a . 

Here a e QIQ^ n ajQ\ while for all / < t we have aiQ^ n aß^ = 0. 
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The sequence of pairs 

(3) 

cannot contain two equal pairs, since if 

with и ^ 1, we may omit in (3) the segment 

which yields ÜIQ^ " n ÜJQ^ " Ф 0, a contradiction with the definition of t. 
We next show that only one of the pairs of the form 

Г Л and Г Л [a'eV, a" eV, a' Ф a"'] 

can appear in (3). 
Indeed, suppose that 

X.'>) = t ) ""'' (°r-') = («') 
for some w > 0. The first equality implies that v = t — lis the least integer for which 
а'д"" n a"Q^ Ф 0. The second one says that a"Q^ n Q'Q^ Ф 0 for W = Г — (/ + W). 
Since w < t;, we have a contradiction. 

Now the number of all unordered pairs ( „ j with a' ^ a" \a\ a" e V~\ h equal 

to ^n{n — 1). Hence in (3) we have t ^ ^n(n — 1). This proves Lemma 0,2. 
A. Paz [1] remarks that it is not known whether the bound \n{n — 1) is sharp. 

He also remarks that the difference between the above bound and any sharper bound 
is of order of magnitude ^n. 

The purpose of this paper is to prove that the above bound is not sharp. We prove 
that for any binary relation Q e B„(F) and a^, aj G V, if Ь(а^, aj) exists, then 

(4) L{ai, aj) S in^ - n + 8„, 

where 
fl if n is even , 
[2 

Moreover, this result is the best possible. 
The formulation of this result in terms of directed graphs or in terms of Boolean 

matrices is obvious. 
Though we shall often use graph-theoretical methods, the use of binary relations 

seems to have many advantages. For instance, ÛIQ^ describes all vertices accessible 
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from the vertex Й,- by a path of length I. Note also that we shall have to deal with 
"high" values of / (i.e. values of order |n^) . 

We prove our statement in several steps. We first prove it for primitive relations. 
This is the essential part. For irreducible but not primitive relations we find estimates 
which are better than (4). Finally we treat the case of a "general" relation. 

The function N(n) = ^n^' — n + e„ defined for all integers n ^ 2 plays an essential 
role in the following. Here we give the first eight values of N{n): 

N(2) = 1 , N{6) = 13 , 

N{3) = 3 , iV(7) = 19 , 

iV(4) = 5 , iV(8) - 25 , 

iV(5) = 9 , iV(9) = 33 . 

We now prove our statement in two rather trivial cases. 
Suppose that M(Q) contains a zero row, say the row corresponding to a"^ eV, 

i.e. a*^ = 0. We may suppose n ^ 3. Clearly L(a*, Uj), aj Ф a*, does not exist. 
Let therefore QJ Ф a*, â  Ф A*, ai Ф aj. The sequence arising from the paths joining 
üi, a J with a common consequent a^^\ 

cannot contain a couple of the form 

^^ { ^] with a' Ф a*. 
a J \a 

Suppose that (5) is the shortest possible sequence. We use the same argument as in 
Lemma 0,2. The number of all unordered pairs 

iv)\ 
(,). with а|^>ф4^> 

in (5) is at most ^{n - 1) {n — 2) = ^n^ - f n + 1, so that 

L(fl,., aj) SW - in + 1 = N{n) - {in + e„ - 1). 

We have proved: 

Lemma 0,3. Let Q e B„(F), n ^ 3, and suppose that M(Q) contains a zero row. 
If L{ai, aj) exists, we have 

{ N(n) — ^n if n is even , 

fs{(yi^ if n IS odd , 

Remark . Here it may happen that the c.c. is the vertex a*. As a simple example 
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consider the relation Q with 
/0 1 1 \ 

M{Q) = 0 0 0 . 
\ l 1 O/ 

Here L(ûi, аз) = 1 and the ex. of a^, a^ is «2 = Ö:*. 

Suppose next that M(^) contains a zero column, say the column corresponding 
to a** e F If n = 2 and Ь(а,., a^) exists, then L(ai-, aj) = 4. Suppose therefore in the 
following n ^ 3. 

If äf Ф a**, ay Ф a**, â  Ф a ,̂ then the sequence (5) cannot contain a couple 
of the form 

a**\ a or 

[since a** is inaccessible from any â  e F ] . The number of pairs in (5) is again at 

most I 

(a**\ ) [which is possible], we obtain a sequence 

containing at most ( ) + 1 different terms so that 

L(a,, a,.) ^ ^ - ^ n + 2 = N(n) - f~ + e, - l]. 

We have proved: 

Lemma 0,4. Let Q e ^„(F), n ^ 3, and suppose that M{Q) contains a zero column. 
If L[ai, aj) exists, then 

-. / \ ^ N(n) ~ i 1 I if n is even , 
L{ai,aj)u< ^ ^ \2 J 

[м(п) - i(n + 1) ifn is odd . 

Lemmas 0,3 and 0,4 [which show that (4) holds in the special cases just considered] 
will be used in Section 5. 

E x a m p l e 0,3. We close this section by giving a method how to find a c.c, (if it 
exists). Consider the relation Q with 

M{Q) = 

, 0 1 0 0 0 . 
/o 0 1 0 o\ 
0 0 0 1 0 

a 1 0 0 0 
\ i 0 0 0 0̂  
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To find L(a2, «5) we write down (in an obvious notation) the sequence of "rows" 

«5/ ' \ « l / ' \ « 2 / V ^3 / V «4 / V«l. «2/ ' \ 'Зг. «3 

Hence ^2^^ n ag^^ = {аз}, while аз^^ n a^g^ = 0 for / g 5. Here we have 
L(a2, a^) = 6 = N{5) — 3, which shows that the bound from Lemma 0,4 is achieved. 
The scheme "contains" any of the shortest paths joining a2 and a^ with the common 
consequent {«2}- ^ f course some of the transitions (e.g. «2 ~̂  «2 or a^ -> a^) are 
forbidden. In our example we have a unique possibility: 

«2 -^ «3 -> a4 -> «2 -^ «3 -> « 4 -^ «2 , 

«5 -> «1 -> «2 ~^ «3 "^ « 4 ~^ <̂ 1 "^ «2 • 

1. PRELIMINARIES 

Motivated by the terminology in the study of non-negative matrices we define: 
A Boolean square matrix Ä is called reducible if there is a permutation matrix P 

such that РЛР~ ^ is of the form 

where B, D are square matrices. Otherwise it is called i r r e d u c i b l e . 
A relation^Gß„(F) is called reducible (irreducible) if M(^) is reducible (irreducible). 
It follows that 1 x 1 matrices are irreducible. 
In general, any Boolean square matrix is permutation cogredient to a matrix of the 

form 
(A, 0 . . . 0 

-^21 2 • • • vJ 

\^kl ^k2 • • • ^/ 

where Ai are irreducible. 

We now recall some results concerning irreducible relations. (See, e.g., [2].) 
Lemma 1Д. Let Q e B„[V), n ^ 2. The following statements are equivalent: 
a) Q is irreducible; 
b) Q и Q^ и ,.. и Q" = V X V; 
c) aiQ u aiQ^^ u ... u â -̂ " = V for any aiE V; 
d) G{Q) is strongly connected. 

Note expHcitly: If Q is irreducible, then M(Q^) cannot have a zero row or a zero 
column (for any integer t > 0). *̂ 
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The statement с) implies: 
Lemma 1,2. Let Q be irreducible, Q E B^{V). Then for any a^ e V there is a least 

integer hi, 1 ^ /Ï^ ^ n, such that aiEaiQ^K 
Given Q we have defined a function h:V-> {1, 2, ..., n} such that h(a,) = h^. 

This notation will be used throughout the paper. 

Definition. Let Q be irreducible, Q E B „ ( F ) . The greatest common divisor d = 
= d(Q) = [h^, /i2, ..., h„) is called the index of imprimitivity of Q. Clearly d = 
= dig) й п. 

Another characterization of d(^) is obtained by considering the matrix representa­
tion M(Q). 

Lemma 1,3. / / g is irreducible and d = d^g) > 1, then the set V = П(д) admits 
a decomposition into d disjoint non-empty subsets F = Fi u F2 u . . . u F^ such 
that 
(7) gcz{V,x V2) u (F2 X F3) u ... u (F, x F,) . 

Hence M(g) is permutation cogredient to a matrix of the form 

/ 0 ^1 . . . 0 0 >̂  
0 0 . . . 0 0 

0 0 . . 0 A,_, 
. . 0 0 

If \Vi\ = Vi and v^+i = Vx, the zero matrices in the main diagonal are v^ x Vi 
square matrices, while Ai is a Vi x Vi+i Boolean rectangular matrix. 

Definition. The sets V^, F2, ..., F^ are called the sets of imprimitivity of g. 
It follows from (7) that 

Q' ^ {Vx X V,) u (F2 X F2) u ... u (F, X F,) 

and it is well known that there is an integer /CQ > 0 such that for all /c ^ fco» 

gälc ^ ^y^ X p.̂ ) U (F2 X F2) U ... U (F, X F,) . 

This implies: 

Lemma 1,4. Let g be irreducible, d ^ 1 and let V be one of the sets of im­
primitivity of g. If ai E V, then there is an integer fco > 0 such that for any fc ^ fco 
we have aig^^ = V, 

To find explicitly the sets F^, F j , . . . , F^ we may use the following 

Lemma 1,5. Let g be irreducible, d(g) > 1 and а^ЕУ== П(д). 
a) The sets 

а1д\а^д''-\ (8) 

are disjoint subsets of Vfor any I ^ 1. 
., a^g i+d-i 
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b) There is an integer /Q > 0 such that for any I ^ IQ {and any ai e V) the sets 
(8) constitute exactly all the sets Vi, V2,..., V^. 

c) / / V is one of the sets of imprimitivity of g, then V\ Vg^..., V'g^~^ are all the 
sets of imprimitivity of g. 

