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Let M = K/H be a homogeneous manifold. Then the transitive action of the
group K on M induces a transitive action of the tangent group TK on the tangent
bundle TM. This lifting of action is compatible with the complete lifts of tensor
fields and connections from M to TM (see K. Yano and S. Kobayashi [14]). So we
can expect some nice liftings of other structures on homogeneous manifolds to tangent
bundles.

This paper has two purposes. Firstly, we describe the group of transvections of
the complete lift of an affine reductive space. Secondly, we construct a pseudo-
Riemannian regular s-structure on the tangent bundle of a generalized symmetric
pseudo-Riemannian space (in the sense of O. Kowalski [5]). The s-structure obtained
coincides with that constructed by M. Toomanian in [11]. We use a simple method
based on a lemma due to O. Kowalski, and we can avoid rather complicated calculus
which was developed in [11]. Thus, we prove in a short way that the complete lift
of a generalized symmetric space is a generalized symmetric space as well (Theorems
4.2 and 4.3). (In the previous paper [9], we proved the same in the special case of
a simply connected manifold.)

Section 1 is a summary of results about lifting operations from manifolds to their
tangent bundles. Section 2 gives basic information about actions of tangent groups
on tangent bundles. In Section 3 we lift some basic structures on reductive homo-
geneous spaces to tangent bundles, such as the group of transvections. In Section 4
we find the lifts of regular s-structures from generalized symmetric pseudo-
Riemannian spaces to their tangent bundles.

T would like to express my sincere gratitude to Professor O. Kowalski for sug-
gesting these problems to me, for various helpful discussions and for his encourage-
ment. I would like to thank also to the Department of Mathematical Analysis,
Charles University in Prague which provided convenience for my research stay
in Prague.
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1. TANGENT BUNDLES

In this section we give a brief survey on prolongations of tensor fields and connec-
tions from a manifold to its tangent bundle. For more details, we refer to Yano-
Ishihara [13] and Yano-Kobayashi [14].

Let M be a smooth manifold of dimension n. Let Z(M) be the Lie algebra of all
smooth vector fields on M and .#(M) the tensor algebra of all smooth tensor fields
on M. For any smooth mapping ¢ of M into a smooth manifold N, let ¢, denote
the differential of ¢, and ¢* its dual mapping.

Further, let M, be the tangent space of M at a point x in M and TM = J M,
the tangent bundle over M with the canonical projection p. xeM

First we define the vertical lifts from M to TM. For a function f on M, the function
p*f on TM induced by the projection p is denoted by f” and is called the vertical
lift of the function f from M to TM. Any 1-form w on M may be regarded, in
a natural way, as a function on TM. We denote this function by «w. The value of
the function «w at a point (x, X,) in TM is (1) (x, X,) = w(X,), where X, is
a tangent vector of M at a point x in M. For any vector field Y on M, we define
a vector field Y* on TM by Y*(iw) = (w(Y))" for all 1-forms w on M. We call Y” the
vertical lift of the vector field Y from M to TM. For any function f on M, we denote
by df the differential of f. We define the vertical lift of a 1-form df on M by (df)’ =
= d(f*) for all functions f on M. Now, we define the vertical lift of an arbitrary
1-form @ on M. To do this, we recall the expression @ = Y ; dx’ on the domain of
a coordinate system (U, x', x?, ..., x"). The vertical lift »° of w is a 1-form given
by 0° = Y (w;)’ (dx’)’. We extend the vertical lifts defined above to a unique linear
mapping of the tensor algebra J(M) to the tensor algebra J(TM) by the rule
(T®S)’=T"® S* for all T, Se S#(M).

Next we define the complete lifts from M to TM. For a function f on M we put
f¢ = «df and call the function f° on TM the complete lift of the function f from M
to TM. For a vector field Y on M we define a vector field Y° on TM by Y°f° = (Yf)°
for all functions f on M. We call Y¢ the complete lift of the vector field Y from M
to TM. Given a 1-form w on M we define a 1-form w° on TM by w*(Y*) = (a(Y))°
for all vector fields Y on M. We call o the complete lift of the 1-form w from M
to TM. We extend the complete lifts defined above to a unique linear mapping of
the tensor algebra #(M) to the tensor algebra #(TM) by the rule (T® S)° = T° ®
® S’ + T° ® S° for all T, Se J(M).

Now, let V be an affine connection on M. Then there exists a unique affine con-
nection V¢ on TM which satisfies '

V5.Z¢ = (VyZ)

for all vector fields Y, Z on M. We call the connection V¢ the complete lift of the
connection V from M to TM.
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We restrict ourselves to those properties of lifting operations which will be used
later. The following lemmas 1.A—1.E are due to Yano and Kobayashi [14].

Lemma 1.A. For any vector field Y on M and any tensor field T on M, the Lie
derivative & satisfies

LyeT® = (LyT), LyT° = (ZyT),
Ly T = (ZyT), LyT°=0.
In particular, if T = Z is a vector field, then
[vez] = [v.2], [¥2]=[r.Z],
[y, z]=[YZz], [Y,Zz]=0.
Lemma 1.B. Let g be a tensor field of type (0,2) on M. Then
g°(¥, 2°) = (¢(Y, 2))°, ¢°(Y, 2") = (9(Y, 2))",
o (129 = ((L2) . ¢\ 2) = 0.
Furthermore, if g is a pseudo-Riemannian metric on M, then g¢ is a pseudo-

Riemannian metric on TM (with n positive and n negative signs).

