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INTRODUCTION

Following [13] a vector topology = on a vector space E will be called dual-less
if (E, 7) has no non-trivial continuous linear functionals; in this case we shall say
that (E, 7) is a dual-less space. This is the case when all absorbing and convex
[semi-convex] subsets of E are everywhere dense. Such a topology will be called
(after Peck and Porta) dual-less of type e [se].

In the present paper we return to the following problems investigated in [11],
[12], [13]:

(a) Which vector topologies can be expressed as suprema of dual-less topologies?

(b) Which vector topologies are restrictions of dual-less topologies on a larger
space?

(c) Which vector topologies admit weaker dual-less topologies?

In [13], Theorem C, Peck and Porta proved: The topology of the product space
Ex ... x E (n times, n = 2) of an infinite dimensional separable normed space E
is the supremum of n + 1 dual-less topologies. Hence, in particular, the norm topo-
logy on each of the following Banach spaces: I7[0, 1], I” (1 £ p < o), C[0, 1], ¢,
is the supremum of three dual-less topologies. Unfortunately, the construction
carried out by the authors does not ensure Hausdorff’s property of the dual-less
topologies obtained.

We shall say that a metrizable non dual-less topological vector space (tvs) E =
= (E, t) has the property (i,), p 2 2, if 7 is the supremum of p metrizable dual-less
topologies; replacing in (i,) “metrizable” by “locally bounded and Hausdorff”
we obtain the property (j,)-

Our main results concerning (a) are the following theorems.

Theorem 0. Let E be an infinite dimensional separable [and locally bounded]
F-space such that its topological dual E' has an equicontinuous and total sequence
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over E. Then the product space E x E has the property (i) [(js)] and E admits
a strictly finer metrizable [and locally bounded] separable Baire topology under
which E has the property (i3) [(js)]-

Theorem 00. Let (E, t) be the product space of two separable [and locally
bounded] F-spaces E; and E, with dim E; = dim E, = oo. If every E;, k = 1,2,
has an equicontinuous and total sequence over E,, (E, t) has the property (is) [(j.)]-

The proofs of the above theorems will be based on some ideas used in [13]
combined with recent results concerning summable sequences in tvs.

Clearly, Theorems 0 and 00 apply when E is an infinite dimensional separable
Banach space; as concerns non locally convex spaces, Theorem 0 shows in particular
that the topology of every sequence space I” (0 < p < 1) is the supremum of three
locally bounded Hausdorff dual-less topologies.

We indicate also a number of spaces to which Theorems 0,00 apply; among others,
using Corollary 3.6 of [4], in every non-minimal separable F-space E we find a pair
of proper quasi-complements G, and G, to which Theorem 0 applies; if E is non
locally convex but nearly convex, i.e. E’ is point-separating, G, and G, can be chosen
so that the quotients E/G,, k = 1, 2, are dual-less. This fact partially extends Klee’s
result of [8] concerning the existence of metrizable spaces E which are algebraic
direct sums of closed subspaces G with dual-less quotients E/G. Recall that two
closed subspaces G, and G, of a tvs E are quasi-complements if G, n G, = 0 and
G, + G, is dense in E.

We also prove that every infinite dimensional F-space, i.e. a metrizable and complete
tvs, admits a strictly finer vector topology different from the finest one which is the
supremum of three Hausdorff dual-less topologies of type e. This partially solves
the problem raised by Peck and Porta in [13], Section 3.

Results concerning the problem of finding a weaker non locally convex [and
dual-less] topology on a given non dual-less tvs complete this paper; we also list
some open problems.

All the tvs which will appear are supposed to be infinite dimensional and Hausdorff.
By a subspace of a tvs (E, t) we mean a vector subspace G endowed with the induced
topology; the resulting tvs will be written as (G, 7 | G). A tvs (E, t) is dominated
[strictly dominated] by an F-space if there exists on E a finer [strictly finer] vector
topology 9 such that (E, 9) is an F-space.

A sequence (y;) in E is called bounded multiplier summable (BMS) provided
Yix4 t;y; converges in E for all (t)em :=I,.