Remark . Bounds for k^ and IQ depending on n and d have been given in [3]. 
We shall not need them in this paper. 

E x a m p l e 1,1. Consider the relation g defined on F = (a^, a2, «3, a^ with 

/0 1 0 1\ 
M{g) = / 0 0 1 0 . 

1 0 0 0 
\0 0 1 0/ 

g is irreducible since G{g) is strongly connected. We have, for instance, 

^iQ = {^3} . a2g^ = { a J , a2g^ = (0^2, a^} , ^^^^ = {^3}, . . . 

Here /0 = 1 ari^ ^1 = {^3)5 ^2 = {«i}j ^3 = {<^2^ Ö4}. Hence d = 3. Also /г(а^) = 3 
for I = 1, 2, 3, 4. Further 

g = {V,x F , ) u ( F , X F3)u (F3 x V,) , 

and M(^) is permutation cogredient with the matrix 

/0 1 0 0^ 
0 0 1 1 
1 0 0 0 | 

\1 0 0 0/ 

Definition. Ä relation g is called primitive if there is an integer t > 0 such that 
g' = V X F 

A relation is primitive iff it is irreducible and d(g) = 1 . 
Note also: If g is primitive, there is an integer 0̂ > 0 such that for t^toWQ have 

^iQ' = {«1» Ö2,..., a„} = F for any a.-e F 

Corollary 1,1. If g e B„(F) is primitive, then any two vertices a^, aj e V have 
a common consequent. That is, Ua^, ay) exists for any pair {ai, ayj where ai Ф a^. 

Theorem 1Д. Let geBj^V). Suppose that g is irreducible and d{g) > 1. Then 
L[ai, aj) exists iff ai and aj are contained in the same set of imprimitivity of g. 

Proof, a) Suppose that a^e F ' , a^e F ' . Then (by Lemma 1,4) there is an integer /CQ 
such that for any к ^ k^ WQ have aig^^ = F ' = aj-g*^^. Hence L(a^, aj) exists. 

b) Let a I e V, aj e V" and V Ф V\ By Lemma 1,4 there is a fco > 0 such that 
a^g^^ = V\ ajg^^ = V" for any к ^ kQ. Suppose (for an indirect proof) that there is 
an / > 0 such that aig^ n ajg^ Ф 0. Choose fc such that Jfc -- / > 0. By Lemma 0,1 
(multiplying by g"^^'^) we then have aig^^ n ajg^^ ф 0, F ' n V" ф 0, a contradiction 
with the fact that V and V are disjoint. Hence L{ai, aj) does not exist. 
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2. PRIMITIVE RELATIONS 

The goal of this section is to prove Theorem 2,3. We begin with a series of lemmas. 

Lemma 2Д. Let Q be irreducible, Q G BJV), n ^ 2 and let Q be a non-empty 
proper subset of V. Then Q . Q contains at least one element of V which is not con­
tained in Q. 

Proof. Let Q = [a^, aß, ..., a j . Suppose for an indirect proof that 

{a«, aß, ...,a^},Qc: {a^, aß, ..., a^} . 

Let (a^, a^) e Q. If a^ G Q, we necessarily have a^ G Q. Hence if a^e Q, a^e V — Q = 
= B, then (a^, a^) ф Q. Therefore 

Q cz{Qx Q)KJ{B X Q)u{B X B), 

i.e. Q is reducible, contrary to the assumption. 

Lemma 2,2. Let Q be primitive, Q G BJV), n ^ 2 and ai e V. If aiQ^ = a^Q^ for 
some 1 ^ s < t, then \aiQ^\ = n. 

Proof. The supposition aiQ^ = â ^̂ "̂ *̂"̂ ^ implies aiQ^ = а̂ *̂"̂ ^̂ '"̂ ^ for any integer 
/ ^ 1. Since for a sufficiently large / the right hand side is V, we have aiQ^ = V, i.e. 
|ö/^''l = п. 

Note that if Q is primitive, Q^ is primitive for any ^ > 1. 

Let Q be primitive, Q G Д , ( К ) , n ^ 2 and consider the chain: 

(9) a^ G а^д''^ cz д.^^/,, ^i ... cz а^^^"/'̂ '«' . 

Here (and in the following) [x] is the largest integer £x. By Lemma 2,1 aiQ^' 
contains at least two elements, by Lemma 2,1 and Lemma 2,2 a,-̂ ^ '̂ contains at least 
three elements of V, etc. Hence 

_2_ 

If aj Ф a^, we analogously have |aŷ ^̂ ''̂ ^̂ ^̂ | ^ [^ /̂2] + 1. 
If /îj = h J, we have 

hence L(a -̂, aj) ^ [n/2] /i^. If for instance h^ < hj, multiply each term in (9) by 
^[./2](fo,-/,.) ^ g ^1^^^.^ Î̂ g following chain of length [n/2] + 1: 

whence |а^^^"/'3''-'1 ^ [n/2] 4- 1. Therefore a,-̂ f"/2̂ ^̂ - n a/"'^^'-'' Ф 0, and^a^ ,^ ; ) ^ 
= [и/2] /îj. Analogously if hj < hi. 

We have proved: 
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Lemma 2,3. Suppose that Q e BJ(^V), n ^ 2, and Q is primitive. Then Ь{а^, aj) ^ 
S [n/2] max (й^, hj). 

Recall that hi ^ n. If n = 3, we have Ь(а^, aJ) ^ 3. This bound is achieved since 
in Example 0,1 we have L(ai , ^2) = 3. If n = 2, there are only three primitive rela­
tions, namely those for which the matrix representations are: 

, i o j ' ( i i j ' ( i i j -
Hence L(ai, (̂ 2) = 1. 

We note this explicitly, since in the following we shall often suppose n ^ 4. 

Corollary 2,3. Let Q be primitive, Q e B„(V), If n = 2, L{a^, аз) = 1. If n = 3, 
L{ai, aj) ^ 3. 

Lemma 2,3 immediately implies: 

Theorem 2Д. Let Q be primitive, Q e BjV) and n ^ 3. If /г(а,) ^ n ~ 2, h{aj) й 
^ n — 2, then 

if n is even , 
is odd. L,ai,aj) = | ^ ^ ^ ^ _ i ^ ^ _̂  j ^ .^^ 

Proof. For n even we have Ь(а^, a^) ^ ^n{n — 2) = N{n) — 1, For n odd we 
have L{ai, aj) й i{n ~ l){n- 2) = N{n) - i{n + 1). 

There is a simple case which can be treated directly. 

Lemma 2,4. If Q is primitive, Q e Bj(y) and G(^) contains a loop, then L[ai, aj) S 
S n — 1 (for any ai, aj e V). 

Proof. Suppose that ai€ aiQ, and â  Ф ai, aj Ф ai, ai Ф aj. Since G{Q) is strongly 
connected, there is a path of length /c^, 1 ^ /cj g n ~ 1, joining â  with ai and a path 
of length k2, 1 й ^2 й n - 1, joining GJ with ai, i.e., aieaiQ^', aieajg^\ Using 
the loop (several times if necessary) we obtain aieaiQ"~\ aieajQ""'^, hence 
L{ai, a^ -^ n - I. The same argument can be aplied also in the case if a^ or aj 
coincides with ai. 

The next lemma may be considered a generalization of Lemma 2,4. 
Note that if Q is primitive, then d{Q) = 1 = {h^, /z2,..., й„) implies that not all h^ 

can be equal to n. Hence the length of the shortest elementary circuit in G{Q) is 
un - L 

Lemma 2,5. Let g be primitive, g G БД F) and n ^ 4, Let ho ^ 1 be the length 
of the shortest elementary circuit in G(g). Denote L^ = ([n/2] - 1) /IQ + n. Then 
for any a^eVwe have 

Proof. Denote by С = <Wi, «2^ •••, W/,«. Wi> one of the elementary circuits of 
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length HQ. [Here IIQ ^ n — 1 and Ui e V,~\ For each w 6 С we have и e UQ^"^. For any 
а^еУ — {u^, U2,..., W/,o} there is a path of length ki, 1 ^ ki ^ n — /70, joining â  
with some Uj e С This means: there is a Uj e С such that MJ e aiQ^', where ki ^ 
S n — JIQ. Consider the chain 

и J e UjQ^"" с 1/̂ .̂ ^̂ ° с ... с 

and (for any integer t ^ 1) the chain 

UJQ' С UJQ^'''^' CZ UJQ^^'^'^' CZ ... 
For any ^ ^ 0 we have \UJQ^"^^'^^^'^'\ ^ [n/2] + 1. 

Now, since Uj e a^Q^'' we have 

UjQ ["/2]/io 

UjQ [n/2]/io+f 

+ 1 ^ \ujQ^"^^^'-^' й |a,^t"/'^'«^^^^^''|. 

Putting r = n - /lo - /Cf ^ 0, we have 

+ 1 , 

which proves our lemma in the case that â  is outside of C. 
If и belongs to C, the chains 

и E UQ^"" Œ UQ^^"" UQ' 1«/2]йо 

UQ CZ UQ' 

show that for any t ^ 0, 

M + t UQ 2ho + t 

| ^ Л « / 2 ] / ; о + Н > 

UQ 

+ 1. 

ln/2-\ho+t 

In particular, with Г = n - /IQ we obtain [UQ^^'I ̂  [n/2] + 1. 
This proves Lemma 2,5. 

Fig. 1. 

R e m a r k 1. Some care is necessary when dealing with*^inequalities containing 
expressions as |а^^^| and [а̂ -̂ "̂̂ !̂. It may happen that |<^,^^^^| < {ÜIQ^ [This cannot 
occur if ^ is primitive and / is sufficiently "large".] Consider for instance the primitive 
relation Q for which the graph G(Q) is given by Figure 1. 
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Here a^Q — (а^, a2, ̂ з}, а^д^ — (а^, а^, hence |<^i^^| < \с^\^-

R e m a r k 2. The exponent L^ = ([^^/2] -- l)/?o + ^ in Lemma 2,5 cannot be 
replaced by L^ -- 1. Consider for instance the primitive relation for which the graph 
G{Q) is given by Figure 2. 

