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MODULARITY AND DISTRIBUTIVITY OF TOLERANCE LATTICES 

OF COMMUTATIVE SEPARATIVE SEMIGROUPS 

BED RICH PoNDÊLfcEK, Praha 

(Received May 7, 1984) 

By a tolerance on a semigroup S we mean a reflexive and symmetric subsemigroup 
of the direct product S x S. The set J^(S') of all tolerances on S forms a complete 
algebraic lattice with respect to set inclusion (see [1] and [2]). The aim of this 
paper is to consider modularity and distributivity of o^(S) when 5 is a commutative 
separative semigroup. 

For any tolerance Ton a semigroup S we have 

(1) {au, bv) = (a, b) (u, V)ET 

whenever (a, b)e T and (w, v)e T. This implies that for every positive integer m 
we have 

(2) (fl, b)'" = (a'", Ь " ) е Т 

whenever [a, b) e T. For all a, b, z e S we shall use the following notation: (a, b) z = 
= [az, bz). 

Let 0 Ф A ^ S X S. By T{Ä) we denote the least tolerance on S containing A. 
The symbol S^ stands for S if 5 has an identity, otherwise it stands for S with an 
identity adjoined. 

Lemma 1. Let S be a commutative semigroup. For x, y e S, x Ф y, we have 
(x, y) G T{Ä) if and only if x = x^X2 ... x„z and y = У1У2 ••• Уп^^ where z e S^ 
and either (x,-, yj) E A or (y,-, x,) e A. 

Proof . Apply (1). 

This implies the following: 

Lemma 2. Let S be a commutative semigroup and a, b e S, a Ф b. For x, y e 5, 
X 9^ y,we have(x,y)eT(a, b) if and only if there exist zeS^ and a positive integer m 
such that either (x, y) = (a, b^ z or (x, y) = (b, a)"' z. 

By V and л we denote the join or meet in the lattice if(S'). Clearly we have 
Л V ß = T{A u B) and A A В = An В for all A, В e J^(S), 
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First, we shall consider commutative regular semigroups. Recall that every com
mutative regular semigroup 5 is a semilattice of commutative groups (see [3]). 
The set of all idempotents of S is denoted by E{S) and is partially ordeted by: e ^ f 
if ef = e. We write e < / for e ^ / and e ^ f. By e || / we denote the fact that 
idempotents e,f are incomparable. For any integer k, by x^ we denote the fc-power 
of an element x of S in the maximal subgroup G^ of S containing an idempotent 
e = x°. It is known that for all x, y e S and all integers к we have 

(3) {xyf = x'y'. 

By J(S) we denote the set of all tolerances 7 on a commutative regular semigroup 5̂  
satisfying the following condition: 

(4) If {a,b)El, then {a~\b-^)El. 

Using (3) and Lemma 1 we can show that J(S) is a sublattice of ^ ( S ) . 

Theorem 1. Let S be a commutative regular semigroup. Then the lattice J^(S) 
is modular if and only if S satisfies the following conditions: 

(Ml) / / e,f are two idempotents of S such that e || / , then at least one of them is 
maximal with respect to the order in E{S) and there exists no idempotent g of S 
such that g || ef. 

(M2) / / e,f are two idempotents of S such that e < f, then ze = e for every 
element z of the maximal subgroup Gf of S. 

(M3) If e,f, g are three idempotents of S such that e < f and e || g, then the 
maximal subgroup Gg of S contains exactly one element. 

(M4) S is either periodic orE(^S) contains the greatest element i and the maximal 
subgroup G g of S is periodic for each e < i. 

Proof. I. Suppose that the lattice £^(^S) is modular. Then the sublattice J[S) 
of if(S) is modular and so according to Theorem 1.1 of [4], S satisfies the conditions 
(Ml)j (M2) and (M3). Now, we shall show that S has the property (M4). 