Following [9] a sequence (y;) in E is called (linearly) m-independent if (t;) € m
and Y2, t;y; = 0 imply (¢;) = 0. According to [2], Lemma 2, for every linearly
independent sequence ( y,-) in E there exists a scalar sequence (di), d; > 0, such that
(d,y;) is m-independent. Hence, if E has a linearly independent (BMS)-sequence (y;),
we may replace (y;) without changing its linear hull by a new one which is (BMS)
and m-independent.
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Let G be a closed subspace of a tvs E and Q: E — E/G the quotient map. Following
[4] we shall say that a sequence (y;) is m-independent of G if (Q(y;)) is m-independent
in E/G; clearly, then (y;) is m-independent in E.

The following fact will be used in the sequel, cf. [4], Proposition 2.1.

(A) Let G be a closed subspace of a tvs E such that E/G is metrizable separable
and infinite dimensional. Let W be a subspace of E such that Wn G = 0and W + G
is dense in E. Then W contains a sequence (yi) which is m-independent of G and
lin (y;) + G is dense in E.

A tvs E is said to have the property (K) [1] if every sequence (y;) in E with y;, » O
has a subsequence (x;) such that Y 2, x; converges in E. In [1], Theorem 2, it is
proved that:

(B) If E is metrizable and has the property (K), E is a Baire space.

We shall need also the following fact, cf. [10], Theorem 4.

(C) Every F-space of dimension ¢ = 2%° is the algebraic direct sum of two dense
subspaces Gy and G, with the property (K) such that G, x G, has the property (K)
as well.

Note that for every separable infinite dimensional F-space E we have dim E = ¢,
[9], Corollary 2. Finally, a vector topology 7 on a vector space E will be called
a Baire topology if (E, ) is a Baire space, i.e., is of Baire’s second category.

RESULTS

We start with the following

Lemma 1. Let (E, t) be a separable [and locally bounded] dual-less F-space
and G its closed subspace such that G' has an equicontinuous and total sequence
over G. Then G x G has the property (i3) [(js)] and G admits a strictly finer
metrizable [and locally bounded] separable Baire topology under which G has
the property (is) [(j3)]-

Proof. By (A) we find in E a (BMS)-sequence (y;) which is m-independent of G,
such that G + lin (y;) is dense in E. Using a construction from [14], p. 154, [4], p.
380—381, we find a biorthogonal system (x;), (f;) with (x;) = G, (f;) equicontinuous
and total over G. Define a compact injective linear map P of G into E by putting
P(x) =Y f{x) y; in the sequel we shall call P (after Drewnowski [4]) the compact
map determined by the sequences (f;) and (y;). Since (y;) is m-independent of G,
G N P(G) = 0; observe also that G + P(G) is dense in E. By (B) and (C) we find in
G two dense Baire subspaces G, and G, such that G = G, + G, (algebraically)
and the topology y =t ] G X7 [ G, is a Baire topology. Define two continuous
injective linear maps T;: (G; x G,,y) — (E, 1), k = 1, 2, by putting

Ty(xy, X2) = X1 + P(x2), Taxy, x3) = X2 + P(xy).
Clearly G, + P{G,) and G, + P(G;) are dense in E. Hence the inverse topologies
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9, := Ty '(r) are metrizable dual-less [and locally bounded] and weaker than y.
Now consider a continuous injective linear map L: (G; X G,,7) = (Gy X G,, ;)
defined by L'xy, x,) := (x;, —X,). Put 9; := L™}(9,). We prove y = sup (9, 9,, 33).
Let x, := (x), x;) - 0 for sup (9, 9,, 9;). Hence Lx,) —» 0 for 9;, and then
(xs,0) = 27%(x, + L(x,)) > 0 for 9,. Therefore Ty(x,,0) =x, -0 for |Gy,
and hence we obtain (x},0) — 0 for sup (9, 9,, 9;). Since we have (0, x?) - 0
for 9,, T,(0, x7) = x7 — 0 for t | G,, so x, — 0 for y.

