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COMBINATORICS OF NON-HOLONOMOUS JETS

ANDERS Kock, Aarhus

(Received March 12, 1984)

The notion of non-holonomous and semi-holonomous r-jet as considered by
Ehresmann [1], was defined by induction in r. In the present paper, we point out that
when the notion of 1-jet becomes representable (as is the case in synthetic differential
geometry [4], [5]), then the inductive definition becomes equivalent to an explicit
definition. In fact, just as the notion of “I-jet at x’ becomes representable in the
sense that it becomes equivalent to “map defined on the 1-monad .#(x) around x”,
so the notion of “non-holonomous r-jet” becomes representable by a certain set
M, (x), the “non-holonomous r-monad around x”. We show how to compose non-
holonomous jets, and that the subclasses of holonomous and semi-holonomous jets
are stable under this composition. To this end, we utilize (the combinatorial para-
phrasing of) the classical inductive definition, in conjunction with the notion of
1-prolongation of a differentiable category (also due to Ehresmann).

In the final §, we describe the applications of the theory of non- and semi-holo-
nomous jets to the theory of connections. This is a combinatorial paraphrasing of
parts of [8] and [9]. T want to thank I. Koldf for valuable discussions, which became
the germ of the present investigations.

1. NON-HOLONOMOUS r-MONADS AND JETS

In the context of synthetic differential geometry (see e.g. [5]), every object M
(say a manifold) comes equipped with a “first neighbourhood of the diagonal”
My, © M x M (see in particular [1]). Using set theoretic language, we have on M
a binary relation ~ given by

x~y iff (x,y)eMy,.
This relation is reflexive and symmetric:
X~X; X~y=>y~x,

but not transitive. We call it the 1-neigbour relation. Any map f: M — N preserves
this relation. Furthermore, let for x e M,

My(x):=[yeM|y~x];
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then, at least for suitably nice M, the inclusion .#(x) = M reflects ~, meaning
that if y and z € .#,(x) are 1-neighbours in M, then they are 1-neigbours in .# (x).
(This property is only used in the proof of Proposition 2.1.)

We generalize M,y as follows. Let » > 0 be an integer. Define

Mg, = [(xgs . X,) eM™ | x,og ~x; Vi=1,...,r].

(Note My, = M,,.) An element (x,, ..., X,) of M, will be called an r-chain with x,
as its center, and x, as its extremity; so we have maps

~ c
M(,)? M

associating to each r-chain its center and extremity, respectively. There is some
further combinatorial structure on the family of ]\71(,)’5 namely “degeneracy’”’ maps

oMy —> My, (i=0,.., r)
given by )
(X5 ooy X)) = (X5 o oes Xy Xip ooy X,)

(’th entry repeated). (We don’t have “face” maps 0;: M ,, — M, since the rela-
tion ~ is not transitive.)
Composing r degeneracy maps gives the diagonal map

A: M — M(r)

given by 4(x) = (x, ..., x); also composing r — 1 degeneracy maps suitably gives r
maps

given by
Si(xa y) = (Xa e Xy Vs y)

{x written i + 1 times, y written r — i times). The ¢;’s and hence 4 and the s;’s preserve ¢
and e: eo 0; = e, etc.
For x € M, we let M,(x) denote the fibre of M,, over x by the center map c: M,, —
— M; so
My (x) = [(x05 s X,) | Ximy ~ x; Vi x0 = x];

we call it the non-holonomous r-monad around x, and x is its center. The restriction
of e to ., (x) defines a map e: ./, (x) —» M, which is not monic in general, unless
r=0or 1 A map f:.#, (x)— N is called a non-holonomous N-valued r-jet at x,
and x is called the source of the jet f. In this sense, the notion of non-holonomous
r-jet is represented by an object, namely ., (x) — Henceforth, we will often say
“r-jet” instead of “non-holonomous r-jet”.
Also, if n: E — M is an arbitrary map, an r-jet of a section of m at x is an r-jet at x,

Sl (x)—> E
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with 2(f(x)) = elx) Vxe.;(x).