Let a be a non periodic element of S. By way of contradiction, assume that there 
exists an idempotent e of S such that either a^ < ^ or a^ || e. Put Л = Г(а^, e), 
В = Т{а^, е) and С = Т{{а^, е), ( a^ е)). It is clear that Л g С. Since the lattice 
J^(5) is modular, it follows from Lemma 1 that (a^, e)e[A w B) A С = A w 
V (B A C). 

Suppose that (a^, e) e A. Then, by Lemma 2 and (3), we have (a^, e) = (a^, e)"" z 
for a positive integer m and z e S^. Assume that z e S, then e g z^. If a^ < e, then 
a^ < z^ and so, by (M2), we have a^ == a^z. This implies that a^ = a^'^z = a^"", 
which is a contradiction. If a^ \\ e, then according to (M3), we obtain that e = z^. 
Then, by (3), we have a^ = (a^f = {a^'^zf = a^'z'' ^ z^ = e, a contradiction. 
If z ^ S, then we have a^ = a^'", a contradiction. 

In an analogous manner it can be shown that (a^, е)ф B. According to Lemma 1 
and (1), we have (a^, e) = (w, x) {^, у) ^^r some (u, x)e A\B and (v, y) e (B n C) \ Л. 

334 



From (3) it follows that e ^ x^ and so x ф Sa^. Thus, by Lemma 2, we have (w, x) = 
= {a^y eY z for some z e S^ and a positive integer m. Analogously it can be shown 
that {i\ y) = (a^, e)" w for some w e S^ and a positive integer n. We shall prove that 
V = a^. We have {a^,e) = (a^'"'^^", e) zw. Assume that zweS, then e ^ (zw)^. 
If a^ < e, then a^ < (zw)^. It follows from (M2) that a^ = a^zw = a% and so 
a' = a^'^^^\ This implies that n = 1 and so Ü = a^w = a^ If a^ || e, then, by (M3), 
we have e = {zwf. Using (3) we get a^ = [a^y = aP{zwf ^ e, which is a contradic
tion. If zw ^S, then we have a^ = 2̂m + 3/i ^^^^ so i? = a^. Since {v,y)eC\A and 
у ^ Sa^, we have according to Lemma 1, (г;, у) = ( a^ e)** Г or (t;, y) = {a^, ey (a^, e)* t 
for some Г e S^ and some positive integers r, s. This implies a^ = v = a^^t or a^ = 
= a^'^^4 and so Г e S. It follows from (3) that e й у"" й f". If aP < e, then a^ < t̂  
and sOj by (M2), we have aP = a^f. Therefore a^ = â ** or a^ = a '̂"'̂ '̂', which is 
a contradiction. If a^ || e, then according to (M3) we have e = t^. Using (3) we get 
a^ g v^ S t^ = e, Si contradiction. Therefore S satisfies the condition (M4). 

IL Suppose that S satisfies the conditions (Ml), (M2), (M3) and (M4). According 
to Theorem 1.1 of [4], the lattice J(S) is modular. It follows from (M4) and Theorem 
7 of [5] that ^{S) = J{S) and so the lattice J^(S) is modular. 

Corollary 1. Let S be a commutative regular semigroup. If the lattice -^{S) is 
modular, then ^(S) = J(S). 

The following result is a generahzation of the well known Ores' theorem (see [6]) 
that for every commutative group G the lattice ^{G) (which coincides with the lattice 
of all congruences on G, see [7]) is distributive if and only if G is locally cyclic, i.e. 
every its subgroup generated by a finite set of generators is cyclic. Let x be a periodic 
element of a commutative regular semigroup S. By ord x we denote the order of x 
in the maximal subgroup G^o of S, 

Theorem 2. Let S be a commutative regular semigroup. Then the lattice Jèf(S) 
LS distributive if and only if S satisfies: 

(Ml), (M2), (M3) and (M4). 
(Dl) Every maximal subgroup of S is locally cyclic. 
(D2) Let Gg, Of be two maximal subgroups of S such that e | | / , e, feE{S). If 

X E G^ and y e Gj, then ord x, ord y are relatively prime. 
The p roof follows from Theorem 1, Theorem 7 of [5] and Theorem 1.1 of [4]. 
A semigroup S is said to be separative if a^ = ab = b^ imply a = b (a, b e S). 