Finally, since the map (x,, x,)+— X; + x,, which maps G, x G, onto G, is
continuous and injective but not open, G admits a strictly finer vector topology
as claimed.

The remaining case is obtained similarly: Define a continuous and injective linear
map T;:(G x G, |G x ©|G) - (E, 1) by putting Ty(x,, x,) := x; + P(x,). Let
9y := T7'(z). Next, consider two maps T, and T; of G x G onto G x G defined
by To(xy, X2) 1= (x5, —x3), Ts(xy, X5) 1= (x5, X;). Putting 9, := T,7'(9,), k = 2,3,
we obtain on G x G the desired topologies such that 7 | G x t | G = sup (9;, 9,, 9;).

Proof of Theorem 0. Let E be a vector space. We shall say that a function
/110, 1] - E is simple if there exist a finite number of disjoint subsets A;, 4,, ..., 4,
of [0, 1] whose union is [0, 1] and x,, x,, ..., x, € E such that f(£) = Y7_, x; x4,(2),
where 7, denotes the characteristic function of the set A. Let L/E) be the set of all
simple functions from [0, 1] into E. Clearly the pointwise operations induce a vector
structure on L/E). Assume E is a separable locally bounded space whose topology
is generated by a g-norm | | (0 < ¢ £ 1). Fix0 < p < 1 and put

1]l = j @1 de = S2y [xdl? a4y,

where f e L(E) and p denotes the Lebesgue measure on [0, 1]. As is easily seen, the
space L{E) equipped with the functional |” ”l » 18 a pg-normed dual-less separable
space of type e, so its completion is a space of the same type. Since the map x > f,,
where f,(t) := x, t€[0, 1], is an isomorphism of E into L(E), Lemma 1 applies to
conclude the first part of the proof.

If E is not necessarily locally bounded we consider on L{E) the topology of con-
vergence in measure investigated in the proof of Theorem 1.1, [12], and apply
Lemma 1.

Clearly every separable Banach space satisfies the assumptions of Theorem O.
The simplest non locally convex spaces to which Theorem 0 applies are the spaces
of sequences I” (0 < p < 1). Since [? is isomorphic to its own square and is con-
tinuously embedded into a dense subspace of I', I” has the property ( j3).

Proof of Theorem 00. Let (x}),(ff), k = 1,2, be two biorthogonal systems
such that (x%) = E, and (f}) is equicontinuous and total over E,. For every k = 1, 2
let T, be an isomorphism of E, into the completion (H, 9) of L(E) (constructed in
the previous proof). By (A) we find in H an m-independent of T;(E,) (BMS)-sequence
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(»%) such that lin () + T,(E,) is dense in H. We construct two injective compact
linear maps Py: E; - H, P,: E, > H determined by the sequences (f}), (y;) and
(f?), (}), respectively. Observe that P(E,)n T,(E,) =0 and P,(E,) + T(E,) is
dense in H for evety k,r = 1,2, k & r. Now we define injective and continuous
linear maps
U(x1, X5) 1= Ty(xy) + (—1)* Py(x,) for k=1,2 and
U(xy, x5) 1= Py(x;) + (= 1) To(x,) for k =3,4.

Put 7, := U, '(9) for 1 < k < 4. It is not hard to prove that 7 = sup(7,: 1 <
<k< 4), and the proof is complete.

Recall that a tvs E is minimal if E does not admit a strictly weaker Hausdorff
vector topology, and non-minimal otherwise. In view of [5], Theorem 3.3, an
F-space E is non-minimal if and only if E has a strongly regular M-basic sequence
(y,), i.e. there exists a sequence (f;) biorthogonal to (y;), equicontinuous and total
over the closed linear hull [(y;)] of (y;). Let E be a non-minimal separable F-space.
In [4], Corollary 3.6, Drewnowski proved that E has a pair of isomorphic proper
quasi-complements G, and G,, where G, := [(v,,)].