We get an object J'(E) - M over M, whose fibre over x € M is the set of r-jet sections
of 7 at x. ‘

In particular, we may form jS(J’E). We have the following comparison which
relates our definition of (non-holonomous) r-jet with the inductive definition of
Ehresmann [3]:

Proposition 1.1. For any n: E — M, there is a canonical bijection over M
JYJ(E)) > J*Y(E).
Proof/construction. Let F e J'(J(E)),,; so for any x; ~ x,
F(xo, x,) € .7’(E)X1 s
so for any r-chain (xy, ..., X, ) with center x

F(xg, X1) (Xg, ooy Xp1) €E | .

So for any (r + 1)-chain (X, ..., X, ) With center x,, put
(1.1) F(X00 X1 ey Xy q) 1= Flxg, X1) (Xg5 o0y X, 1 1) -

This defines f e J"*(E),,. The passage the other way is similar.
An r-jet f: ., (x) — N is called semi-holonomous if for any x € .4, (x),

flofx)) = flox)) Vi,j=0,...,r—1,

and holonomous if f(x) depends only on e(x). Clearly, holonomous implies semi-
holonomous. For n: E — M as above, we denote by J'E, respectively J'E, the
subset of J'E consisting of semi-holonomous, respectively holonomous, r-jet sec-
tions of n. Note J'E = J'E = J'E.

Clearly, if F < E, n: E - M, we get JXF) < J(E) canonically, so in particular,
we may view J'(J'(E)) as a subset of J'(J'(E)). We have the following comparison
which relates our definition of ‘“‘semi-holonomous” with the inductive definition of
Ehresmann [2]. Consider the diagram

J"THC Jr’f‘l

n

(1.2)

JJE)e——JYTE)
where the indicated bijection is that of Proposition 1.1.

421



Proposition 1.2. This bijection identifies J**'E with that subset of J'(J'E) con-
sisting of F’s which satisfy

(1.3) F(Xo, X1) (X1, X15 X2, .0 X,) = F(x0, X0) (Xo, X1, .5 X,)
for all x = (xo, ..., X,) € A, (x,) (X, the source of F).

Proof. Let F be a 1-jet section of J'E at x,, satisfying (1.3), and let f correspond
to F under the bijection. Then, for j, i = 1 and x € /4, (x,),

flox)) = F(xo, X1) (X150 Xiy Xi5 oe0s X,)
= F(xg, 1) (X15 ..o X5 X5 -o0y X,) = f(0(x)),
since F(x,, x;) € J'E, whereas for j = 0, i > 1,
flod(x)) = F(xg, x1) (Xg5 e Xiy Xy ooty X,.)
= F(xg, X1) (X1 Xg5 ev0s Xy oeus X,.)
(since F(xo, x;) € J'E),
= F(Xq, X0) (X0, X5 -+ s Xp ooy X,) = f(00(%)) .

The calculation for the other implication is similar.

2. THE COMPOSITION OF NON-HOLONOMOUS JETS

If f: ., (x) > N is an r-jet at x, we define its target yjto be
y=f(xx,...,x) = f(4{x))eN.

Proposition 2.1. Let [ be an r-jet at x with target y. There is a canonical lifting f

of f across e: M, (y) = N, N
A y)
«

A, (x) B Sy

Proof/construction. Let x, denote x. Given x = (x,, , x,) € M, (x) we
define f{x) to be the (r + 1)-tuple
(f(XOs X0 e s xO),f(x05 'xl; seey xl)’ . --:f(x0> xla XX xr)) 5

we have to argue that this is an r-chain, i.e. that consecutive entries are 1-neighbours.
So we should prove

(2.1) F(X0s s Xis Xiy ooy X5) ~ (X5 wvy Xiy Xig 15 ees Xip1) -
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For fixed (X, ..., X;), we consider the right hand side as a function g(x;+ ) of Xiy, €
€ M ((x;). Since x; ~ x;, ¢ in M, it follows that x; ~ x;. in . (x,), and hence that
g(x;) ~ g(x;+,) in N, which is (2.1).