Here a2Q: = {̂ з̂}? ^iQ^ = {^4}, ^iQ^ = {^5}' ^iQ^ = {^1}' ^^2^^ = {^u ^^i]- Further 
Li = 6, and \a2Q^\ = 2 < [n/2] + 1 = 3. 

Lemma 2,6, Let Q he primitive, Q G B^ly) and n ^ 4. Suppose that the length h^ 
of the shortest elementary circuit in G[Q) satisfies hg ^ n — 3. Then 

^ '•' J^ = Щп) -{n - 3) if n is odd . 

Proof. Denote L^ - [n/2] /zo + n ~ h^. Since |( ,̂-^^ |̂ ^ [n/2] + 1 and |̂ -työ̂ |̂ ^ 
^ [«/2] + 1, we have a^g'^^ n ад/^ Ф 0 and L(a,-, a^) ^ L^. Now 

bi ^ 1 ) (n - 3) + n = ?̂г̂  — |/i + 3 if П is even , 
in^ — 2n + I if П is odd . 

Remark . For n = 4, /TQ = 1 and (by Lemma 2,4) L-a^, aj) ^ n ~ i = 3. Hence 
for all /2 ^ 4 we have L(Ö,-, aj) ^ N(n) — \. 

Lemma 2,6 shows that in order to prove (4) we have to deal only with those pri­
mitive relations for which G{Q) contains only elementary circuits of length n or {n — 1) 
or [n — 2). 

We now divide our considerations into two parts. We first treat the case that G{Q) 
has no elementary circuit of length n. Next we shall suppose that G{Q) has at least 
one elementary circuit of length n. 

We sligthly improve Lemma 2,5 (of course, by imposing additional conditions). 

Lemma 2,7. Let Q be primitive, Q e Bj^V), n ^ 4, and suppose that G{Q) has no 
loop and G{Q) has no elementary circuit of length n. Let /IQ > 1 be the length of 
the shortest elementary circuit in G[Q). Denote L^ = ([?t/2] — I) h^ + n — L 
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Then for any üifor which h(a^ ~ n — 1 and any integer f ^ 0 we have 

(10) Ы'''\ ^ + 1 

Proof. Let С be an elementary circuit of length n — 1 passing through the vertex a^. 
This circuit contains all but one of the vertices. Denote this vertex by a*. 

We assert that С contains a vertex, say w, such that h{u) = h^. If /i(a*) > /TQ̂  
there is nothing to prove. If /t(a*) = /lo ^ 2, denote an elementary circuit which 
passes through a* by C*. Then С n C* Ф 0. If w e С n C*, we have /Ï(M) = /?o, 
which proves our assertion. Note that since Q is primitive we have h^ Ф n — 1, 
hence h^ < n — I so that (7̂  ф w. 

[Remark . Our assertion need not be true if G{Q) contains a loop. Consider for 
example the primitive relation Q with G[Q) given by the graph in Figure 3. 

Here the circuit С = <^a2, Ö3, Ö4, «5, ^2) does not contain a vertex и with 
h{u) = 1.] 

Let /ĉ  < и — 1 be the length of the (directed) path on С joining the vertex a,-
with the vertex м, i.e., и e aiQ^\ Then there is a path of length ŝ  = ?i — 1 — /c,-
(on C) joining w with â -, i.e., a,- e w^^\ Using и e UQ^"^ consider the chain with [n/2] 
terms: 

UQ ^ с UQ' f^ + Si UQ 2ho + Si (1,1/21-\)ho +Si 

and (with t ^ 0) the chain: 

(11) ug Si+t UQ ho + Si + t UQ 

UQ 

(ln/2-]-l)ho + Si+t 

a) We first show that â  = UQ'' cannot hold, so that |w^^'| ^ 2. Indeed, a,- = UQ'^ 
implies aiQ^"^ = w^''^^°; further, a^ = w^ '̂ с UQ^'^^Q^' = ai^''°, hence h^ '^ n ~ 1, 
a contradiction. 

b) Suppose a^^' cz UQ'''^\ a^Q^ ф w '̂̂ v'̂ ' for f = 0, 1, ..., ô - 1, while â ^̂ ^ = 
= uQ^'^^^, where 0̂ > 0- Since ^ is primitive such a fo > 0 exists, [We have denoted 
a^Q^ = « r ] 

b 1) For r < to, the first term in (11) contains at least two elements of V so that 

+ 1 й W^"^^^-'^''"-''^']. 
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Since ue aiQ^\ we conclude 

The exponent on the right hand side is ([и/2] — 1) /IQ + (n - 1 - fc,) + ^ + /ĉ  = 
= Li + f. This proves (10) for all t < ÎQ. 

b 2) The equality ÜIQ^^ = UQ'^'^^^ implies ÜIQ^ = UQ'^^^ for all Г ^ Го-
The chain (11) with [n/2] + 1 terms can be now written (for t ^ ô) ^^ the form 

üiQ' с a.^'+^o cz .. . c: uiQ^""^^^'^^' 

and multiplying by ^" ° we obtain 

Since t + [w/2] /îo + w — 1 — /lo = -̂ 1 + ^ we conclude 

la.-ö"^"1 ^ + 1 

This proves (10) for all t ^ tQ. Lemma 2,7 is completely proved. 

Remark. It is essential for our further purposes that (10) holds not only for t = 0 
but also for all t > 0. 

We now prove: 

Theorem 2,2. Let Q be primitive, Q E BJ^V), W ^ 4. Suppose that G{Q) has no ele­
mentary circuit of length n. Then for any ai, aj eV we have 

Ma,, aj) ^ Î Ĵ ^̂  _ ^̂ ^ __ ̂ ^ ^̂ ^ ^ ^̂ ^ ^ 

Proof, a) If /IQ = 1, then (by Lemma 2,4) L{ai, aj) ^ n — 1, For n ^ 4 we have 
n — 1 < N{n) — ^{n ~ 1). Hence our statement holds. 

b) If hi S n — 2, hj S n — ^ our statement holds by Theorem 2,1. 
In the following we may suppose that at least one of the numbers hi, hj is equal 

to П — 1. Note again that since Q is primitive not all elementary circuits can be of 
length n — 1, hence ho ^ n ~ 2. 

c) If /io > 1 and hi — hj = n — 1, we have aiQ^^ n ajQ^^ Ф 0 by Lemma 2,7, 
where Lj = ([^/2] - 1) ho + {n ~ 1). Hence 

L{a,, «,) < (\Ц - Л (n - 2) + (n - 1) = f (") ^ 'f " '̂  
VL2J ) ^ ^ ^ ^ |jV(n) - i(n - 1) if ni 

IS even, 
is odd. 

d) Suppose ho > 1 and /t, = и — 1, hj ^ n — 2. By Lemma 2,7 we have 
\aiQ^'-^'\-^ [n/2] + 1 for any t ant L^ = ([n/2] - l)ho + n - 1. 

By considering the chain [see (9)] 
ajQ' cz ajQ'^'^- cz ... с a/^f"/'^^^ 
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we obtain 

\ajQ ,L2+t' > + 1 

b(a,, a^) й h^ ( n - 2 ) 

for any t' ^ 0. Here L2 = [n/2] hj. 
If L2 < Li, choose f' = fj > 0 such that L2 + fi = Li- Then a^^ '̂ n ÜJQ^' + 0 

and this gives the same estimate as in c). 
If L2 ^ Li, choose r = 2̂ à 0 so that Li + Г2 = La- ^ ^ then have а,.̂ ^̂  n 

n üjQ^^ 4= 0. This implies 

_ ^N{n) - 1 if n is even , 

[iV(n) - i(n + 1) if n is odd. 

Theorem 2,2 is proved. 

In the foregoing considerations we have used a simple principle. If both а^^^° 
and ujQ^^ contain more than a half of all vertices, then Ь(а,., a^ ^ LQ. 

We cannot expect that this method will give the best possible results since a common 
consequent may exist even if one (or both) of the sets UiQ^^, ÜJQ^^ contain a half or 
less than a half of all vertices. This is shown by Example 2,1 below. Nevertheless, 
the result obtained in Theorem 2,2 is sufficient for our purposes, since in the "worst" 
case, namely the case in which there is a vertex â  with h{a^ = n, we obtain sharp 
estimates in which the bounds are not smaller than those given by Theorem 2,2. 

E x a m p l e 2,1. Consider the relation Q for which G{Q) is given by Figure 4. Here 
^(^1) — 4, /1(^2) = ^(«з) = h(a4) = 3. 

Fig. 4. 

M(Q) = 

/0 1 0 0\ 
0 0 1 01 
0 0 0 1 

a 1 0 0/ 

A simple computation shows that the matrix representations of Q^, Q^, Q"^ and Q^ are, 
successively. 

Here L(ai, ^3) = 5, though ^(«ij CI2) == 4 though both 
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\aj^Q^\ = |a2ö'^| = 2. It can be immediately checked that a,-̂ ^ n ÜJQ^ Ф 0, while 
a^g"^ n a^g"^ = 0. This impHes L(a,-, ÜJ) = 5 = N{4), 

This example will be used in proving Corollary 2,4 below. 

В 

We shall now suppose that G(Q) contains a vertex a^ with h^a^) = n and n ^ 4. 
With respect to Lemma 2,6 it is sufficient to consider only such Q for which G{Q) 
has no elementary circuits of length ^ и — 3. 

For brevity we introduce the following 

N o t a t i o n . We shall say that Q satisfies Condition Я if и ^ 4 and all elementary 
circuits contained in G[Q) are of length /г ^ /t — 2. 

We first find the possible types of primitive relations satisfying Condition Я, 
Consider the equahty 

a^Q u a^Q^' u ... u a^g" = F . 