Lemma 3. Let S be a commutative separative semigroup, aeS. If a^ea^S^, 
then a e a^S^. 

Proof. Suppose that a^ea^S^. Then a^ = a^'(ab) for some b e S^ and so 
a^{ab) = а^{аЬу. Hence we have a = a(ab)e a^S^. 

Theorem 3. Let S be a commutative semigroup whose lattice ^ (S) is modular. 
Then S is regular if and only if it is separative. 
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Proof. Suppose that the lattice ^(S) of a commutative semigroup is modular. 
It follows from (3) that every commutative regular semigroup is separative. Now, 
we shall assume that S is separative and not regular. Then there exists a e S such that 
афа^ЗК 

We shall distinguish two cases. 
Case 1 : a is periodic. Then there exist positive integers к and m such that a'^ = 

= e = e^, аГе Ф a"" and a^^'e = a^"". We have {a!^y = a"'(a'"e) = {a'^ef and so 
m̂ ^ ^m^̂  which is a contradiction. 

Case 2: a is not periodic. Put A = T{a^, a), В = Т(а^, a) and С = T{{a^, a), 
(a^, a^•)). It is clear that A Ш С and so, by Lemma 1, (a^, a^-)e(A v B) A С = 
= Av {В A С). 

Suppose that (a^, a^) e A, Then, by Lemma 2, we have (a^, a^) = (a^, a)"' z or 
(a^, a^) = (a, a^)'" z for a positive integer m and z E S^. Assume that (a^, a^) = 
- ( a^ a f z. Then a^ = a^'^z = a^Xa'^z) = a"^^^ and so m = 3. Therefore a^ e 
ea^S^. Lemma 3 implies that aea^S^, which is a contradiction. Assume that 
(fl^ a^) = {a, a^y z. Then a^ = a^'^z = a'"(a'"z) = a'""^^ a contradiction. 

Analogously we can show that (a^, а^)фВ. According to Lemma 1 and (l), we 
have (a^, a^) = (u, x)(v, y) for some (u, x)e A\B and (v, y) e (ß n C) \ Л, Then, 
by Lemma 2, we obtain that (w, x) = (a^, a)'" z or (u, x) = (a, a^)'" z for a positive 
integer m and z G 5 4 Further, there exist a positive integer n and w e S^ such that 
(̂ 5 y) = (o^î ^)'' w or (̂ ? y) = (̂ » ^^)" >̂ - We have the following two possibihties: 

Case a : (w, x) = {a^, a)'" z and (i?, y) = ( a^ a)" w. Then a^ = uv = a^"''^^"zw = 
= a'^^^'"{a'^z){a"w) = a'^^^'^xy = a'"+^"^"^ and so m = n = 1. Hence we have 
a^ = xy = a^zy^ = a^(zw)^ and so a = azw. Since (Ü, y) e C \ Л, it follows from 
Lemma 1 that у = a^c for some с e S^. Thus we have a = awz = yz = a^cz, 
which is a contradiction. 

Case b : (u, x) = (a, a^)'" z or (y, y) = (a, a^)" w. In both cases we have a^ = 
= xy e a^S^. Lemma 3 implies a e a^S^ which is a contradiction. 

Corollary 2. Ler S be a commutative semigroup. Then S Is separative with the 
modular (or distributive) lattice ^{S) if and only if S is regular and satisfies the 
conditions (Mi) (respectively (Mi), (Dl) and (D2)) for i = 1, 2, 3 and 4. 

The p r o o f follows from Theorems 1, 2 and 3. 
Compare with [8]. 
It is easy to show that every commutative cancellative semigroup is separative and 

every commutative regular cancellative semigroup is a group. 

Corollary 3. Let S be a commutative semigroup. Then S is cancellative with 
the modular (or distributive) lattice ^(S) if and only if S is a group (respectively 
a locally cyclic group). 
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