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1. INTRODUCTION

Throughout the paper X stands for an arbitrary (non-empty) set and M and N
stand for algebras of subsets of X. We denote by S(M) the linear space spanned by
the characteristic functions 1,;,, M € M. We note that

(1) S(M)n S(N) = S(M~ N).

The closure of S(M) in the Banach space of all real-valued bounded functions
on X with the supremum norm |- | is denoted by B(M). The dual of B(M) can be
identified with the Banach space ba(M) of all real-valued quasi-measures, i.e.,
bounded additive set functions, on M with the total variation norm also denoted
by ||| (see, e.g., [7], Corollary 4.7.5). The unique element of B(M)* corresponding
to u e ba(M) is denoted by I, ([7], Theorem 4.7.4).

We note that

(2) B{M)~ B.N)> B(M~ N)

and the equality holds in case M and N are og-algebras, but not in general. Indeed,
for M and N as specified in Example 1 below the identity function on [0, 1) is
a counter-example.

We are concerned with the following problem:
Given pe ba(M) and v e ba(N) which are consistent, i.e.,

p|MAaN=v|MnN,

when does there exist ¢ € ba(F), where F stands for the algebra generated by M U N,
with ¢ | M = pand ¢ ] N = v (called in the sequel a common extension of p and v)?

This problem has been suggested by the papers by Guy [1] and Ptdk [6]. The
former gave a complete solution to a version of the problem with y, v and ¢ positive
(see also [2], [4] and [7], Theorem 3.6.1). The latter dealt with the general question
of extending simultaneously two continuous linear functionals defined on subspaces
of a locally convex space. We also note that, with the boundedness condition dropped,
the problem admits an easy affirmative solution ([4], Corollary 2.1, [7], Theorem
3.6.2).
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We shall present below two negative examples and three affirmative partial solu-
tions to the problem*). The first two solutions (Propositions 1 and 2) are of global
character, i.e., they involve assumptions on M and N only, while the third (Corollary)
imposes some strong conditions on one of the quasi-measures to be extended. The
global solutions are related to some results of [6] (see Remark 2 below). Reasonable
necessary and sufficient conditions in order that the answer to the problem be af-
firmative individually, i.e., in terms of u and v, seem hard to find. The proofs of
Propositions 1 and 2 are based on the Hahn-Banach theorem.

2. NEGATIVE RESULTS

The following examples show that the condition that M n N = {0, X} is not
sufficient even in the case when u and v are positive. In the first example x4 and v
are additionally two-valued, while in the second M and N are g-algebras generated
by countable partitions and u and v are measures.

Example 1. Suppose M n N = {0, X} and the following condition holds:
(3) There exist M,e M and N,e N with 0 + M\ cN;cM,cN,c...*+ X
(e.g., X =[0,1) and M and N are generated by the families

{[0,a): 0 < a < 1 is rational} ,
{[0,a): 0 < a <1 is irrational} ,
respectively). Extend {M,: n = 1,2,...} to a maximal ideal I in M and put
p(M)=0 if MeI and p(M)=1 if MeM~I.
Choose x € N; and for N € N put
WN)=0 if x¢N and »N)=1 if xeN.

Observe that every common additive extension ¢ of u and v to F is unbounded.
Indeed, N, \ M, are pairwise disjoint and

o(N,NM,) = ¥(N,) — p(M,) = 1.

Example 2. Let X be the set of all natural numbers and let M and N be the
g-algebras of subsets of X generated by the partitions

{1},{2,3},...{2n = 2, 2n — 1}, ...,
{1,2}, {3,4},....,{2n — 1, 2n}, ...,
respectively. Clearly, M n N = {0, X}. Let (a,) and (b,) be sequences of positive

*) Some of these results were announced at the 13th Winter School on Abstract Analysis,
Srni (in the Sumava Mountains), 1985; see Suppl. Rend. Circ. Mat. Palermo (2), to appear.
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real numbers such that

o ©
an\o’ Zan= «©, bn+1 >an_an+l and an<00
n=1 n=1

(e.g., a, = 1/n, b,., = 1/n?). Put
w{l}) =b, and pu({2n —2,2n—1})=0b,,
v({1,2}) = by + a; and v({2n — 1,2n}) = b, + (a, — a,-,) .
Clearly, p and v extend uniquely to (positive) measures on M and N, respectively,

which we also denote by u and v. Moreover, u(X) = v(X) since a, N 0. Let ¢ be
a common additive extension of x and v to F. We have

o({2n}) =v({1,...,2n}) — p{{1,...,2n = 1}) = a,,.
Hence ¢ is unbounded.