We shall use several times Lemma 2,1 in the following form: Let Q <= F and 
| ß | = s < п. Then | ß u 6^1 = Si > s. If 5̂  < n, then \{Q u Qg) u (Q u Qg) g\ = 
= | g u ô^ u Qg^\ > 5i, etc. 

The set a^g cannot contain more than one element of F since otherwise (by suc­
cessively applying Lemma 2Д) we should obtain that a^g u a^g^- u ... u a^^""^ = 
= F, contrary to the supposition а^ф a^g^ if h < n. Denote a2 = a^g. 

Analogously, each segment a^g u a^g^ u . . . u a^g^ r S n — 1, contains r 
dififerent elements and а^д"" contains exactly one element which is not contained 
in a^g u . . . u a^g'"'^. Denote this element by a^+i, so that a^+j e a^g\ 

If no further condition is imposed, a^g^ may contain {«3, a2]. If ^2 ^ ^iQ^^ i-̂ -
02 e 020? we have a loop in «2. Hence if we suppose that Condition H is fulfilled we 
necessarily have a^, = a^g^. 

Again if no condition is imposed, a^g^ may contain a subset of (04, «3, (22}. 
If ^2 e «i^^, i.e. a2 e ^2^^, then g has a circuit of length 2. If «3 e a^g^, i.e., «3 еаз^, 
then we have a loop in 0̂ 3. Hence if и ^ 5 and Condition H is fulfilled we necessarily 
have «4 = a^g^. 

In this manner, supposing that Condition H is satisfied, we obtain the following 
sequence: 

CI2 = «10. «3 = « 1 ^ ^ •••. ««-2 = « l e " ~ ^ ««-1 = « i^"~^ • 

Even the last term a^^""^ is necessarily a one point set since, for instance, a2 e 
e a^g''"^ would imply «2 e a^^ . ^"~^, i.e. a2 e a2ö"~^-

The situation changes in the next step. The set a^^^g = a^g'^'^ contains a new 
element a„, does not contain a^, may contain ^2, but cannot contain any element 
of the set {a„_i, a„_2, . . . , «3}. [The inclusion a2ea^g'^~^ is possible since «26 
e a2^~^ indicates the existence of a circuit of length n —1 which is not forbidden.] 

Finally, «1^" contains a^, may contain ^2 and «3, but contains no element of the 
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set {ö!„, a„_i, ..., ^5, a4}. [If for instance ^46^1^" , we should have «4604^"""^, 
hence a circuit of length и — 3.] 

The whole situation is illustrated in Figure 5. Here the dotted edges are possible 
edges (not excluded by Condition H). 

-*- a. 

"-^n ^n~1 n-2 n-3 

Fig. 5. 

Note that if G{Q) contains the edge <a„_i, Лз)? i-e. «2 ^ ^«-i^^ then a^ = «2^ ^ 
c: a^-iQ^ = ai^", hence G{Q) contains also the edge <a„, a^}. 

Denote by С the elementary circuit <ai, a2, ..., a^, a^y passing through a^. We 
then have the following 5 possible types of graphs G[Q^: 
^ ^^1)5 consisting of С and the edge <a„, «2); 
ß) ^(^2)5 consisting of С and the edges <Ö„, Ö2> and <Ö„, аз>; 
у) G{Q^, consisting of С and the edges <a„, ^2)? <^/P ^ЪУ^ i^n-u ^2)^ 
Ô) G(^4), consisting of С and the edge <a„, аз>; 
e) 0(^5), consisting of С and the edges <a„, аз>, < Ö „ - I , Ö2>. 

For our purposes the case ß) and y) can be reduced to the study of the case a). 
The graph G{Q^ is a (directed) subgraph of 0(^2) and С(^з). The relation Q^ is primi­
tive (since it contains elementary circuits of lengths n and n - 1). Hence Q2 and ^3 
are primitive. 

Suppose that we know the number L(Ö^-, aj) = L^(â!/, aj) for a given ^. If we form 
a new relation ^' by adding some new edges to Q, we have L^>{ai, aj) ^ Lj^ci^. aj). 
In our case L^J^ai, aj) g L^X^i^ ^j) ^^^ ^ез(^/' ^j) = ^gii'^t^ ^j)- Hence it is sufficient 
to find an estimate of L[ai, aj) for the graph G{Q^). 

Analogously G{Q^ is a subgraph of G(^5). They both contain circuits only of lengths 
n and n ~ 2. Such graphs are primitive ifi' n is odd. Since (under this supposition) 
LQX^I, UJ) g LgX^üi, üj), it is sufficient for our purposes to deal only with the graph 
0(^4), 

Summarily: We have to treat only the cases a) and S). 
I) We begin with the second case, i.e. consider the relation Q with the graph given 

in Figure 6, where n is odd (hence « ^ 5). 

Lemma 2,8. For the relation g given by the graph in Figure 6 (where n ^ 5 is 
odd) we have ' 

Ь{аь aj) S N{n) - \(n - 3) . 
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Proof. Consider the chains 

and 
(12) 

азеаз^"-^ с аз^2(«-2) ^ ^̂^ ^ ^^^пщ^п-г) 

CISQ' C= ^ 3 ^ " - ^ - ^ ^ с а з ^ 2 ( п - 2 ) + Г ^ ^^^ ^ ^^^[n /2] ( . -2 ) + .^ 

a„*- ^n-1 n-Z 

Fig. 6. 

and denote L^ = [n/2] (n - 2) = Jn^ - f n + 1 = iV(n) - i(n + 1). (12) implies 
(for any integer t ^ 0) |аз^^^ + *| ^ [n/2] + 1 = i(n + 1). Since a^ = a^^ ,̂ ^з = 
= «2^, the last inequaUty (with t = 0 and Г = 1) implies 

Further, for 3 < i ^ n we have a^ = a^ot'^^ whence 

Putting ^ = i - 1, we obtain [а̂ о̂ ^̂ ^̂ ! ^ i(n + 1). [Note that for и ^ 5, Z i -
- (ï - 3) ^ Li - (n - 3) = in^ - |n + 4 > 0.] 

Summarily: |а^^^'^^| ^ \{n + l)foranyaie F. This implies L(a£, a )̂ ^ Li + 2 = 
= iV(n) - i(n - 3). Lemma 2,8 is proved. 

/ 7 - f n.2 

Fig. 7. 

II. We now turn to the last case, namely to the relation ^ defined by the graph 
in Figure 7. 

We first consider the set V = («2, a-^,..., a„}. Let MQ be the least integer m such 
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that aiQ"^ n ajQ"" ф 0 holds for all at, aj E V. [Clearly, Mo = max L(a,-, a^), where 
ai, aj run through all a,-, aj e F'.] 

Since aj^ = a2^~^ (k = 2, 3 , . . . , n) we have to find the least m such that 

(13) a2Q'"'-'-^ n a2Q^'^'''~^^'''~' Ф 0 

holds for all couples (ij) with 2 ^ i < j й n. Another way to write (13) is 

(14) 02^"'"'"^ П ^20^"^*'""^^"'' Ф 0 

for z = 2 , . . . , n — 1 and 5 = 1, 2 , . . . , n •- 2. This is equivalent to finding the least 
integer m > 0 such that 
(15) аз^'" n аг^"""' + 0 

for 5 = 1, 2, ..., (w - 2). [For, if (15) is satisfied, then multiplying (15) by Q'~^ we 
obtain (14).] 

Note that for 5 = n - 1 we have aâ "*"̂ ^ = ^2ö"~^ • Q"^ = {«i> «2} Л hence 
^2^^" n ^2^'""^""^ Ф 0 for any m > 0. 

Next let Ml be the least integer m > 0 such that a^Q"^ n atQ"^ Ф 0 for i = 2, 3 , . . . 
..., n. [Clearly Ml = maxL(ai , a,).] Since â  = «2^*"^» ^2 = ^я^» this can be 
rewritten as ' 
(16) a2Q"'~' na2Q''~'''^'~'^ Ф 0 

for i = 2, 3 , . . . , n. As noted above, (16) is always satisfied if i = n. Hence we have: 
The number Mi is the least integer m for which 

Й 2 ^ " " ' п а 2 ^ " ~ ' ^ ' Ф 0 

for all s = 1, 2, ..., (n ~ 2). This immediately implies Mi ~ 1 = MQ. 

We have proved: 

Lemma 2,9. / / MQ is the least integer m > 0 such that ^2^"" n ЙЗ^"""^* Ф 0 for 
5 = 1, 2 , . . . , (n — 2), then max Ь(а^, a^) = MQ + 1, where a,-, aj e V. 

To find Mo we describe a2Q^ explicitly: 

(17) «2^«-! ={a2,a,}, 

a2ö2^n-i) ^ {a,Q^-\ a2Q"-'} = {̂ 2̂, ^ i , ^rj , 

a2^2^"-^> = {a ,^" - \ ^ i ^ " " \ ^2^""'} = («2, ^b ^n, ^«-1} , 

(18) a2Q''^"~^^ = {^2, a i , a„, a„_ i , . . . , ^„-^-2)} • 

The last equality holds for those к for which n - (fc - 2) ^ 3 and fc ^ 2, i.e. 2 g 
^ /с ^ n - 1. [For fc = 1 we have (17).] 