From the Proposition follows that (non-holonomous) r-jets may be composed:
Let f be as above, and let g: /l:(y) — P be an r-jet at y. We then put g - f equal to
the composite map

M(x) L] () s P

Also, for each x € M, there is a canonical r-jet e, at x, with source and target x,
namely e: ./, (x) —» M. Note that the lifting & of this e is the identity map of ., (x).

It is possible to verify directly that jet composition thus defined is associative and
has the e,’s as units, so that r-jets form a category; and also that the semi-holonomous
(respectively holonomous) jets form a subcategory. However, these proofs seem
more transparent using the inductive definition of non-holonomous jets, in con-
junction with a general theory of jet-prolongation of categories, as expounded in the
next §, notably Theorem 3.1. So for the time being, let us note that the structure - and
the e,’s equip the set of r-jets (with source and target in M) as an oriented multi-
plicative graph 1M with M as object- (or vertex-) set (the notion of oriented
multiplicative graph is like the notion of category, except that we do not assume the
associative law for 0, nor that the e,’s are neutral elements for 0).

3. THE PROLONGATION OF CATEGORIES

Let C be a category with M as its set of objects. So we have source and target maps
o, f: C - M. The composition in C is denoted ° and written from right to left;
the unit at x e M is denoted u, or u(x).

The classical definition (Ehresmann) of the prolonged category C'') is now para-

phrased as follows: C'') has M as object set; an arrow from x to y is a 1-jet of a section
of a

fr(x)—>C

with (f(x)) = y. If g is an arrow in C™) from y ‘to z, then the composite g o f is
the 1-jet ut x which sends x; ~ x to the arrow

9(B{f(x1)) o f(x1)

in C (cf. [4], Remark 6.5, with » = 1). The unit arrow u{" at x is the 1-jet .#(x) > C
which sends x; ~ x to u(x,). The fact that these data do determine a category C»)
is straightforward (and omitted in loc. cit.). The construction works even when C,
is only an oriented multiplicative graph; in this case, C* is again only an oriented
multiplicative graph.

More generally, for an oriented multiplicative graph C as above, we define its
r’th non-holonomous prolongation €™ to be the following oriented multiplicative
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graph: its object set is M; an arrow from x to y is an r-jet of a section of «,
fil, (x)~>C

with (f(4(x))) = y. Note that the target of f as an arrow in C" is B(f(4(x))),
whereas the target of / as an abstract jet is f(4(x)). We shall write " for the target
formation in C. If g is an arrow in € trom y to z, then the composite g o f is de-
fined to be the r-jet at x = x,, which sends x = (xo, ..., X,) to the arrow

9((B 1) (%)) = S(x)
in C, or more detailed,

(9 of) (%) = g(B(f(x05 - .., X0)), B(f (X5 <ves X1))s o B(f(X05 -+ X,))) 0 f(X0s 2205 %)

The displayed element does make sense as a composite in C since

A(g(B < 1)™ (x)) = el(B 1) (%)) = (B-f) (x) = B(/(x))-

The unit arrow at x is taken to be the map u®: j/:’(x) — C which sends x to u,,.

Theorem 3.1. Let C be an oriented multiplicative graph. For eachr = 0, 1,2, ...,
there is a canonical isomorphism of oriented multiplicative graphs

(3.1) (COND =, ge+br
If C is a category, then so is each C*”, and (3.1) is an isomorphism of categories.