Lemma 1.C. If V is the Riemannian connection of M with respect to a pseudo-
Riemannian metric g, then V¢ is the Riemannian connection of TM with respect
to the pseudo-Riemannian metric g°.

Lemma 1.D. Let V be an affine connection on M. If Y is an infinitesimal affine
transformation of M, then both Y¢ and Y® are infinitesimal affine transformations
of TM with respect to V°.

Lemma 1.E. For any vector field Y on M and any tensor field T on M, we have
$T¢ = (VyT)*, ViT® = (V4 T),
7T = (VyT), Vi.T°=0.

Finally, the following result will be useful in the sequel:

Lemma 1.1. Let x be a fixed point in M, and let Y be a vector field on M such
that Y, = 0. Then we have

Ys0 =0 and

Y’ =0 for any point x' such that p(x’) = x.
Proof. By the definition of the complete lifts, we have

Y0 f* = (Yf)ixoy = (¢d(¥)) (x,0) =0 and

(P4Y¥e,0) f = Ye,0(f*) = (¥)* (x,0) = Yof = O

for all functions f on M. Hence we see Y ) = 0.
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Since Y x, (1) = o,(Y,) for all 1-forms ® on M and for all tangent vectors X,
on M at x € M, we have Y, = 0 for all points x’ such that p(x') = x.

Remark 1. We notice that Y need not be zero at a general point x’ € TM even
if Yp(x') = 0.

2. TANGENT GROUPS

Let K be a Lie group and ¢: K x K — K the mapping of the group multiplication
¢(a,b) = a.bforall a, beK. Let T be the Lie algebra of K.

Every element of the tangent bundle TK over K is a couple (a, 4,) where a e K
and A, is a tangent vector of K at a. Here A, belongs to a unique left invariant vector
field A ef. Hence we have a bijective correspondence between TK and the semi-
direct product K . f, and we shall use both symbols (a, 4,) and (a, 4) to denote an
element of the tangent bundle TK.

Let L, and R,, a € K, denote the left and right translations in K, respectively,
C, the conjugation mapping on K, i.e., C, = L, o R,-1, and a > ad(a) the adjoint
representation of K on f. We define a group multiplication Ty on the tangent bundle
TK of K by

(Te) ((a, A), (b, By)) = (a . b, (La)s By + (Ry)- A,)
for all (a, 4,), (b, By) € TK, or equivalently
1) (To) ((a, 4), (b B) = (a.. b, B + ad(b™") 4)

for all (a, A), (b, B) e K . f. Here we identified T(K x K) with TK x TK. The group
TK, obtained in this way, is called the tangent group to K. The group K, imbedded
in TK as the zero-section, is a closed subgroup of TK and the vector space T is a
closed normal subgroup of TK. Finally, (e, 0) is the unit element of TK.

Suppose that K is a Lie group acting on a manifold M by the law ¢: K x M — M.
For every a € K and every x € M, we often denote qS(a, x) by ax. For each element
a of K, we define a transformation ¢, on M by ¢,(x) = ¢(a, x) = ax forall x e M.
We denote the group {¢,| a € K} of transformations on M by K*. Then, if the action
of K on M is effective, K* is isomorphic to K. Furthermore, the Lie algebra of K*,
say f¥*, is given by

= {4*| det)

where A* is the fundamental vector field corresponding to A4, that is, for any x € M,

A = % (exp t4) (x) .

t=0

Next, we define the “tangent action” T¢ of TK on TM by
(T8) (@ 4a), (%, X)) = (ax, a: X, + (V:)e 4o)
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for all (a, 4,) € TK and for all (x, X,) € TM, where y,, x € M, is a mapping of K
to M defined by

¥ (a) = P(a, x) = ax
forall a € K. Since Y, = Yo Ryand 4, = (L,)4 A, we get ()« 4, = (Var)« ad(a) A
and hence
2 (T¢) ((a, 4), (x, X)) = (a%, axXx + (Vax)x 2d(a) 4)

for all (a, A) e K . f and for all (x, X,) € TM.
The following lemma is a special case of a result from [13]. Here we shall give
a different proof.

Lemma 2.A. Let K be a Lie group acting on a manifold M. Then for any element
a €K and any vector field Y on M we have
(a,0), Y° = (ayY)*, (a,0), Y° = (azY).

Proof. Let (x, X,) be any point of TM.
We have

((a, 0)s Yéxo) [ = Y xo((a, 0)* 1) = X(Ya*f) =
= X{(axY) (a*/)) = (a:X) (ax7) f) = (0T )(a 070,00 f°

for all real-valued smooth functions f on M. Hence the assertion is proved for the
complete lift.

Next we prove it for the vertical lift. First note that (a, 0)* 1w = wa*w holds for
all 1-forms w on M. In fact, we have

((a, 0)* ww) (x, X,) = w(ax, a,X,) = w,(a:X,) =
= (a*w,,) (X,) = (wa*0) (x, X,) .
Thus,
(2, 0)x Y.x0) (100) = Yiixo((a, 0)* o) =
= Y xo(*o) = ((a*) (Y))" (x, X,) = (a*0),(¥,) =
= 0@+ Y,) = (0(a+Y)) (ax, axX.) = (257 )a,0cx,x,) (100)
for all 1-forms w on M.

This completes the proof.
The following proposition is due to S. Kobayashi [3].

Proposition 2.B. If a Lie group K acts as a Lie trasformation group on
a manifold M, then the tangent group TK acts as a Lie transformation group
on TM by means of (2). If K is effective on M, then TK is effective on TM.