Hence we obtain

Corollary 2. Every non-minimal separable F-space E contains a pair of isomorphic
proper quasi-complements G, and G, to which Theorem 0 applies. Moreover, if E
is non locally convex but nearly convex, Gy and G, can be chosen so that E[G,,
k =1, 2, are dual-less.

The last assertion of Corollary 2 will be obvious when we use Theorem 4.1 of [4]
and compare the proofs of Theorem 3.3 of [4] and Theorem 1 of [6].
Using Theorem 00 and Corollary 2 we obtain

Corollary 3. Every separable non-minimal F-space has a dense subspace which
is strictly dominated by a separable F-space whose topology is the supremum of
four metrizable dual-less topologies.

Corollary 4. Let E and G be two separable [and locally bounded] non locally
convex but nearly convex F-spaces. Then the product E x G has a closed subspace H
with the property (is) [(js)], such that (E x G)/H is dual-less.

In [11], Theorem 3.3, it is proved that every separable normed space admits
a weaker dual-less topology. We prove a stronger result.

Proposition 5. Let E be a metrizable tvs such that the topological dual of the
completion E of E has an equicontinuous and total sequence over E. Then E admits
a strictly weaker locally bounded Hausdorff dual-less topology.

Proof. By the assumption we find a biorthogonal system (x,), (f,); (x;) = E, (f})
is equicontinuous and total over £. Fix 0 < p < 1 and consider the locally bounded
separable dual-less F-space H := I?[0, 1]. Choose in H an m-independent (BMS)-
sequence (y;) such that lin (y;) is dense in H; this is possible by (A). Define a compact
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injective linear map P of E into H determined by (f;) and (y,). Since P(£) is dense
in H, the inverse topology under P restricted to E is as required.

Corollary 6. Every non-minimal F-space E has a closed infinite codimensional
subspace which admits a strictly weaker locally bounded Hausdorff dual-less
iopology.

Proof. Take in E a strongly regular M-basic sequence (x;) and apply Proposition
5 to the space G := [(x,,)].

Corollary 7. Every non-minimal [and locally bounded]| F-space (E,t) admits
a strictly weaker non locally convex metrizable [and locally bounded] vector
topology.

Proof. By Corollary 6 the space E has a closed subspace G which admits a strictly
weaker locally bounded Hausdorff dual-less topology 3. Taking the infimum topology
y of 9 and 1, i.e. the strongest vector topology among the vector topologies £ on E
such that £ < 7 and & | G < 9, we find on the space E a topology as required.

We do not know whether the topology y can always be chosen to be dual-less.
Nonetheless, we are able to prove the following fact:

Corollary 8. Every separable non locally convex but nearly convex F-space (E, r)
admits a weaker metrizable dual-less topology & and contains a proper &E-closed
subspace G such that the induced topology & | G is dual-less and é/G = ’L'/G.

Proof. In view of Corollary 2 and Proposition 5 we find in E a proper closed
subspace G such that t/G is dual-less and G admits a strictly weaker metrizable dual-
less topology y. Hence, the topology o, being the infimum topology of y and t,
is metrizable, strictly weaker than 7, and « ] G = y; clearly G is a-closed. Denote
by ¢ the initial topology on E with respect to the identity map E — (E, «) and the
quotient map E — (E[G, t/G). As is easily seen we obtain that « £ ¢ <7, y =
=0o|G = &|G, t/G = ¢/G, and the proof is complete.

Proposition 5 leads to

Corollary 9. Let (E, t) be a non-minimal F-space. Then the product space E x E
admits a strictly weaker metrizable non locally convex topology & such that
& | E =r1.

Proof. Let (x;) be a strongly regular M-basic sequence in E. Put G := {(x, x):
x € [(x2;)]}. Since G is isomorphic to [(x,;)], by Proposition 5 we obtain on G
a strictly weaker metrizable dual-less topology y. Define £ to be the infimum topology
of y and t X t; it is non locally convex, Hausdorff, and strictly weaker than © x .
In order to show & | E = , it is enough to apply the proof of Theorem 3.3a of [3].