From now on we consider the cases n even and n odd separately. 
a) Let n be even. The case n = 4 has been settled in Example 2,1. 
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1 satisfies 2 ^ /с ^ п — 1. In (18) put к = ^n — 1 and 
denote L^ = (|п — l) (n — l). The following set contains -|w elements of V: 

^iQ^' = {«2^ «1 . ^«' ^ « - b •••' ^л/2 + з} • 

Denote further LQ = L^ + in - 1 = i«^ - n. The last equality implies 

«2^^° = a2Q'^'^'"^~^ = {««/2 + 1, ««/2, •.-, «3, «2} , 

«2^^0+1 3^ a2Ö^i+«/2 = {a„/2 + 2, ««/2 + 1, •••, «4, «з} • 

We assert that ^2^^° ^ «2^^°"^' Ф 0 for 5 = 1, 2, ..., n - 2 (hence MQ ̂  LQ). 
For 5 = 1, 2, ..,, in - 1, each of the „shifted" sets a2^^°^^ «2^^°"^^ ••• 

..., «2^^°"^"^^"^ contains the element a„/2 + i so that our statement is true. 
For s ^ in we use the usual argument. Since 

«2^02^"""^ С . . . С a2Ö^"/^^^""'^ 

we have |a2^^"^^^^""^^| è in + 1 and also 1̂ 2̂ "̂̂ ^̂ "̂"̂ "̂"1 ^ in + 1 for any t ^ 0. 
Now in(n - i) + t = LQ + in + t, so that |fl2^^°^1 ^ in + 1 for s = in , in + 
+ 1, ..., n - 2. Since |a2e^°| = in we have a2^^° n ^2^^°"^^ Ф 0 for s = in , in + 
+ 1, . . . , (n — 2). This proves our statement. 

To prove that MQ = LQ it is sufficient to show that for some s e {1, 2, ..., n — 2} 
we have ^2^^°""^ n «2^^°"^"^' = 0-

Now 
«2^^°" ' = {^n/2, ««/2-1, •••, «2, «1} 

and for s — in, 
^^^Lo-l+«/2 ^ / a „ , ß „ _ i , . . . , a„ /2 + i } . 

Hence 

(19) «2^''°"^ 0^2^^°"'"'"^^ = 0 . 

Lemma 2,9 implies тахЬ(а^, a^) = LQ + 1 = -/V(n). Since a2 = «1^, a^^^^'^ = 

= â!„/2 + i5 (19) can be written in the form a^^"" n a„/2 + i^^° = 0-

Corollary2,4.//n /5 even, then max llya^, aj) = N[n) and the valueN{n) is achieved 
for the couple (a^, a^ß + i). ''^ 

ß) Let now n be odd (hence n ^ 5). Denote LQ = [ in ] (n — 1) = in^ — n + i . 

Since 
«2 ^ «2^""^ c: . . . С a2Q^"^^^^"~'^K 

we conclude that |a2^^''l ^ [ i ^ ] + 1 = i(n + 1) and also for any s > 0, 
|«2^^°''1 è i{n + 1). Hence ^2^^° n 0^2^^°^' + 0 for 5 = 1, 2, ..., n - 2. This 
implies MQ S LQ. 

To show that MQ = LQ it is sufficient to show that for some 5 e (1, 2 , . . . , n — 2} 
we have a2ö^°~^ n ОТЗ^^^"^"^' = 0. 
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For п ^ 5 and к = [^n\ we have 2^k:^n — iso that we can use (18) by which 

while 

(20) « 2 ^ ' ' ° " ' = {'Зп. ß „ - l , . . . , «(. + 3)/2} . 

Multiplying (20) by Q^"~^^^^ we obtain 

*^lQ — » . " ( / I + 1 ) / 2 J " ( n - ~ l ) / 2 ? • • • ? " 2 5 ^ i ; • 

Hence for s = \(n — 1) we have a2Q^^~^ n ^2^^°"^^' = 0- This proves MQ = LQ. 
Lemma 2,9 again implies тахЬ(а^, c?j) = LQ + 1 = iV(n). We further have 

«20^°"' n 02^^°"^""^""'^'^ = ^1^^^^ n 6ï̂ „ + i)/2^^° = 0- Hence: 

Corollary 2,5. / / n is odd, max L/^ai, aj) == iV(n) and ï/ie иа/ме iV(n) is achieved 
for the couple (a^, «(„ + 

Lemma 2,10. If Q is the relation defined by the graph in Figure 7, then L{ai, a^^ 
^ N{n). The bound is sharp since there is a pair (a^, a-) for which L[a^, aj) — N{n). 

Taking into account Corollary 2,3, Lemma 2,6, Theorem 2,2 Lemma 2,8 and 
Lemma 2,10 we finally have: 

Theorem 2,3. (The main result.) Let Q be primitve, Q e Bj{V), n ^ 2. Then for any 
ûi, aj e V we have L^a^, aj) ^ N(n). This result is the best possible. 

The goal of the following sections is to prove that the estimate of Theorem 2,3 
holds not only for primitive relations but for any Q G Д , ( К ) . 

3. IRREDUCIBLE RELATIONS WITH dig) > 1 

Let now ^ e B „ ( F ) , Q irreducible but not primitive. Since in this case L[a^,a2) 
does not exist for n — 2, we may suppose n ^ 3. 

Without loss of generality we shall suppose that the matrix representation of Q 
is of the form 

/0 5 i . . . 0 0 \ 
0 0 . . . 0 0 

M{Q) = : 
I 0 0 . . . 0 J5^_i 
\B, 0 . . . 0 0 J 

Here d = а{о) > 1 is the index of imprimitivity of Q. In this case we have 

//4i 0 . . . 0 
M^Q") = 0 A, ... 0 

\o 0 ... л 
where Aj^ are primitive v,. x v,^ Boolean matrices, П{А^) = F̂  are the sets of impri­
mitivity of Q, and Fl u .. . u F^ = К i;i + ... -h îd = "• 
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By Theorem 1,1, L(ai-, aj) exists iff â , aj are contained in the same set of im-
primitivity, say I4. Suppose that this is the case and v,^ ^ 2. We may use Theorem 2,3 
by which 

L{ai, aj) S d . {^vj - v,, + s J . 

We essentially improve this straightforward result. Denote min JF̂ j = jS and denote 
by VQ a fixed chosen set of imprimitivity with |FO| = ß. k = ̂ >-',d 

a) Suppose first \Vo\ = ß = 1, If |^^| = 1 for all /c = 1, ..., J, no two elements 
of F have a c.c. In any F̂  with |F;̂ | ^ 2 choose two vertices â , ÜJ. Since VQ = F^ "̂ 
for some w, 1 ^ м ^ J - 1, we have â "̂ = â -̂ ", i.e. Ь(а^, aj) exists and Ь(а^, a/) й 
ud - 1, 

b) Next suppose \Vo\ = ß ^ 2. For any a,-, ÜJ E FQ we have Ь(<2̂ , «у) g 
^ öf(ijß̂  - ß + Sß) = Lo, i.e. â ^̂ " n 0̂ ^̂ ° Ф 0. Let F̂  Ф VQ be any set of im­
primitivity and a;,, ai e F .̂ Since FQ = V^Q" with some w, 1 g w ̂  d — 1, both 
O;,̂ ", â "̂ are contained in VQ. Therefore a ,̂̂ ". Q^° n a^^". Q^"" 4= 0. Hence L(aft, a/) g 
^M + L o ^ ^ - l + 4iiS^ - jS + Sß), 

We have proved: 

Theorem ЗД. Suppose that Q e Bjj^), n ^ 3, Q is irreducible and а(о) > 1. 
Denote min \VjJ[ = ß. 

к 
a) If ß = 1 and L{ai, aj) exists, then L{ai, aj) ^ d — 1. 
b) If ß > 1 and L[ai, aj) exists, then 

(21) L(a,, aj)Sd--l + d{^ß' ~ ß + Sß) . 

We now transform (21) into another form which enables us to obtain estimations 
in which ß does not appear explicitly. This will be worse than (21), but sufficient 
for our purposes. 

Write n = (xd + a ,̂ where a ^ 1 is an integer and 0 ^ â  ^ d — 1. At least one 
of the numbers |FI | , ..., |F^| is ^a . [If all of them were ^ a + 1 this would imply 
d{a -\- i) = ad + d > w.] 

We have 2 ^ j 5 ^ a = (n — (x^)ld. Since N{ß) is an increasing function of ß we 
have (for any â -, aj for which Ь(а^, aj) exists) 

h (ia^ -a + s^)d=d~l + d "1 (n - «iV 
_2\ d ) 

=" тЛ^ - ^ " ^^y + (̂̂ « + i) - 1 • 
2a 

0, 8̂  = f we obtain: 

"-^У'-У 
Putting here â  

Corollary ЗД. Let Q e B„{V), Q irreducible, n ^ 3, rf(^) > 1. / / L{ai,a^ exists, 
then 

L{ai, aj) й^{п - df + 2d - 1. 
2d 
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A still weaker estimate in which even d does not appear expHcitly is obtained as 
follows. 

Suppose n = 3.lf d = 3, then M{Q) is a permutation matrix and Ь(а^, ÜJ) does not 
exist. If d = 2, then j5 = 1 and (by Theorem 3,1) L(a;, ÜJ) = 1 < N{3) = 3. Suppose 
n = 4. If d = 4, L{ai, üj) does not exist. If d = 3, then ß = 1 and (by Theorem 3,1) 
L{ai, aj) U2 < N{4) = 5. If d = 2, then jS = 2 and (by Theorem 3,1), Цд^а^) й 
g 2d - 1 = 3 < N{4) = 5. 

Suppose / 1 ^ 5 , and note that for d = n the matrix M(^) is a permutation matrix, 
so that L{ai, aj) does not exist. The function 

f(d) = -- (n - d)^ + 2d - 1 = - - n^ - n + - d - 1 
^ ^ 2d ^ ' 2d 2 

is a decreasing function of d in (1, nJ^S) and an increasing function in {nj^5, n). 
Hence it assumes the largest value either for d — 2oxd = n~\. We have 

/(2) -n^ - n + 4, / ( n - 1) = 2/1 - 3 + ^ 

Hence 
Jl . 