As noticed in Yano-Kobayashi [ 14, II, Remark 4 in p. 237], the Lie algebra of TK is

Lie (TK) = {A° + B’| A,Bef},

where A° and B’ denote the complete lift of 4 and the vertical lift of B, respectively,
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from K to TK. Hence, if K acts effectively on M, we have
Lie (TK)*) = {A®* + B**| 4, Bet}.

Now we discuss a relationship between two kinds of lifting operations, one from K
to TK and another from M to TM.

For any vector field Yon M, we denote by exp tY, t €I = R, the 1-parameter group
of (local) transformations generated by Y. Since we have

(exp 1Y, 0) (x, X,) = ((exp tY) (x), (exp t¥), X,)

for all (x, X,) e TM, (exp tY,0), tel = R, is a 1-parameter group of (local) trans-
formations on TM.

Lemma 2.C ([14]). For any vector field Y on M, we have
(exp tY, 0) = exp tY*°
forall tel < R.
Lemma 2.1. For any element A €%, we have
A% = gox

Proof. Let (x,X,) be any point in TM. Using Lemma 2.C and the fact that
(exp tA*) (x) = (exp tA4) (x) for all x € M, we have

(exp 1t4*) (x, X,) = (exp t4*, 0) (x, X,) = ((exp t4) (x), (exp t4), X,) =
= (exp 14, 0) (x, X,) = (exp t4°) (x, X,) = (exp tA°¥) (x, X,) .

Hence, differentiating bbth sides at t = 0, we get A*¢ = A°*,

Next we discuss the case of the vertical lifts.

Lemma 2.2. For any element A€ ¥, we have

exp tA° = (e, tA)

for all t e R, where e is the unit element of K.

Proof. By Formula (1) we have

(e, 14) (e, sA) = (e, sA + ad(e™ ') t4) = (g, (t + s) A)

for all t, s € R, where the dot on the left hand side stands for the multiplication in TK.

This implies that {(e, t4)| te R} is a one parameter subgroup in TK. But, since
we have (d/dr)|,— (e, t4) = A°, we see that exp tA” = (e, tA).

Lemma 2.3. For any element A € ¥, we have
A*Y = A",
Proof. Using Lemma 2.2 and Formula (2) we get

(exp 14°) (x, X)) = (x, X, + () A)
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for all (x, X,) in TM. But, since (¢,), A = A}, we get

(exp t4%) (x, X,) = (x, X, + tA}).
Hence
(x, X, + t47) = (A*)e.x -

t=0

d
A%%) gy = —
(Ao = 5

Remark 2. Lemmas 2.1 and 2.3 assert that the following diagram is commutative:
Tt —%— #(TM)
Ic, v ¢, v
t—* > 2(M)
where TT denotes the Lie algebra of TK.
A vector field is complete if it generates a global 1-parameter group of transfor-

mations. The following lemma is a consequence of Lemmas 2.C and 2.2 (see also
[14, 1T p. 205]).

Lemma 2.D. If a vector field Y on M is complete, then its complete lift Y is
a complete vector field on TM. The vertical lift Y* of any vector field Y is always
complete.

Now we prove two propositions which will play a basic role later.

Proposition 2.4. Let K be a Lie group acting transitively on M. Then the tangent
group TK acts transitively on the tangent bundle TM.

Proof. Let (x, X,), (, ¥,) be two points in TM. Since K acts transitively on M,
there exists an element a € K such that y = ax. The mapping ¥, of K to M defined
by ¥,(b) = by (beK) is surjective, and hence the linear mapping (¥,), of T to the
tangent space M, at y is also surjective. This together with the surjectivity of ad(a)
on f implies that there exists A € T such that

Y, — a, X, = ()« ad(a) 4 .
Thus we see that there exists (a, A) € TK such that

(a, 4) (v, X,) = (», 1y) -
This completes the proof.

Proposition 2.5. Let K be a connected Lie group acting effectively on a manifold M.
If K preserves a tensor field T on M, then TK preserves the complete lift T° and the
vertical lift T® of T. Also, if K preserves an affine connection V on M, then TK
preserves the complete lift V¢ of V.

Proof. First we note that, since K acts effectively on M, we have, from Lemma 2.1
and 2.3,

(3) Lie((TK)*) = {A4*® + B*| A, Bef}.
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Next, since we have £ T = 0 for all 4 € f by the assumption, Lemma 1.A yields
Q) LT =0, LuT°=0,
gA*cT';:O, gA‘uTU=O'
From (3) and (4) we see that TK preserves T° and T* because TK is connected.
If A* is an infinitesimal affine transformation of (M, V), then, by Lemma 1.D,
both A*® and A*" are infinitesimal affine transformations of (TM, V). A similar

argument as above shows that TK preserves V¢ if K preserves V.
This completes the proof.

Remark 3. Mr. Y. Ogawa (Ochanomizu University in Tokyo) was so kind as
to send me a different proof of Proposition 2.5 based on calculations with local
coordinates.

Finally, we prove a result which will be used in Section 4.

Proposition 2.6. Let K be a Lie group acting effectively on a manifold M. If
¢ € K commutes with any element of the isotropy subgroup H of K at 0o € M, then
(¢, 0) e TK commutes with any element of the tangent group TH.