Proof. For x, € M, we identify .#,(x,) with .4 (x,) via x; = (xo, X;); now the
isomorphism (3.1) is a special case of that of Proposition 1.1, with 7: E — M replaced
by a: C — M. We only have to verify that (3.1) thus defined preserves source, target,
composition, and units. For source, this is part of Proposition 1.1 (and obvious).
For the remaining things to be checked, let f correspond to F, g to G etc., under the
correspondence (1.1). Identifying .47 (x,) with .#,(x,), (1.1) simplifies (for f and F
with source x,) to

(3.2) F(X0s Xy eves Xpiq) = F(x4) (X105 o0y Xppq) -

To see that this correspondence preserves target, let Fe(C®)™). The target
B'(F(x,)) of the arrow F(x,) e C (whose source is x;) is

BF(xy) (x1s -0 X1)) = B(f(X0s X15 -5 X1))
so in particular, the target f!(F) of F e (C®)™") (whose source is x,) is
Br(F(xo)) = B(F(XO) (XOv e XO)) = ﬂ(f(xo, T xo))
which is B’“(f),

L To IKOVe that (3.2) preserves composition, let f and g be composable in C¢* D),
et x = (xo’ tees xr+1) and let

(Yo e Yes1) =¥ = (Bof)~ (x).
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So frtif = yo. Let h = g o f in C"*" correspond to H in ("), So
(33) H(x,) (X145 000 Xpr1) = (9 o f) (X0 Xy, ..., Xpi1)

=9(Yos o Voi1) o f(X0s - Xpi1) -
On the other hand (letting x" = (xy, ..., X, ), and similarly for y")
(34) (G o F) (x)) (x') = (G(B(F(x1)) o F(xy)) (x')

() F()) (+)

= G) (B F(x1)™ (x)) o F(xy) (') .

But

(B o F(xy))™ (x) = (BIF(x1)) (X15 s X1)s ooy BOF(x1)) (X1, s X4 1))
= (B(f(X0s X15 -+ s X1)s ooy B(f(X0s X1 20y Xpy 1))
= (.Vl» [EXT) .Vr+1) = .V/ >
so the equation (3.4) continues
= G(y1) (¥") o F(x1) (%) = g(¥os s Yrat) o f(Xos ooy Xri1) 5

which, when compared with (3.3), gives the result about composition.
Finally, the unit u"(x) at x = x, in (C®)V) is given by

u(x0) (x1) (X1 -v s Xpq)

1

u(xy) (X1 oo Xyt q)
u(X, 1)
= u"*Vxo) (X5 o X, 4 1)
so that u"(x,) and u”*")(x,) correspond under (3.2). This proves the first claim
of the theorem.
The second claim is now an obvious corollary of the first: use induction in r and
the fact that if D is a category, then so is its first prolongation D'V,

Consider the oriented multiplicative graph [T™”M of (non-holonomous) r-jets
with source and target in M, and let ITyM denote the “codiscrete” category on M
(i.e. the category with arrow set M x M, and the two projections as source and target
map). Then one immediately sees that

(IToM)~" = 1M ,

so the theorem has the following

Corollary 3.2. Non holonomous r-jets with source and target in M form a category
1M under the composition given in §2.

Let C be a category, as above. We define C” < C to be the set of those r-jet
sections of a: C — M which are semi-holonomous.

Proposition 3.3. The subset C” < C\ is a subcategory.

Proof. This again uses Theorem 3.1, and induction on r, but now in conjunction
with Proposition 1.2. Let us by induction assume C* to be a subcategory of C®.
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Let f and g be composable 13 C"*D and both e C** Y. Then g - f corresponds to H
as given by (3.3), and H e (C™)® since C is stable under composition. So we just
have to prove (1.3) for H. Now with notation as in the proof of the theorem

H(xl)(X1, X1s X35 euny xr) = (g of) (XO, X1y X15 X2 o0y x,)
= g()’o, Vi Vi1 V2500 yr) °f(x0’ X5 X5 X35 00y X,,)

= g(.VOi Yos Vis oo s yr) Of(xo’ X0s X15 «- s xr)
= H(x,) (Xq, X1, -+ X,) -

This proves inductively that C“*!) js stable under composition. Also u{*") is semi-
holonomous, in fact holonomous. So C¢*1 is a subcategory.