2(n - 1) 

1 
L(öi, ay) ^ max - n^ - n + 4, 2n - 3 + ^ ^ , 

|_4 2(/t — 1)J 
For n '^ 5, ^n^ - n + 4 < N{n) and 2n - 3 + l/(2(n - l)) < N{n). This implies: 

Corollary 3,2. Let Q e B„{V), n '^ 3, Q irreducible but not primitive. If L^a^, aj) 
exists, we have L[ai, a^ < N(n), 

This together with Theorem 2,3 implies: 

Theorem 3,2. Let Q be irreducible, Q e ß„(F), n ^ 2. / / L(a,., aj) exists, we have 
L{a„ aj) й N{n). 

Remark . Though it is irrelevant for our purposes, we remark that Corollary 3,2 
can be easily sharpened. Since 

^2 
(li! _ n + Л - [zn - 3 + — ^ 1 = - [ ( « - 6)̂  - 8] - — i -\4 J I 2(n - 1)J 4 -̂̂  ^ -• 2 ( n - 1) 

and the right hand side is positive iff n ^ 9, we have: 

Corollary 3,3. Suppose that Q e B„{V), n ^ 3, Q is irreducible but not primitive. 
If L[ai, aj) exists, we have 

f 1 for n = 3 , 

^^^^^'^^•)- 2 ^ - 3 for n = 5,6,1,%, 
Un^ - n + 4 for n ^ 9 . 

[Even these results are not the best ones.] 
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4. SOME LEMMAS 

We now have to consider the case 

M(Q) = 

where Ai are irreducible. 
If |Я(М)| = n, we wish to prove that for any x, у еП[М) for which L(x, >') exists, 

we have L{x, y) < N{n). 
With respect to Lemmas 0,3 and 0,4 we may suppose that M(Q) has no zero rows 

nor zero columns. 
Though such a result may be intuitively expected the detailed proof is rather long. 
We begin by considering the case g e J5„(F), where 

(22) ^(^) = {cl)-
Here A is any r x r Boolean matrix without a zero row, Б is an s x s irreducible 

Boolean matrix and В Ф 0. For our convenience we write П(А) = (a^, a2, ..., « J , 
n{B) = (bi, 02, ..., b J , r > 0, s > 0, and r + s = n. 

Further, let П{В) = T̂  u Гз u ... u T̂  be the decomposition of П{В) into the 
sets of imprimitivity of B. Put |Т^| = s,-, so that s^ + ... + s^ = s. 

In this section we shall find some estimates for L[a, b), where a e П{А), b e П{В), 
and for L(bf, by), where bi, bjen(B) [provided they exist]. 

If L(fl, b) exists, the sx r matrix С cannot be the zero matrix. Denote Qc = Q ^ 
n [Б X Л] and let 
(23) 8c = m,a*),{b'„at),...,iK,a:)}. 

If bj, bj e П(В) have a common consequent, two cases are possible: 
a) There is a ex. of fe,-, bj which is contained in Я(Б). This is the case iff both 

bj-, bj are contained in the same set of imprimitivity. By Theorem 3,2 we then have 
L[bi, bj) й N{s) < N{n). 

b) If L[bi, bj) exists but the c.c. is contained in П{А), then g^ ^ ф [and we shall 
again suppose that gc is given by (23)]. In this case we necessarily have b^e T„, 
bj e Г, and T, Ф T,. 

We first givQ two examples to show various possibilities which may occur. (Both 
examples will be used in the proof of Lemma 4,5.) 

E x a m p l e 4,L Consider the relation g given by the matrix 

« 1 

chIO 
« 2 

bi 

b2 

1 
1 

\o 

« 2 

1 
0 
0 
0 

bi 
0 
0 
0 
1 

b2 

o\ 
0 
1 

o; 
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Here Qc 

shows: 

= {(bi, «i)}. Recall the definition of L{Ä) (before Lemma 0,1). Here 
= 1 while L{Ä) = 0. Next, L{au 62) = 2 as the following diagram of paths 

«2 -^ ^1 , 

2̂ ^ bi -> {«1, 62} . 

ЦЬц Ь^) does not exist since the diagram is of the form 

bi -^ {01, 62} -^ {'̂ з. ^i} -^ {«b ^2} ^ .•• , 
bi -> { b j -^ {^1, 62} -^ {«2, b j -> ... . 

simple case the situation becomes clear when considering the graph G{Q). 
8.] 

In this 
[See Fig. 

Fig. 8. 

Clearly (up to an isomorphism) the same situation takes place if QC is any couple 

For further purposes consider more generally all Boolean matrices of the form 

1 «12 0 0\ 

*21 "22 
L 0 
) 0 

0 0 
0 1 
1 0 / 

If â ĵ  = 1, Li{bx, 02) — 2. There are only 3 matrices Ä for which ац — 0 and A 
does not have a zero row, namely 

0̂ A /0 l\ /0 1̂  
. l o j ' V o i j ' V i i y 

In the first case L[bi, b2) does not exist, in the second and the third case L{b^, b2) ~ 3. 
Hence in any case either L(bi, 62) does not exist or L(bi, 62) = ^• 
Example 4.2. Let Q be given by the 5 x 5 Boolean matrix 

«1/0 
«2 

b. 

^2 bi b2 Ьз 
1 0 0 0\ 

1 0 0 0 0 
1 0 0 1 0 
0 0 0 0 1 

Vo 0 1 0 07 
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By considering the graph [see Fig. 9] 

Fig. 9. 

we easily find that L{ai, ^2) = 6. The vertex â  is reached from a^ by paths of length 
2fci, from ^2 by paths of length 3fc2 + 3 + 2^3 (ki nonnegative integers). Now s = 
= 2fci = 3fe2 + 3 + 2^3 has a solution with the smallest s > 0 if k^ = 3, k2 = I, 
кз = 0. The corresponding sequence is (we omit the arrows): 

(24) 

The sequence (24) shows that Ь(а^, bj) exists for any couple ( т | . In our example 

Q^ = |(b^, а^)} but it is clear that an analogous situation takes place if QC is equal 
to any couple (b;, ÜJ). 

Consider now the couple fè)-The vertex a^ is reached from the vertex 62 by 

paths of length 3/ci + 3 + 2/C2, from the vertex b^ by paths of length 3/сз + 2 + 
+ 2/̂ 4. The positive minimum of s = 3fei + 3 + 2/c2 = З^з + 2 + 2fc4 is achieved 
by putting ki = 0, /c2 = 1, /сз = 1, /c4 = 0. The corresponding sequence is 

ШьЮ-
Hence L{b2, b^) = 5 and L(bi, bj) S ^^ 

Again for further purposes, consider the case that 

A = 

is replaced by any 2 x 2 Boolean matrix without a zero row (and not changing q^ 
and Б). If there is a loop in a^ then Ь(Ь ,̂ b^ g 3. The case 

=Gi 
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has been settled above. In the remaining cases 

^ = (oî) ""̂  ^ = ( î î 
we easily find Ь(Ь ,̂ bj) S 4. 

Summarily: In any case in which A does not have a zero row L{pi, bj) exists, and 
L(b„ bj) й 5. 

We have obtained this result by supposing that \QC\ == 1; it holds the more if 
\QC\ > 1. 

ESTIMATIONS FOR L(Ö, Ь), a G ЩА), b e ШВ) 

We suppose M{Q) in the form (22). Our aim is to find estimations for L(a, b), 
аеП{А), ЬеП{В). 

If и = 2, then 

is the single case for which L{a,b) exists and L{a, b) = 1. In the following we shall 
suppose П ^ 3. 

1) We first settle the case r = 1, s ^ 2. (By supposition, A Ф 0.) Any sequence 
which leads to a common consequent is of the form 

\b) ' [b^'y ' [b^^^j 
Hence after at most s steps we obtain the couple 1 J. Therefore L(a, b) ^ 5 = 
= n-l<N{n). W 

From now on we suppose r ^ 2. 
2) Next we settle the case s = 1. Write П{В) = {b}. [Recall that Б = 0 has been 

settled by Lemma 0,4.] 
Since b G bg, we have b E bg a bq^ с ... с Ь^"~^ = fc^" = ... . if L(aj, b) 

exists, then there is an / > 0 such that ÜJQ^ n bq^ Ф 0. Let a' e â ^̂  n b^^ Since â .̂ ^ 
is contained in the transitive closure {â -̂  u â ^̂  u ... u a^^""^}, there is a u, 
1 ^ Î; ^ П — 1, such that a' G ÜJQ^. Hence a' e â .̂ "" n fe^^ с д^ '̂' n fe^""^ Multi­
plying by ^"'"^~'' we have «'^""^"""e a^ "̂"̂  n b^"~^ [Here a'^^ denotes a'.] 
Hence L(aj-, b ) ^ r = w — 1 < N{n). [Note that we have used that A has no zero 
row.] 

3) Suppose that 5 ^ 2, r ^ 2 and QC is given by (23). Then any one-step transition 
from a vertex in П{В) to a vertex in П[А) is of the form b[ -> af (г = 1, 2, ..., i;). 

The shortest sequence which leads to a common consequent is of the form 

(25) "-^ '-"•" "•'" 
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The necessary steps to obtain such a sequence are described by the diagram 

a -J2^ a^'^ J^^ a^'^ ^ - > ... ^ ^ ^ . a^"^ ^-> a''^'' - .. . , 

^^^^ b-A°-> b\ ^-^^ b'. ^-...."^л^ Ь; -_!-> af - ^ . . . . 

Here a^"^ = â ^̂  0 S К è s - 1, 1 й k^ й s (for / > 0). 
fa^'^\ 

Since no repetitions are allowed, there are at most г terms of the form ( 1 so 

that the length of the paths by which ( I is reached is at most /CQ + {k^ + ... 

. . . + /iv_i) è (s — 1) + (r — i) s = rs — 1. This result is trivial since there are 

eaxactly rs different couples of the form ( I . But the method by which (26) has been 

constructed allows to easily sharpen the result obtained. 
a) Suppose that the column corresponding to af in A has a non-zero entry. Then 

there is a vertex a[ e П{А) such that (aj, af) e Q. We then have a* e а\д n Ь[д, i.e. 
L'>7;.,b;.)= 1. 