Proof. Let (a, A) be any element of TH. By (2) we have
(5) (¢, 0)(a, A) (x, X,) = (cax, (ca)s X, + cx(Vax)x ad(a) A)
for all (x, X,) e TM. Now we claim that
ColaroCo=YuroC,
holds on H. In fact, using the assumption we have
€ oY o Cl(b) = caba™'ax = abex = aba™'acx = Y, C,(b)
for all b € H. Hence we get
c*(l//ax)* ad(a) A= (‘pacx)* ad(“) A

for all A € h. From this and (5), we have

(¢, 0)(a, A) (x, X,) = (acx, (ac)s X, + (Voex)x ad(a) 4) =

= (a, 4) (cx, cxX,) = (a, A) (¢, 0) (x, X,)

for all (x, X,) € TM. Since TK acts effectively on TM (see Proposition 2.B), we get
(¢, 0)(a, A) = (a, A) (c, 0) for all (a, A) e TH.

3. TANGENT BUNDLES OVER REDUCTIVE HOMOGENEOUS SPACES

In this section, we first prove that the tangent bundles over reductive homogeneous
spaces are also reductive homogeneous spaces. We prove the same for the affine
reductive spaces in the sense of [5]. Then we show that the tangent group to the
group of transvections of an affine reductive space (M, V) is the group of transvections
of the affine reductive space (TM, V°).
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First of all we shall recall some elementary properties of the reductive homo-
geneous spaces. We refer, for example, to Kobayashi-Nomizu [4, IT] and Kowalski
[5]-

Let K be a connected Lie group and H its closed subgroup. Consider the homo-
geneous manifold K/H. Let k > ) be the Lie algebras of K and H, respectively.
Suppose that there is a subspace m < T such that = m + b (direct sum of vector
spaces) and ad(a) m = m for all a € H. Then the homogeneous space K/H is said
to be reductive with respect to the decomposition f = m + §). The canonical con-
nection of the reductive homogeneous space is characterized as follows ([4, 1],
[5, Proposition 1.10):

Theorem 3.A. The canonical connection of a reductive homogeneous space M =
= K[H is the unique K-invariant affine connection on M such that, for every
U € m and every vector field Y on M, we have

(Vo.Y), = [U*,.7],
where o is the origin of K[H and U* is the fundamental vector field on M cor-
responding to U.

Now, we shall study a lift of a reductive homogeneous space M = K[H to its
tangent bundle.

Proposition 3.1. Let M = K/H be a reductive homogeneous space with respect to
a decomposition £ = m + [). Let o’ be the point in the zero-section of the tangent
bundle TM such that p(o’) = o = n(H) where n: K - M and p: TM — M denote
the canonical projections. Then the isotropy subgroup of the tangent group TK
at o' = (0, O) is the tangent group TH to the isotropy subgroup H of K at o.

Proof. We denote by TK(o') the isotropy subgroup of TK at o' € TM. Let ¥,
X € M, be a mapping of K to M defined by t//x(a) = ax for all a € K. We notice that y,,
is just the canonical projection = of K to M.

Let (a, A) be any element of TH = H . 1. Then, since ad(a) 4 € ), we have
(¥o)« ad(a) A = 0. Hence we see that
(6) (a, 4) (0, 0) = (a0, a0 + (V)4 ad(a) A) = (o, 0).
This implies TH < TK(o").

Next we prove the converse inclusion. For any (a, 4) e TK(o) we get, according
to (6),
(7) ao =0, (Yo)xad(a)d=0.
The first relation implies a € H. Now let A = A, + A, (4, e m, 4, €b) be the de-
composition of A with respect to the direct sum ¥ = m + h. Then (7) implies
(¥o)« ad(a) A; = 0. But, since (Yo)x|m = 7x|w is an isomorphism of m onto M,,
we obtain ad(a) A; = 0 and hence A, =0, which implies 4 = 4, €. Thus
TK(0o') = TH, q.e.d.

Now, let Tt and T be the Lie alebras of the tangent groups TK and TH, respec-
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tively. Put
m® = {U|Uem}, m’= {U"|Uem}.

m® and m® are vector subspaces of TT. Further, put Tm = m° + m® (sum of vector
spaces). Then we have

Theorem 3.2. Let M = K/H be a reductive homogeneous space with respect to
the decomposition £ = m + ). Then the tangent bundle TM over M is a reductive
homogeneous space TK|TH with respect to the decomposition Tt = Tm + TI).

Proof. First, according to Proposition 3.1, TM can be identified with the homo-
geneous space TK/TH. We must only prove the reductivity. Let (a, 4) be any element
of TK and U any element of f.

Using (1) and Lemma 2.C in the case of M = K, we have, by routine calculation,

Ca.n(exp tU°) = (a, A) (exp tU, 0) (a™ ', —ad(a) A) =
= (C,(exp tU), ad(a . exp(—1U)) A — ad(a) 4) =
= (exp t(ad(a) U), 0) (e, ad(a exp( —tU)) A — ad(a) 4) .

Differentiating both sides of this equation at t = 0 and using Lemma 2.C and Lemma
2.2, we get

(ad(a, 4) (U) = (ad(a) U + (ad(a) [4, U]}’

Now taking (a, A)e TH, U em, and using the reductivity of the decomposition
f=m+ b, we get ad(TH) m® = Tm.

Also using (1) and Lemma 2.2, we have

Cia.iy(exp tU”) = (a, A) (e, tU) (a™*, —ad(a) 4) =
= (e, tad/a) U) = exp #((ad(a) U)") .
Differentiating both sides of this equation at ¢ = 0, we get
(ad(a, 4) (V) = (ad(a) U'.