3. AFFIRMATIVE RESULTS AND COMMENTS

We say that M and N are weakly independent if, given two partitions
{M,,..,M,} =« Mand {N,,...,N,} = Nof X into non-empty sets, the set
{(i,j)): 1£i<m, 1 <j<nand M;nN; + 0}
contains a row {(ip,j): 1 £ j < n} and a column {(i, jo)) 1 < i < m} of the matrix
{(,j): 1<i<m, 1 <j<n}.
Clearly, this condition implies M N N = {(D, X } Moreover, it is implied by the
independence of M and Nin the sense of Marczewski ([ 5], p. 220), i.e., the condition

that for every pair of non-empty sets M € M and N € NV we have M n N % (. The
latter implication cannot be reversed as shown by the following simple

Example 3. Let X be the set of all natural numbers and let M and N be algebras
of subsets of X generated by the even and the odd singletons, respectively. Then M
and /V are weakly indepedent but not indepedent.

Lemma 1. Let M and N be weakly independent and let g € S(M) and h e S(N).
Then there exists a real number c such that
g + bl z g =] + b +e.

Proof. Let a;,, i =1,...,m, and b;, j = 1, ..., n, be all the values of g and h,
respectively. Let iy, j, be such that

g Maw) A k7Y (b) £ 0 and g a)n h~Y(b;) + 0
forj=1,...,nandi=1,...,m. Then |b; + a;| < |g + k| and
lai — ay| < |a; + bjg| + |ai, + bj| < 2|g + A

Thus we may take ¢ = a;,
The following is a partial extension of a result of Marczewski ([5], Theorem I).
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Proposition 1. Let M and N be weakly independent and let pe ba(M) and ve
€ ba(N) be consistent. Then there exists ¢ € ba(F) which is a common extension
of p and v and satisfies |¢| < 3 max (||u, |v]).

Proof. By (1), S(M) n S(N)consists of constant functions only. Hence the formula
J(g + h) = 1,(g9) + 1,(h)defines unambigously a linear functional J on S(M) + S(N).
In view of Lemma 1,

-

Hence, by the Hahn-Banach theorem, J extends to a continuous linear functional K
on S(F)with |K|| = ||J|. Then ¢ defined on F by o(F) = K(1) is as desired.

It follows from [3], Example 1, that the constant “3” in Proposition 1 is best
possible even in the case where u and v are two-valued.

Lemma 2. If f e B(M) has finite range, then f e S(M).

Proof. Clearly, it is enough to prove that if Z;, j = 1, ..., n, are non-empty and
pairwise disjoint and Z; ¢ M for some j, then

[7] = 3 max (|l

”-be" I, + g 2 3min{[b)], |by — b)|: 1 <j, k, 1 < n; k+1}

I

whenever b, j = 1,..., n, are (non-zero distinct) real numbers and g € BIM). We

may and do assume that g € S(M). Accordingly, let g = ) a; 1), where M;e M,
i=1

i=1,...,m, are non-empty and pairwise disjoint. Denote by J the right-hand
side of the above inequality.
Suppose, to get a contradiction, that

I _Zlb,- Iz, + ,Zlai L] <o.
- &
Since |b;| = 6, we have
(a) Zjc UM, forj=1,..,n
i=1

Moreover,

(b) M;nZ; + 0 implies M; < Z,.
Indeed, first observe that M; N Z, = 0 for all k # j. Otherwise |b; + aj, |b, + a;| <
< d, which implies lbj - bkl < 26, a contradiction with the definition of 4. If
M;\Z; % 0, it follows that |a;| < 8. Since, moreover, |b; + a;| < &, we get |b;| <
< 26, which contradicts the definition of d.

From (a) and (b) we infer that for each j

Z;=UM,;, where T;={l<is<n M;nZ;+0},
ieT;y

which contradicts the assumption that Z; ¢ M for some j.

The following is a partial generalization of Proposition 3 of [3].

Proposition 2. Let N be finite and let pe ba(M) and ve ba(N) be consistent.
Then there exists ¢ € ba(F) which is a common extension of u and v.
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Proof. In view of (2) and Lemma 2,
B(M)~ B(N)= B(M~ N).