Iff :' j is contained in (25), then.it is reached in at most rs - 1 steps and L{a, b) й 

S {rs — 1) + 1 = rs. (Note that in this case д '̂"̂ ^̂  = af.) 

If (25) does not contain the couple Г м , then in (26) we have at most r - 1 

fa^^^ fa^"\ 
terms of the form h , 1 • The couple ( , 1 is reached by a path of length at most 
5 - 1 + s(r - 2), so that after s - 1 + s{r - 2) + I = rs - 5 steps the both 
,,coordinates" are contained in П(А). Hence 

L{a,b) Urs - s if a^^^i) =. af , and 

L[a, b) S rs - s + L[A) if Ö^^+D ф af . 

[The first possibility occurs in particular if L{a, b) exists but ЦА) = 0.1 

b) Suppose that the column corresponding to af in A consists entirely of zeros. 

Then the couple ( ^l j is not contained in (26) so that (^ j is reached by path of 

length at most s - 1 + s{r — 2). We certainly have â ^+^̂  ф af and 

L[a, b)S{s- I) + s{r - 2) + 1 + IJУ^^'\ a*) ^ rs - s + L{A). 

We have proved: 

Lemma 4,1. Suppose that M(Q) is of the form (22), where A is any r x r Boolean 
matrix without a zero row and В Ф 0 is an irreducible s x s Boolean matrix. 
Denote n = r + s and suppose n ^ 3. Let a e П(А), b e П[В) and suppose that 
L^a, b) exists. We then have: 

1) / / r = 1, s ^ 2, then L{a, b) й n - I < N{n). 
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2) If г ^ 2, s = 1, then {a, b) S n ~ 1 < N{n). 
3) / / r ^ 2, 5 ^ 2, then L[a, b) S max [rs, rs - s + Ь(Л)]. 
Remark. The proof shows that Lemma 4,1 holds also without the supposition 

that В is irreducible. 
The next lemma will be useful in some forthcoming computations. 

Lemma 4,2. If n = r + s, (r ^ 2, s ^ 2), then 
(27) N{r) + N{s) - N{n) ~ rs + Ô,,, 

where 
[2 if both r,s are odd , 
1 in all the other cases . 

Proof: 
N{r) + N{s) = \r^ - r + &, + \s^ - s + г, = 

= \{r + 5)̂  — rs — {r + s) + г, + &^ = 
= ^n^ - n + 8„ - rs + (г̂  + 5̂ - e„) = N(n) - rs + ô^^. 

We now apply Lemma 4,1 to the case of Л ф 0 irreducible. First, rs S i^^ < N(n). 
Next, L{A) ^ N{r) so that 

rs - s -{- L{Ä) ^ rs - 5 + N{r) = N{n) - N{s) + ô,^ - s . 

Note that 0^2 = ^^ so that (5̂^ — 5 < 0 for any s ^ 2. Hence Г5 — 5 + L{Ä) ^ 
^ iV(?7) - N{s) - 1 ^ iV(rt) - 2 < iV(n). We have proved: 

Corollary 4,1. Suppose that the suppositions of Lemma 4,1 are satisfied and Л ф 0 
is irreducible. Then L[a, b) < N(n). 

THE ESTIMATES FOR Lib^, bj), b^ G Г̂ , Z?̂- G Г,-, Т- Ф Г̂ . 

Suppose that M(Q) is of the form (22) and s ^ 2. Suppose that b,- G TJ, by G T,-, 
7". Ф Ту and L(bp by) exists. The c.c. is then necessarily contained in Я(Л) and 
Qc + 0. 

The diagram of paths which lead to a common consequent a^^^ e П(А) has the 
following form: 
(28) b, = b^^^ -^ ЬР ->... ->a = a'""^ -^ a^'^ -̂  ... -> â '>, 

bj = bf> ^ ,̂(1) ^ , , , _, ь ^ 5^0) _^ ^(1) _^ ^̂ ^ _, ^(0 ^ 

Denote by е̂ (Ь,-, by) = д1_М(о), bi, bj] the number of couples in (28) which are of 
/ь^Л 

the form I .[^^ j , i; ̂  0. After the terms of this form a certain number of couples of the 

form I .ŷ  I follow (possibly none) before enterring with both "coordinates" into 

n{A). 
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If in (28) no term of the form I ŵ ) I occurs, then either 

L{b,, bj) й 9{bt, bj) or L{b„ bj) й g{bu h) + L{a^^\ a^^') 

for some a<̂'*> Ф a^''\ Hence in both cases Ь{Ь^, bj) й 9{bh bj) + L{Ä). 

If ( J occurs, then Ь(Ь,-, bj) ^ g[bi, bj) 4- L{a, b). 

In any case we have to find an eastimate for g{bi, bj). We suppose that (28) des­
cribes a shortest sequence leading to a common consequent. 

In a shortest sequence no repetitions of a couple ( , „ j are possible. Further, 

analogously as in the proof of Lemma 0,1, if ( , „ I occurs in (28), then ( ,, j cannot 

occur. This reduces the number of pairs { , „ j to at most ^5(5 — 1). But here a further 
reduction can be made. No pair bf\ bf^ can be contained in the same say, any T̂ , 
since otherwise there would exist a common consequent in П(В), contrary to our 
assumption. Denote as above |Т |̂ = ŝ ,̂ so that 5̂  + 52 + ... + 5̂  = s. The set T^ 
contains exactly ^Sj^s^ — 1) unordered pairs with different coordinates which are 
included in the number ^s{s — 1) and which have to be subtracted. Hence 

e{b, bj) й H^ - 1) - E H^i - 1) = is' - i i s,- • 
1 = 1 j = l 

We first settle the case that for all 5f we have ŝ  ^ 2 (hence s ^ 4). In this case 
d d 

Si ̂  2 implies s? ^ 2Si and ^ s? ^ 2 ̂  Sf = 2s. Hence g{bi, bj) ^ is^ - ^ . 2s = 
= is^~s<N{s). ^=' ^=^ 

It remains to deal with the case that at least one of the sets of imprimitivity of В 
is a one-point set. 

Suppose first d - 2 and put T^ = {Ь^}, Гг = {Ьг. ^з , . . . , bJ. Recall that T^^Q = 

= T2, T2Q = Tj. When beginning with the couple I Ч , j e {2, 3, . . . , s}, any admis-
sible sequence is of the form 

'b 

No such sequence without repetitions can contain more than s — 1 terms. Hence 
g{bi, bj) ^ s - 1 < N{s) for s ^ 3. For s = 2 we have g{bi, bj) = 1. 

Suppose now d'^3 (hence s ^ 3) and b̂  e Г̂ , bj e Tp Tt ф Tj. Consider the 
sequences 
(29) T„T,Q,TtQ\...,T,Q-'-^, 

Tj,TjQ,TjQ^,...,TjQ''-^. 

Let {bo} be one of the sets of imprimitivity containing exactly one element. Then 
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there is integer ko, 0 S ko й à — 1, and an integer /Q, 0 ^ /o ^ ^ ~~ 1> such that 
r̂ '̂̂ o ^ 1̂ }̂̂  j^^io ^ 1̂ ,̂ !̂  j-jjere TiQ^ denotes Г .̂] Denote TiQ^' = Г', T̂ ^̂ « = T. 
The equaUty fco = IQ cannot hold since the couple (b ,̂ bj) has no common consequent 
in 77(Б). Now (29) can be written in the following form: 

(30) T„ TiQ, ..., {bo},..., r\ ..., T,Q'-' , 

[It may happen that {bo} appears in the second row earlier than in the first row, but 
this has no influence on the following considerations.] Denote Г' = {ß^,..., jff„}, 
T" = {7i,..., 7t,} and consider the paths 

b , - J ^ b o - ^ b o - ^ . . . - - i - > b o , 

bjJ^ß,^Uß^-JU,„-^ß,. 

Another apphcation of a path of length d necessarily leads to a repetition, while an 
addition of a path of length d — 1 cannot be excluded. 

If bi Ф bo (i.e. fco + 0), we have 

g{bi, bj) ^ (1 + fco) + [ | r | ^l-]d + {d-l)u [\r\ + 1] ^ - 1 . 

If bi = bo, we obtain 

g{b„ bj) й I + [\T'\ - l]d + (d - 1) == \T'\,d. 

We may proceed analogously with the second row and consider the paths 

bj-J^bo — -̂̂  bo - ^ ... - ^ bo , 
whence 

g{bi, bj) ^ d [ | r | + 1] ~ 1 if bj Ф bo and g{bi, bj) й \Г\ • d 
if bj = bo. 

We have proved: 

Lemma 4,3. If d ^ 3, then using the notations introduced above we have 

(31) g{bi, bj)ud. min(|Г|, \Т"\) + d ~ 1. 

We now prove: 

Lemma 4,4. Let M{Q) be of the form (22) and s ^ 4, If bi, bj e П(В) have a com-
mon consequent in П(А), then g(bi, bj) ^ N(s). 

Remark. For s = 2 we have g(bi, b^) = 1, and for s = 3 we have g{bi, bj) й 3. 
Proof. With respect to the results obtained above it is sufficient to suppose that 

d ^ 3 and at least one of the sets of imprimitivity is a one-point set. 
1) Suppose that s is even (hence s ^ 4). Then both \T\, \Г'\ cannot be ^ is 
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simultaneously since then the cardinality of {feo} u T' u V would be >s. We may 
suppose \r\ uis - 1 and |Г' | ^ |Г | . 

a) If IT'I ^ is - 2 (hence s ^ 6), then (since J ^ s) we have by (31) 
g{b„ bj) й s{is ^2) + s-l=is^ - s-l< N{s) . 

b) Suppose that | Г | = ^5 - 1 (hence s ^ 4). Since |{Ьо}| + | Г | + |Г' | ^ 
^ 1 + (̂ 5 — 1) + (^s — 1) = 5 — 1, there is at most one further class of im-
primitivity, so that d S ^ and by (31) 

g{bi, bj) й d[\r\ + 1] - 1 = 4[(is - 1) + 1] - 1 = 2s - 1 < N{s) for 5 ^ 6 . 