Specializing again (a, A) e TH, U e m, we get ad(TH) m® < m* = Tim.

Thus ad(TH) Tm < Tm, g.e.d.

The following theorem describes the canonical connection of the lifted reductive
homogeneous space.

Theorem 3.3. Let V be the canonical connection of a reductive homogeneous
space M = K/H with respect to a decomposition T = m + 0). Then the complete
lift V¢ of V is the canonical connection of the reductive homogeneous space TM =
= TK|TH with respect to the decomposition Tt = Tm + Th.

Proof. Let o = n(H) be the origin of K/H. Then the point o’ = (o, 0) is the origin
of TK/TH. Further, let U be any element in m, and let Y be any vector field on M.
Then, by Theorem 3.A, we see that V is K-invariant and (Vy.Y), = [U*, Y], holds.

Now, from Proposition 2.5 we see that V¢ is TK-invariant. Also, by Lemmas 1.B,
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1.E and Lemmas 1.1, 2.1, 2.3, we get
(Ver¥)yr = [U, ¥y, (VoY) = [U%, ¥,
(Voo YO), = [U, Y°T,., (VgueY")y = [U*, Y7],..
For example, the first equation is shown as follows:
(Vier YO)yr = (Ve YO), = (VuY)5 = [U*, Y] = [U*, Y°],, = [U*, Y°],..

The other identities are proved similarly. Hence, using Theorem 3.A once again,
we see that V¢ is the canonical connection of TK/TH with respect to the decomposition
Tt= Tm + Th.

We prove another result for later use:

Proposition 3.4. Let K/H be a reductive homogeneous space with respect to a de-
composition T=m +Dh. If T =m+ [m, m] holds, then the Lie algebra Tt =
= Tm + T of the tangent group TK is equal to Tm + [Tm, Tm].

Proof. For any element A € f we can write

A=U+3Y[V. W], UV, Wem.
By the linearity of the lifting operations and Lemma 1.B, we have
AC — UC + Z [I/ic’ I/ViC] s
A" =U" + Y [VF, W].
Now, since Tt= {A° + B’| A,Bef} and Tm = m° + m’, we have Tf< Tm +
+ [Tm, Tm]. Hence Tf= Tm + [Tm, Tm], q.e.d.

Next, we shall deal with affine reductive spaces, which have been defined by O.
Kowalski [5]. Let (M, V) be a connnected manifold with an affine connection.The
group of all affine transformations of M preserving each holonomy subbundle of
the frame bundle #(M) is called the group of transvections of (M, V). It will be
denoted by Tr(M, V). (M, V) s called an affine reductive space if the group Tr(M, V)

acts transitively on each holonomy subbundle. The following theorem was proved
in [5, pp. 37—40]:

Theorem 3.B. Let (M, V) be a connected manifold with an affine connection.

Then the following two conditions are equivalent:

(i) (M, V) is an affine reductive space;

(i) M can be expressed as a reductive homogeneous space K[H with respect to
a decomposition T = m + 1), where K is effective on M, and V is the canonical
connection of K/H.

More specifically, if (i) is satisfied, then Tt(M, V) is a connected Lie group and M

can be expressed in the form (ii) with K = Tr(M, V). For every expression of M

in the form (ii), Tr(M, V) is a normal Lie subgroup of K and its Lie algebra is

isomorphic to the ideal 1 = m + [m, m] of I.

We shall now give the main theorem of this section.
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Theorem 3.5. Let (M, V) be an affine reductive space. Then (TM, V°) is also an
affine reductive space. Further, the group of transvections of (TM, V°) is tangent
to the group of transvections of (M, V), that is, Tt(TM, V°) = T(Tt(M, V)) holds.

Proof. According to Theorem 3.B, M can be expressed as M = K/H where
K = Tr(M, V) and H is the isotropy subgroup of K at a fixed point 0 € M. Also, we
have a reductive decomposition ¥ = m + [, where = m + [m, m]. By Proposition
3.4, Tt = Tm + [Tm, Tm].

On the other hand, since the complete lift V¢ of V is the canonical connection of
TM = TK|TH (Theorem 3.3), we see from Theorem 3.B that the group of trans-
vections of (TM, V) is a Lie subgroup of TK, and its Lie algebra is isomorphic to
Tm + [Tm, Tm].

Because T + [Tm, Tm] = Tf, we get Tr(TM, V) = TK, i.e.,

T(Te(M, V)) = Te(TM, V°).
This completes the proof of Theorem 3.5.

Remark 4. For an affine reductive space (M, V), Theorem 3.B says that Tr(M, V)
is a connected Lie group. But even for a general connected affine manifold (M, v),
Tr(M, V) is still a Lie group. I am obliged to Professor S. Kobayashi (University
of California) and Dr. J. Grabowski (University of Warsaw) for communicating
to me two different proofs of this fact. It remains an open problem whether the
equality T(Tr(M, V)) = Tr(TM, V°) is still valid in the general case.

In the rest of this section we shall study the tangent lifts of naturally reductive
pseudo-Riemannian homogeneous spaces.

A homogeneous space M = K/H with a K-invariant pseudo-Riemannian metric g
is said to be naturally reductive if it admits a reductive decomposition f = m +
satisfying the condition

(®) B([U, V]w, W) = BU, [V, W].)
for all U, V, We m, where [U, V],, denotes the projection of [U, V] e on m, and B

denotes the inner product on m induced by the metric g via the canonical identifica-
tion my: m — My, 0 = n(H) e M.