Remark 10. (a) Using an argument of the same type as above we are able to obtain
that if (E, 7) and (F, y) are two F-spaces which have non-minimal isomorphic closed
subspaces, there exists on E x F a metrizable non locally convex vector topology
& < 17 x ysuch that & | E =rtand¢ ] F = y. In particular, we derive that the alge-
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braic sum of two normed subspaces of a tvs need not be locally convex in the relative
topology.

(b) Within non separable F-spaces we single out the spaces I”(I'), 0 < p < o,
¢o(I') (T is uncountable), which admit weaker metrizable dual-less topologies. We
show only the case of I”(I') with 0 < p < 1; the remaining cases were proved similarly
in [13], Theorem 2.6, although the construction presented in [13] does not ensure
the metrizability of weaker dual-less topologies. Consider a compact injective linear
map P of I” into I7]0, 1] with dense range (see the proof of Lemma 1). We apply P
to deduce existence of a continuous injective linear map of [?(I', I”) (isomorphic
to [7(I')) into a dual-less F-space [”(I', L]0, 1]) with dense range.

It is known [13], Theorem B2, that the finest vector topology of any uncountably
dimensional vector space E is the supremum of three type se dual-less Hausdorff
topologies. This fact motivates the following question: Does every F-space admit
a finer vector topology different from the finest one which is the supremum of dual-
less topologies of type e?

Proposition 3.3 of [13] answers “yes” if E is a separable Hilbert space.

We obtain a stronger result for F-spaces.

Proposition 11. Let E be a tvs having an m-independent (BMS)-sequence. Then E
admits a strictly finer vector topology different from the finest one which is the
supremum of three dual-less Hausdorff topologies of type e.

Proof. Fix a separable Hilbert space G. In [7], Proposition 1, we proved that E
contains a subspace H strictly dominated by an isomorphic copy (H, 9) of G such that
codim H = dim H = ¢. Let W be an algebraic complement of H in E (dim W = ¢)
endowed with the finest vector topology y. Using Peck’s and Porta’s results mentioned
above ([13], Theorem B2, Proposition 3.3) we obtain that 3 x y generates on E
a topology as required.

OPEN PROBLEMS

The author has been unable to answer some questions which arose in the course
of preparation of the paper.

Problem 1. Are Theorems 0 and 00 valid for general (separable) F-spaces?

Problem 2. Does every metrizable tvs whose completion is non-minimal admit
a strictly weaker metrizable dual-less topology?

Problem 3. Let (E, 7) be a non locally convex separable nearly convex F-space
and p the Mackey topology on E, i.e. the topology induced by all convex t-neigh-
bourhoods of zero. Does E admit a dual-less topology ¢ such that © = sup (¢, p)?
(Note that the topology u cannot be replaced by the weak topology asociated with 7.)

Let E be an uncountably dimensional vector space. Is the finest vector topology
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on E necessarily the supremum of the finest locally convex topology and a dual-less
topology?

Problem 4. Does every dual-less space admit a strictly finer dual-less topology?

We can make only the following remark concerning 4: every tvs (E, t) which is
metrizable [and complete with dim E = ¢] admits a strictly finer [and Baire]
topology 9 such that 9 is dual-less if 7 is dual-less. Indeed, in view of [10], Theo-
rem 1, E is the algebraic direct sum of the sequence (Ea) of dense subspaces of E;
this enables us to obtain on E a topology as claimed. The remaining case is a con-
sequence of (B) and (C) (see Introduction).

On the other hand, every F-space (E, || ||) admits a strictly finer metrizable Baire
topology y which is the supremum of two metrizable and complete vector topologies;
and if E is dual-less, 0 < dim (E, y)’ < oo. Indeed, choose in E a dense finite co-
dimensional Baire subspace G and let H be its algebraic complement endowed with
its unique Hausdorff vector topology ¢. Let ||x||| = inf {|x + x| : ye H}, x€G,
then the F-norm ||| ||| generates on G a weaker metrizable and complete vector topo-
logy 9. To conclude it is enough to put y := sup (1, $ @ ¢), where t denotes the
topology generated by the F-norm | |.
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