Hence the formula J(g + h) = I,(g) + I,(h) defines unambigously a linear functional
on B(M) + B(N). Clearly, the restrictions of J to B{M) as well as to B(N) are con-
tinuous. Since B(M) is complete and B(N) is finite-dimensional, it is not hard to see
that J itself is continuous. Now, applying the Hahn-Banach theorem as in the proof
of Proposition 1, we get the assertion.

We shall need the following notation. For v e ba(N) we put

N (V) ={NeN:vS)=0 forall N> Se N}.
In case /(v) is a hereditary family of subsets of X, v is called (Lebesgue) complete.

Corollary. Let y € ba(M) and v e ba(N) be consistent and let v be complete and
have finite range. Then there exists ¢ € ba(F) which is a common extension of u
and v.

Proof. First we note that if Ne #(v) and N o M € M, then p(M) = 0. (Indeed,
M e #(v), and so v(M) = 0.) Hence, by [3], Proposition 1, u extends to a real-
valued quasi-measure p' on M’, where M’ stands for the algebra generated by M v
U A(v), such that v

W(M = Z)=pM) forall MeM and ZeH(v).
We claim that u’ and v are consistent. Indeed, if M ~ Z = N with M e M, Z € #(v)
and N e N, then M = N = Z. Hence u(M) = v(N), and so y'(N) = v(N).

Let N’ be a finite subalgebra of N such that for every N € N there exists N' e N’
with N = N’ e A(v). Then F coincides with the algebra generated by M’'u N'.
Put v = v | N'. Clearly, ' and v' are consistent, whence, by Proposition 2, there
exists ¢ € ba(F) which is a common extension of y’ and V. Since A(v) = N (¢)
and ¢ | N = ', we have ¢ | N = v.

We note that both the above assumptions on v are essential asis shown by Examples
1 and 2, respectively.

Remark 1. Condition (3) of Example 1 admits the following strenghtening:

(YMeM, M +X)(3NeN, N +0)

(YNeN, N +X)3AMeM, M +0) [MnAN=0].
The latter might be called the total dependence of M and N. Unfortunately, it is
much stronger than just the negation of the weak independence of M and N. This

sheds some light on the dimension of the gap which exists between the negative
Example 1 and the affirmative Proposition 1.

We shall present another strengthening of condition (3).

Proposition 3. If B(M) n B(N) contains a non-constant function f, then (3) holds.
Proof. Fix a € f(X). We first show that given ¢ > 0, we can find M € M such that
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l|a = f(x)] <2¢ forall xeM, |a—f(x)]>e forall xeX\M.

Indeed, let Sy, ..., S, € M be a partition of X with
|[f(x) = f(»)] < & whenever x,yeS;, i=1,..,n

(see [7], Proposition 4.7.2). Put

T={1<ign:|a—f(x) <eforsome xeS;} and M =US,.

ieT
Fix ¢ > 0 with 27%¢ < sup {|a — f(x)|: x € X}. By what we have just proved,

there exist M,e M and N,e N with |a — f(x)| <27%% forall xeM,, |a —
—f(x)| > 27@*Ye for all xeX\M,, |a— f(x) <2 "¢ forall xeN,,
la — f(x)] > 27@"*2¢ for all x eX\N,, n=1,2,.... Then M, + X and
f~'(a) = M,. Moreover, (X\M,)AN,=0, and so N, = M,. Analogously,
M,;y © N,. Thus X\ M, and X \N, satisfy (3).

Remark 2 (H. Weber). The existence of a common extension ¢ e ba(F) for every
consistent pair u € ba(M) and v € ba(N) is equivalent to the conjunction of the con-
ditions:

(i) B(M) n B(N) < B(M A N),

(i) B(M) + B(N) is closed in B(F).

This follows from [6], Theorems 2.1 and 2.4, and (1). In case M n N = {0, X}, the
necessity of (1) also follows from Proposition 3 and Example 1 above. Finally, note
that (i) #> (ii) (see Example 2).

Added in proof. Lemma 2 above is essentially identical with Lemma 2 of Dlerolf, P.,
Dierolf, S., Drewnowski, L.: Remarks and examples concerning unordered Baire-like and ultra-
barrelled spaces, Collog. Math. 39, 109—116 (1978). The proof given there is somewhat simpler
than ours.
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