Theorem 3.6. Let M = K/H be a naturally reductive homogeneous space with
a K-invariant metric g. Then the tangent bundle TM = TK|TH is a naturally
reductive homogeneous space with the TK-invariant metric g°.

Proof. First, (8) is equivalent to

) g(([U, V1w)*, W*) = g(U*, ([V, W]w)*)
for all U, Ve m, where we denote by stars the corresponding fundamental vector
fields on M. Next, the tangent bundle TM is a reductive homogeneous space TK/ TH
with respect to the decomposition TT = Tm + Th (Theorem 3.3).

From Lemma 1.A, we have

(s, Vel = ([U, V1) + ([U, V]yF
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for all U, Ve m. Because Tm = m® + m®, we get

(10) [Uc’ Velrm = [(U, V]m)o

for all U, Ve m. Thus, by Lemmas 2.1, 2.3, Lemma 1.C and (9), (10), we get on TM:
g°([U°, VeIrw)*, W) = g*([U, V]w)*, W) =
= g*(([U, VIn)*, W*) = ((([U, VIw)*, W¥)) =
= (g(U*, ([V, W1w)*)* = g"(U**, ([Ve, W<]rm)*)

for all U, V, We m. We get similar formulas for various combinations of the complete

and vertical lifts of the vector fields U, V, W.
This implies that TK/TH is naturally reductive.

4. TANGENT BUNDLES OVER REGULAR s-MANIFOLDS

Let (M, g) be a smooth pseudo-Riemannian manifold. An s-structure on (M, g)
is a family {s,| x € M} of isometries of (M, g) (called symmetries) such that each s,
has the point x as an isolated fixed point. An s-structure {s.} on (M, g) is said to be
regular if
(i) the mapping (x, y) > s(y) of M x M into M is smooth,

(ii) for every pair of points x, y € M we have s, o5, = s, 0 5,, Where z = s,().

If we define the tangent tensor field S of type (1,1) of {s,} by S, = (s,)«x for each
x € M, we can see that {s,} is regular if and only if the tensor field S is smooth and
invariant with respect to all symmetries s,, x € M. An s-structure {sx} is said to be
of order k (k = 2) if k is the least integer such that (s,)* is the identity mapping of M
for all x € M. We say that an s-structure is of infinite order if such k does not exist.

A generalized symmetric pseudo-Riemannian space is a connected pseudo-
Riemannian manifold (M, g) admitting at least one regular s-structure. Every gener-
alized symmetric pseudo-Riemannian space is a homogeneous pseudo-Riemmanian
manifold. Let (M, g) be a generalized pseudo-Riemannian space and {s,} a fixed
regular s-structure on (M, g). Then the triplet (M, g, {s.}) will be called a pseudo-
Riemannian regular s-manifold. Let @ be an isometry of a pseudo-Riemannian
s-manifold (M, g, {s.}) onto itself. We call & an automorphism of (M, g, {s,}) if
d satisfies
. D(s()) = soc(P(y))
for all x, y € M.

Now let L be the group generated by the set {sxl x € M}. Then it follows from the
definition of the regular s-structure that Lis a subgroup of the group of all auto-
morphisms on (M, g, {s,}). The following lemma is a consequence of the proof
of Theorem 2 in Ledger-Obata [6].

Lemma 4.A. Let (M, g,{s.}) be a pseudo-Riemannian regular s-manifold.
Then the group L generated by the set {s.| x € M} acts transitively on M.
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Let I(M, g) be the full isometry group of a pseudo-Riemannian regular s-manifold
(M, g, {s,}). I(M, g) is a Lie transformation group with respect to the compact-open
topology. Now, let G be the closure of Lin I(M, g). Since G is a closed subgroup
of the Lie group I(M, g), G is a Lie transformation group of automorphisms which
acts transitively on (M, g). The following two propositions are essentially due to
O. Kowalski [5, Lemmas 0.13 and 0.14].

Proposition 4.B. Let (M, g, {s,}) be a pseudo-Riemannian regular s-manifold
and G the closure of the group generated by the set {s,| x e M}. Then for any
point 0 € M the symmetry s, commutes with any element of the isotropy subgroup
G(o) of G at o.

Proof. Because G(o) is a group of automorphisms of (M, g, {s}), wehave a o 5, =
=S4 = Sg0a = 5,0 a for each a e G(0).

Proposition 4.C. Let (M, g) be a connected pseudo-Riemannian manifold. Further,
let G be a Lie group of isometries acting transitively on M, and let G(o0) denote
the isotropy subgroup of G at o€ M. Suppose that there is a symmetry s, at o
which commutes with any element of G(o). Then there is exactly one regular
s-structure {s,| x € M} with the initial value s,.

Proof. We can suppose, without a loss of generality, that s, € G(0o). Namely, if
so ¢ G(0), we take the closure, say G, of the group generated by G and s, in I(M, g).
Then G is a Lie transformation group with respect to the compact-open topology,
and s, lies in the centre of G(o).

For each x € M define s, by s, = a5y 0a” !, where a e G is any element such
that ao = x. Then s, is a symmetry at x which is independent of the choice of a € G
such that ao = x and thus the family {s.|x e M} is well-defined. Further, for any
yeM and aeG we have (using an auxiliary element b e G such that bo = y):

(12) aoSyoa_1=((1b)oSOo((lb)_l=

Say -
Looking at the tangent map we get dyy,o S, = S, o dy,, i.6., the tensor field S is
uniquely determined by its initial value S, and thus the obtained s-structure {s,} is
uniquely determined. Since s, € G for each x € M, the s-structure {s,} is regular
by (12).