If 5 - 4, ^ = 3, we have g{bi, bj) ^ 5 = N{s). 
It remains to assume s = 4, in the case all sets of imprimitivity are one-point 

sets. It is immediately seen that in this case g(bi, bj) = 4 < N(4) = 5. 
2) Suppose that n is odd. Then both \T\ and \Т"\ cannot be greater than ^(s — 1) 

simultaneously. We suppose \Т'\ S \Т \ in what follows 
a) If \r\ = \Г'\ = i{s - 1), then d = 3, and by (31) we have д{Ь^, bj) S 

^ 3 . i(s - 1) + (3 - 1) = i(3s + 1) < N{s) for s ^ 5. 
b) If \r\ й -i{s - 5) (hence 5 ^ 7), then by (31) we have д{Ь^, bj) ^ 

^ s . i(s - 5) + s - 1 = is^ ~ f s - 1 < N{s). 
c) Let \r\ = i(s - 3) (hence s ^ 5). Since |{Ьо}| + \Г\ + \Г\ ^ 1 + 

+ i(s — 3) + i(s — 3) = s — 2. there are at most two further sets of imprimitivity 
so that d ^ 5 and by (31) for s > 5, 

g{bi,b,)u5 + l l - 1 = i(5s - 7) < N{s). 

If s = 5, then \T\ = 1 and J is either 3 or 4 or 5. If J = 3, then (by (31)) g{bi, bj) й 
U5 < N(5) = 9. If d = 4, then (again by (31)) д{Ь^, bj) ^ 7 < iV(5). If ^ = 5, 
we immediately have g{bi, bj) = 5 < N{5). 

This proves Lemma 4,4. 
We are finally able to find estimates for Ь(Ь ,̂ bj) if the ex. is contained in П{А). 
1) Suppose r = 1, s ^ 2. This case can be treated directly. By supposition there 

is a b'i E n(B) such that (fej, a) e Q, i.e. a = ag n b\Q (since a == ag = ag^ = ...). 
Since В is irreducible, for any bj, there exists an integer /̂^ (0 ^ /̂^ g s — 1) such that 
b\ e bj^g^^, hence a e b]^'^^. This implies a e bj^g^ (for any k). In particular a e big^ n 
nbjg^, whence L{bi, bj) S s = n - 1 < N{n). , ^̂ д 

2) Suppose r ^ 2, s ^ 2. Returning to (28) recall that if no term of the form ( ^^^ j 
occurs in (28) we have L(bi, b^ ^ д{Ь^, bj) + L{Ä). , ^̂ ,д ^ ^ 

3) Suppose that r ^ 2, s ^ 2 and (18) contains a term of the form ( ,^^^ J. Then 
L(bi, b,.) ^ g(b^, bj) + L{a, b) with some a e П{А\ b e П{В). Hence ^ ^ 

L{b„ bj) S g(bi, bj) + max [rs, rs - s + L{Ä)] . 

If L{Ä) < s, max [rs, rs - s + L{Ä)] = rs > S > L{A). If L{Ä) ^ s, 

max [rs, rs - s + L{Ä)'] = rs - s + L{Ä) = (Г - 1) S + L{A) > L{A). 
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Hence we always have L{A) < max [rs, rs — s + L{A)'], so that the case 2) may be 
omitted (giving bounds smaller than the case 3)). 

a) Suppose L[Ä) > s, then Ь(Ь,-, bj) й d{bi, bj) -\- rs - s -^ L{A). By Lemma 4,2 

L{b, bj) й [g{bt, bj) - N{i)\ + N{n) - \N{r) ~ Ь(Л)] - [s - ^,,) . 

Since д{Ь,, bj) - N{s) ^ 0, s - ^„ ^ 1, we have L(b,., bj) < N{n) - N{r) + L{A). 
b) Suppose L{A) й s, then L{bi, bj) ^ g{bi, bj) + rs = [^(b-, bj) - N{8)] + 

+ N{n) - [N{r) - (5J. 
For r ^ 3 we have N(r) — S^s ̂  1, and since ^(b^, b/) — N{s) ^ 0 we obtain 

L{b,, bj) < N{n), 
If г = 2 and 5 > 4, we have g{bi, bj) - N{s) < 0 and N{r) - ^„ = 0, hence 

L{bi, bj) < N{n). Fot г - 2, s = 4, we find directly L{b^, bj) ^ 6 < N{n). 
Now two cases remain, namely r = 2, s = 2 and r = 2, s = 3. The case r = 2, 

5 = 2 has been settled in Example 4,1 by which L[b^, 62) ^ 3 < iV(4) = 5. The 
case r = 2, s = 3 and dß = 3 has been considered in Example 4,2 by which 
L{bi, bj) g 5 < N{5) = 9. If r = 2, s = 3 and dß == 2, we have seen above that 
g{bi, bj) ^ 5 - 1 = 2 , so that L{bi, bj) ^ 2 + rs = S < N{5) = 9, [As a matter 
of fact by considering the corresponding graph we obtain in the last case that either 
L[bi, bj) does not exist or L{bi, bj) ^ 3.] 

We have proved: 

Lemma 4,5. Suppose that M[Q) is of the form (22), where A is an r x r Boolean 
matrix without a zero row and В is an irreducible Boolean matrix with s ^ 2. 
Put r + s = n. Suppose that bi, bj e Я(Б) have a common consequent contained 
in П(А). Then the following holds: 

a) / / r = 1, s ^ 2, then L{bi, bj) ^ n - 1 < N{n). 
b) / / г ^ 2, 5 à 2 and L[A) й s, then Ь{Ь^, bj) < N{n). 
c) / / r ^ 2, s ^ 2 and L{A) > s, then L{bi, bj) < N{n) - N(r) + L{Ä). 

In the special case that also A is irreducible we have L{A) ^ N{r) (for г ^ 2), 
so that L{bi, bj) < N(n), This enables us to prove: 

Theorem 4Д. Suppose that M{Q) is of the form (22) and both Л Ф 0, ß ф 0 are 
irreducible. Let x, у e П[А) u Я(Б). If L{x, y) exists, then L(x, y) < N(n). 

Proof. We have to consider the following cases: a) x, у e П(А) (if r > 1); b) 
X e n{A), у e П{В); с) x, у e П{В) (if s > 1). In the first case (by Theorem 3,2) 
L{x, y) ^ N(r) < N(n). In the second case L(x, y) < N{n) (by Corollary 4,1). In the 
third case if the c.c. of x, y is contained in П(В), L[x, y) S N(s) < N(n). If the c.c. 
is contained in П(А), then L(x, y) < N(n) (by the remark made just before the state­
ment of our theorem). This proves Theorem 4,1. 
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^ 2 1 ^ 

5. THE CASE OF REDUCIBLE RELATIONS 

Theorem 5,1. Let M{Q) be a n X n Boolean matrix of the form 

M{e) = 

where I ^ 2 and Ai (f = 1, 2,. . . , I) are irreducible Boolean matrices, Ifx,y e П[М) 
and L{x, y) exists, then L{x, y) < N(n). 

Proof. We may suppose A^ Ф 0 since otherwise the statement is true by Lemma 
0,3. We proceed by induction. For our convenience we denote 

and Ak+i = B, so that 

Aik+n _ 

where С has the obvious meaning. Denote |Я(Л'̂ ''̂ )| = r, \П{В)\ = s, so that 
r + 5 = n 

The statement is true for the matrix AS^'^. Indeed, if Л2 = 0 it follows from Lemma 
0,4, if Л2 Ф 0, it is the statement of Theorem 4,1. 

Let fc ^ 2 and suppose that for any x,ys П{АР''^) we have L(x, y) < N{r). Our 
statement will be proved if we are able to show that then L{x, y) < N(n) for all 
pairs X, у еЩА^^"^^^) (provided L{x, у) exists). 

We may suppose г ^ 2. Then we have to consider several cases. When writing 
L(x, y) we suppose that it exists. 

1) If x,ye n[A^^^] and L{A^^^) > 0, we have by supposition L{x, y) й N{r) < 
< N(nl 

2) If A^^^ has a zero row, we have (by Lemma 0,3) L{X, y) < N{n) for any x, у e 
еЩА^^-"'^). 

3) If s = 1, J5 = 0, we have (by Lemma 0,4) L(x? y) < N{n) for any x, y e 
ея(Л^'^13). 

4) If s = 1, Б Ф 0, ;сеЯ(Л^), уеП{В), we have (by Lemma 4,1) L{x, y) ^ 
§ n - 1 < N(n). 

5) Suppose s ^ 2, Л̂ 1̂ has not a zero row, and x e Я(4^^^), у e Я(Б). 
By Lemma 4,1 we have L(x, y) ^ max (rs, rs - s 4- 1.(А^^^)У Now rs g ^n^ < 

< iV(n). Next, since ЦА^^^) < N{r), by the induction hypothesis, we have 
rs - s + L{A^^^) ^rs - s + N{r) = N{n) - N(S) - S-h S,, < N{n) . 

Hence L{x, y) < N{n). 
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6) Suppose 5 ^ 2 , Л̂ ^̂  has not a zero row, and x, у e П(В), If the c,c, of x and у 
is in Я(Б), then (by Theorem 3,2) L(x, y) g iV(s) < N{n). Suppose therefore that 
the c.c. is contained in П{А^^^). 

If и{А^^^) й s, then (by Lemma 4,5b) L(x, y) < N{n\ 
If L(y4'̂ ''̂ ) > 5 [and, of course, L{Ä^^^) < N{r) by supposition], we have (by Lemma 

4,5c) L(x, y) < N{n) - N(r) + L{A^^^) < N{n), This proves Theorem 5,L 
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