Proposition 3.4. The subset C*") < C\ is a subcategory.

Proof. Using the characterization of holonomous jets as those whose value on
a chain only depend on the extremity, this becomes easy. We omit details.

4. COMPOSITE CONNECTIONS

The maps ¢, e: M — M, together with A: M — M®, equip M as an oriented
graph with M as its object- (or vertex-) set. (It even has an involution

(X5 «+os Xp) > (Xps 2y Xp) 2)

Likewise, a category C with M as object set may be viewed as an oriented graph in
the same sense. (If C is a groupoid it even has an involution f > f 1)
An r’th order (non-holonomous) connection R on C is now defined to be
a morphism
R: M® - C

of oriented graphs over M. (If C is a groupoid, R may or may not preserve involution;
if it does, one probably should express this by saying: R is hysteresis-free; first order
connections on nice objects in models of synthetic differential geometry automatically
have this property.)

We say R is semi-holonomous (respectively holonomous) if Ro6; = Ro0o; Vi, j
(respectively depends only on endpoints of chains).

Following [9] and [8], we define the composite R * S of two connections R and S
on C, of order r and s, respectively, to be the r + s order connection given by

(R#8)(xgs --r Xp15) = S(Xps -0y Xp15) 0 R(Xg5 .05 X,) -
Likewise, following [9], we construct out of R an r-tuple of 1st order connections
{{R) (i =0,...,r — 1), by taking {{R) to be composite

si Kf R
M, 24 My, R C.

The (paraphrasing of) some of the results of [8] and [9] now get very easy proofs;
we give some of these.
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Theorem 4.1. If R is semi-holonomous, then all {(R) are equal.
Proof. We must prove Ros; = Ros;q (i =0,...,r — 2). But
Si = 04108
Si+1 = 0;08;,

and since R o 0; = R . 0;,; by assumption, the result follows.

Theorem 4.2. If R = So*...*S,_| (with the S/s 1st order connections), then
((R)=S8;(i=0,...,r—1).

Proof. We have, for any x ~ y
{{R) = R(x, ..., %, ¥, ..., ¥)  (x written i + 1 times)
=S, (1Y) o oS t(3:¥) 0 Sx, ¥) o Sim (X, X) o ... 0 So(x, x)
= S{x,y)
since S{(z, z) = u, Yz, .
Theorem 4.3. 1f R = Sy* ... *S,_, as above, then R is semi-holonomous iff

S; =S, Vi, j.

3

Proof. The implication “=" follows combining Theorems 4.1 and 4.2. On the
other hand, if S; = S; Vi, j then

R(6{(X0s ..oy Xp—1)) = S(X,—2, X, 1) 0 .o. 0 S(xp, X;) 0 .. 0 S(Xq, Xq) -

Here S(x;, x;) = u(x;), so may be omitted, so we get S(x,_,, X,_1) o ... o S(xg, X;)
which is independent of i.

A [st order connection with values in a groupoid C over M is curvature free [7]
ifx ~y, y~zand z ~ x implies

V(z, x) o V(3, 2) 0 V(x, y) = u,,
or equivalently (assuming V(z, x) = V(x, z)™') .
V(x,z) = V(y,z) - V(x, y),

which may be expressed as: “taking path lift of V along the two possible paths from x

to z in
X —————— Z

\/
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yields the same result”. Now Theorem 7 in [9] says that when R = V* ... *V (V a Ist
order connection), and V is curvature free then R is holonomous. In our context,
the conclusion “R holonomous” can be expressed: “the path lift of V along any two
paths (r-chains) from x, to x, yields the same result”. We can actually prove this
form of Virsik’s Theorem, using the technique of [6], notably Proposition 4.1 (ii),
but this involves considerations of not purely combinatorial nature and so will not
be included here.
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