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COMPLETION OF A CYCLICALLY ORDERED GROUP 

STEFAN CERNAK, JAN JAKUBIK, Kosice 

(Received November 11, 1985) 

A cyclic order on a set P is defined to be a ternary relation on P fulfilling certain 
conditions (E. Cech [1]; for definitions, cf. Section 1 below (the ternary relation 
under consideration will be denoted by [x, y, z])). 

V. Novak [6], [7] studied completions of cycHcally ordered sets by means of 
regular cuts. The method is analogous to that apphed for ordered sets ("Dedekind 
cuts"). 

The notion of cycHcally ordered group is due to L. Rieger [12]. (Cf. also L.Fuchs 
[3], Chap. IV, § 6.) A representation theorem for cyclically ordered groups was 
proved by S. Swierczkowski [13]. Further results in this field were established by 
A. I. Zabarina [14], A. I. Zabarina and G. G. Pestov [15] and B. C. Olticar [10]. 
G. Pringerova [ U ] studied radical classes of cycHcally ordered groups. 

Each linearly ordered group can be considered as being cycHcally ordered. 
In the present paper the completion of a cyclically ordered group will be dealt 

with. This completion is constructed by means of certain subsets of the set of all 
regular cuts. A cyclically ordered group is said to be complete if it is equal to its 
completion. 

Each cycHcally ordered group G possesses a largest Unearly ordered subgroup GQ 
(cf. [11]). Let a{Go) be the archimedean kernel of GQ (cf., e.g., [4]). 

Let us denote by Z and R the additive group of all integers or all reals, respectively 
(with the natural Hnear order). Next, let К be the group of all reals a with 0 ^ a < 1, 
the group operation being the addition mod 1. For a, b, ceK we put [a, b, o] if 

(1) a<b<c or b< с <a or c<a<b 

is vaHd. Then К is a cycHcally ordered group ([12], [13]). 
For a Hnearly ordered group H we denote by m{H) the maximal (Dedekind) 

completion of H (cf. Cernâk [2]). 
It turns out that if Go + {O}, then the completion of the cycHcally ordered group G 

is an amalgam of G and m(Go) with the common subgroup GQ. 
It will be shown that a cycHcally ordered group G is complete if and only if some 

of the following conditions (i), (ii), (iii) is fulfilled: 
(i) G is finite. 
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(ii) G is isomorphic to K, 
(iii) Go Ф {0} and m(Go) = Go-

If a(Go) + {O}, then G is complete if and only if 
(iv) a(Go) is isomorphic either to Z or to R. 

1. PRELIMINARIES 

Let Л be a nonempty set. Let [x, y, z] be a ternary relation defined on A such that 
the following conditions are fulfilled: 

I. If [x, y, z] holds, then x, j and z are distinct; if x, у and z are distinct, then 
either [x, y, z] or [z, j ^ , x] . 

II. [x, y, z] implies [y, z, x] . 
III. [x, y, z] and [j^, w, z] imply [x, м, z ] . 

Then the relation under consideration (we shall often denote it by [ ]) is a cyclic 
order on A (cf. Cech [1]). The set A equipped with this relation is called a cyclically 
ordered set. Each nonempty subset of A is cyclically ordered by the inherited cyhc 
order. 

A generahzation of this notion was investigated in a series of papers by Y. Novak 
and M. Novotny (cf., e.g., [8], [9]; cf. also [6] and the papers quoted there). In 
their terminology, the cycHc order (in the sense defined above) is called "linear 
cyclic order''; in a ''cyclic order'' (in the sense of [6]) there can exist distinct elements 
X, y, z such that neither [x, y, z] nor [z, y, x] is vaUd. This generalized notion could 
by called a partial cyclic order. For groups with such a partial cyclic order cf. S. D. 
Zeleva [16], [17], [18]. 

Let L be a hnearly ordered set. Then a cychc order [ ] is defined on L by 

(2) [x, j ; , z] = X < j ; < z or y < z < x or z < x < j ; . 

We shall say that this cyclic order is generated by the linear order on L. 
Let G be a cychcally ordered set. Suppose that a binary operation + is defined 

on G such that (G; + ) is a group (G need not be abehan). Further, assume that for 
any X, y, z, a, b E G, 

[x, y, z] implies [a + x + b, a + y -}- b, a + z + fe] . 

Then G is said to be a cyclically ordered group. In particular, in view of the above 
remark on linearly ordered sets, each linearly ordered group G is, at the same time, 
a cyclically ordered group (with respect to the cyclic order generated by the linear 
order on G). 

Let us consider the following examples of cyclically ordered groups. 
E x a m p l e 1. Let К be as in the introduction. (For the apphcation of the cyclically 

ordered group К cf. Theorem 1.1 below.) 