Now let 0 € M be a fixed point and o’ = (o, 0) € TM the corresponding point of
the zero-section in TM. Let s, be a symmetry of (M, g) at 0. We define a transforma-
tion s, of TM by s,. = (s,, 0), that is,

(13) sor(2s 1) = (50(2), (s0)+ 1))
for all points (y, Y,) € TM.

Proposition 4.1. Let (M, g) be a pseudo-Riemannian manifold, o€ M a point,
and s, a symmetry of (M, g) at 0. Then s, is a symmetry of the pseudo-Riemannian
manifold (TM, ¢°) at o’ = (o, 0).
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Proof. Since s, is an isometry of (M, g), we obtain from Lemmas 1.B, 2.A,
950 )% Y, (50) Z°) = g°(((50)s Y)5, (o)« zy) =
= (9((so)x Y. (5o)x 2))° = (9(Y, 2))° = g°(Y", Z°)
for all vector fields Y, Z on M. In the similar way, we get
gc((s:f)* Ycr (S:)’)* Zv) = gC(Yc, ZU) )
9°((s5)x Y°, (5,)4 Z°) = g°(Y*, Z°)
for all vector fields Y, Z on M. Because the tangent space (TM)x, at any point x’ € TM

is spanned by {Y{ + Z%| Y, Z e Z(M)}, we see that s,, is an isometry of (TM, g°).
Next, let (v, ¥,) € TM be a point which is fixed by s,.. Then we have

so) =V, ()Y, =7Y,.
But o is an isolated fixed point of s,. Thus, for (y, ¥,) sufficiently close to o', the
point y is sufficiently close to o and we get y = o, ¥, = 0. Thus o’ = (o, 0) is an
isolated fixed point of s,., g.e.d.
Now we construct a regular s-structure on the tangent bundle over a pseudo-.
Riemannian regular s-manifold. First we prove the existence of such a regular
s-structure. Next we find the explicit formula for the symmetries.

Theorem 4.2. Let (M, g) be a connected pseudo-Riemannian manifold admitting
a regular s-structure {s.}. Further, let TM be the tangent bundle over M and g°
the complete lift of g from M to TM. Then the pseudo-Riemannian manifold
(TM, g°) admits a regular s-structure {s,.}. Here ,{s,.} is of order k, or of infinite
order, according to whether {sx} is of order k or of infinite order, respectively.

In other words, the tangent bundle of a generalized symmetric pseudo-
Riemannian space is a generalized symmetric pseudo-Riemannian space.

Proof. Let G be the closure inI(M, g) of the group generated by the set {s,| x € M},
and G® the identity component of G. Then the Lie group G® acts transitively on M
(see Lemma 4.A). Now we fix a point 0 in M. Then, by Proposition 4.B, the symmetry
s, commutes with any element of the isotropy subgroup G®(0) of G® at o.

To prove the assertion, we apply Proposition 4.C to the tangent group TG®.
First, by Propositions 2.4 and 2.5, TG® is a Lie subgroup of I(TM, ¢°) acting transi-
tively on TM. Next, we define a transformation s,.: TM — TM by (13). s,., is a sym-
metry on TM by Proposition 4.1 and commutes with any element of the isotropy
subgroup TG®(o') of TG® at o’ by Proposition 2.6. Thus, Proposition 4.C implies
that there exists a regular s-structure {s}.} on (TM, g°).

Since s = (a, A) o s, o (a, )™ (x" = (a, A) 0', (a, A) € TG®), {s..} is of order k,
or of infinite order, according to whether {s.} is of order k or of infinite order,
respectively.

This completes the proof of Theorem 4.2.

Remark 5. Let us remark that some related results about tangent lifts of
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s-manifolds (from the group-theoretical point of view) have been obtained recently
by N. A. Stepanov [10].

Remark 6. Let T*M be the cotangent bundle over an affine manifold (M, V)
of dimension n. Then the Riemann extension of (M, V) is the pseudo-Riemannian
manifold (T*M , §) with a metric given, in terms of the system of local coordinates
(U, (x', ..., x", wy, ..., w,)) of T*M, by

g=Yg,dx dx +2Y dx'dw,

where g;; = —2 Y T wy, Y T 0]0x" = Va1 0/0x7 (i, j = 1, 2, ..., n)(see, for example,
[8]). Now let (M, g) be a pseudo-Riemannian manifold and let b: TM — T*M be
a mapping defined for each (x, X,) € TM by

b(x, X,) = (x, w,)

where  is the 1-form given by w(Y) = g(X, Y) for all Ye 2(M). Then b is an iso-
metry of (TM, ¢g°) onto (T*M, g). Hence, as was first noticed by M. Toomanian
(Theorem 1.2 in [11]), the Riemann extension of a generalized symmetric pseudo-
Riemannian space is a generalized symmetric pseudo-Riemannian space.

To give the explicit formula for symmetries s.., X’ € TM, we fix some notations.
Let G, as before, be the closure inI(M, g) of the group generated by the set {s,| x € M}.
For any point y € M, let T, be the mapping of M into G defined by T,(x) = s;’ o 8y

for all xe M. For any vector X, € M,, let X, € G, be the vector given by X, =
= (T)x X,

Theorem 4.3. Under the assumptions of Theorem 4.2 and the above notation,
the symmetries s,., x' € TM, on the tangent bundle (TM, g°) are given by

(14) S;'(yl) = (SX(y)’ (sx)* Y; + (‘//sx(v))* ad(sx) Ye)
forallx' = (x,X,), y' = (y, Y,) € TM.
Proof. We keep the notations from the proof of Theorem 4.2. Since TG® acts

transitively on TM, there exists, for any point x' = (x, X,) € TM, an element (a, 4) €
€ TG® such that x’ = (a, A) o’. Here we have

(15) x=a0, X,=(Y,)xad(a)4.

We recall that s, = aosooa” ' and s = (a, A) o s, o (a, A)” ", where (a, 4)™! =
= (a”!, —ad(a) 4). Let y’ = (», Y,) be another point in TM. Then

L¥) = (@ ) sla, 4) (5. %) =
= (a, A)sp(a™ "y, (@™ N ¥, = (Vam1)x 4) =
= (a, A) (s,(a™ 1), (5,0 a7 ) Yy = (5,0 Ygm1,)s A) =
= (5:(1) (5)s Yy = (@ 0550 Ya1y)s A + (Vuxipy)x ad{a) A) .

Now we put for the sake of brevity

A = ——(a © 80 ‘/’a“y)* A4+ (lpr(y))* ad(a) 4.
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Since
(@ 0y 0Y,-1,) (b) = as,(ba™'y) = s, 0¥, 0 Cyb)
for all b e K, we get
(@08y0Wa1y)x = (5:0V,)x ad(a).

A = [_(sx ° ‘//y)* + (wsx()’))*] ad(a) 4.

Hence we obtain

Next, we claim that

(16) —(Sx ° lI’y)* + (l//sx(y))* = ('//sx(y) ° Csx ° Tx ° lp:c)* .

Indeed, let B be any left invariant vector field on G®, and let b, = exp tB be the
corresponding 1-parameter subgroup of G®. Then we have (recalling that byy = y)

(o Couo Teo Udu B = 3| fbisb-) =

t=

= lim % [f(besi(b_y)) — f(bis(»))] + lim % [f(bs(¥)) = f(bos()] =
- lim% [F oW, o 8x o Wy(b_) — f oW, o 50 U(bo)] +

. + limtl [f" 'IISx(y)(bt) —Jfo l/jsx(}’)(bo)] = _((sx ° '/’y)* B)f + ((‘I’Sx(y))* B)f

for all real-valued smooth functions f on G®. Hence we get (16).
Finally, using (15) and (16), we have

o = (ll/sx(Y) ° Csx o Tx o l//x)* ad(d) A=

= (l//sx(y))* ad(sx) (Tx)* X x = (‘/’Sx(y))* ad(sx) X e>
and hence (14) follows.

This completes the proof of Theorem 4.3.

Remark 7. Toomanian [11] used (14) as the definition of his lifted s-structure
on the tangent bundle, and he proved the regularity directly in a rather complicated
way.

Remark 8. (14) can be also expressed, in accordance with Formula (2), as

() = (5 X (0 1) = (5 (T)e Xo) (0, 1) -

Remark 9. For each point x'e€ TM and x = p(x’), the following diagram is
commutative.

’

sk
™ —— TM
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At the end, we shall return to the groups of transvections. Following Kowalski
[5], we define the elementary transvections of a pseudo-Riemannian regular s-
manifold (M, g, {s,}) as the automorphisms of the form s, o s, ', x, y € M. Further,
the group generated by all elementary transvections is called the group of transvec-
tions of (M, g, {s,}) and is denoted by Tr(M, {s,}) (it does not depend on g). This
group is a Lie group of automorphisms acting transitively on M (Proposition II. 39
in [5]). We recall that an affine connection V on (M, g, {s.}) is called the canonical
connection if V is invariant with respect to all symmetries s, and VS = 0. The
following theorem is part of Theorem I1.4 in [5]:

Theorem 4.D. A pseudo-Riemannian regular s-manifold (M, g, {s.}) admits
a unique canonical connection V. The affine manifold (M, V) is an affine reductive
space.

We also recall one of the nice results about the groups of transvections due to
O. Kowalski (Theorem I1.32 in [5]).

Theorem 4.E. Let (M, g,{s,}) be a pseudo-Riemannian regular s-manifold
and V its canonical connection. Then the group Tr(M, {s.}) of transvections of
(M, g, {s.}) coincides with the group Tr(M, V) of transvections of the affine reductive
space (M, V).

Thus, the following result is an immediate consequence of Theorems 4.D, 4.E
and Theorems 3.5, 4.2.

Corollary 4.4. Let (M, g, {s,}) be a pseudo-Riemannian regular s-manifold.
Then the group of transvections of the pseudo-Riemannian regular s-manifold
(TM, ¢°, {s..}) is tangent to the group of transvections of (M, g, {s.}), that is,
Tr(TM, {s..}) = T(Tr(M, {s,})) holds.

APPENDIX

The notion of an affine regular s-manifold is introduced by replacing the term
,,isometry” in the definition of a pseudo-Riemannian regular s-manifold by the term
,,affine transformation” (see, for example, Ledger-Obata [6]). By arguments similar
to those in Section 4 we get the following conclusion.

Let (M, V) be an affine manifold admitting an affine regular s-structure {s.}.
Then (TM, V°) admits an affine regular s-structure {s..}. Further, the structure
{si-} is given by the same formula (14) as in Theorem 4.3. Corollary 4.4 is also
true in the affine case.
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