Example 2. (Cf. [13].) Let L be a linearly ordered group; hence we can consider L 
as cyclically ordered. We define a cychc order on the direct product L x К as follows. 
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Let и = (x, a), v = (y, b), w = (z, c) be distinct elements of L x K. We put [M, Ü, W] 
if some of the following conditions is fulfilled: 

(i) [a, b,c]; 
(ii) a = Ь Ф с and x < j ; 

(iii) b = с + a and j < z; 
(iv) с = a Ф b and z < x; . . 
(v) a = b = с and [x, j ^ , z ] . 

Then the group L x К equipped with the relation [w, v, w] is a cyclically ordered 
group; this cycHcally ordered group will be denoted by L ® K. (Cf. [13].) 

An isomorphism of cycHcally ordered groups is defined in the natural way. Each 
subgroup of a cyclically ordered group is again a cyclically ordered group. 

The following theorem is the main result of [13]. 

1.1. Theorem. (Swierczkowski) Let G be a cyclically ordered group. Then there 
exists a linearly ordered group Lsuch that G is isomorphic to a cyclically ordered 
subgroup of L® K. 

A subgroup Я of a cycHcally ordered group G is said to be linearly ordered if 
there exists a Hnear order ^ on Я such that 

(i) (Я; ^ ) is a Hnearly ordered group; 
(ii) the cycHc order on Я generated by the Hnear order ^ coincides with the original 

cycHc order defined on Я . 

1.2. Lemma. (Cf. [11], Chap. I l l , Lemma 2.2.) Let G be a cyclically ordered 
group. Then the following conditions are equivalent: 

(i) G is a linearly ordered group. 
(ii) Each nonzero subgroup of G is infinite, and for each g E G and each positive 

integer n, the relation [ — 6^,0,^] implies[^—g,0,ngl^. 

Let G and L be as in 1.1. L e t / be an isomorphism of G into L ® K. Let us denote 
by Go the set of all elements g e G having the property that there exists x e L with 
f{g) = (л;, 0). Then Go is, evidently, a subgroup of G. 

1.3. Lemma. (Cf. [ И ] , Chap. Ill, 2.9.) Let H be a subgroup of a cyclically ordered 
group G. Then the following conditions are equivalent: 

(i) Я is a linearly ordered group. 
(ii) Я £ Go. 

From 1.3 it follows that Go is the largest linearly ordered subgroup of G. Moreover, 
Go is clearly a normal subgroup of G. 

Let LjL be the projection of G into L with respect to/( i .e . , L^ is the set of all elements 
xeL having the property that there exist g e G and a еК with/(^) = (x, a)). Then L^ 
is a subgroup of L; let us remark that Go is always isomorphic to a subgroup of L^, 
but Go need not be isomorphic to L^. (Cf. [11], Chap. I l l , Section 2.) 

Let Я be a convex subgroup of GQ. Suppose that Я is a normal subgroup of G. 
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Consider the factor group GjH = G\ For x\ y\ z' e G' we put [x\ /, z'] if the 
following conditions are fulfilled: 

(i) x\ y\ z' are distinct; 
(ii) there exist x^ G X\ y^ e y\ z^ e z' such that [x^, y^, z^]. 

1.4. Lemma. (Cf. [11], Lemma 4.3, Lemma 4.4.) The group G' equipped with the 
ternary relation [x', y', z'] /5 a cyclically ordered group. If [x', y\ z'~\ is valid for 
some x\ y', z' G G', then for all X2 G X\ y2 ^y' and Z2 G Z' the relation [^2, y2, ^2] 
is valid in G, 

Let L and / be as above. Let K^ be the set of all a G i^ having the property that 
there exist xeL and g eG with f{g) = (x, a). Clearly K^ is a subgroup of K. The 
following lemma is easy to verify. 

1.5. Lemma. Under the above notation, let f[g) = (x, a). Then the mapping 
fi'. g + GQ -> a is an isomorphism of the cyclically ordered group GJGQ onto the 
cyclically ordered group K^. 

As a corollary we obtain that if G is given, then K^ is defined uniquely up to 
isomorphism. 

2. COMPLETIONS 

In this section the definition of the completion of a cyclically ordered group will 
be introduced, some auxiliary results will be proved and some examples will be pre
sented. 

We start by recalling the basic definitions on completions of cyclically ordered sets 
(cf. [6], [7]). 

Let G be a cychcally ordered set. For each g e G there exists a uniquely determined 
linear order <^ on G such that (i) the cyclic order on G determined by <^ coincides 
with the original cyclic order as defined on G, and (ii) g is the least element of G 
with respect to <g. (Cf. [6].) 

A regular cut h in G is defined to be a linear order (we will denote it also by <(,,)) 
on G such that the cyclic order on G generated by the linear order <(,,) coincides 
with the original cyclic order defined on G, and some of the following conditions 
is fulfilled: 

(i) (G; <(й)) has neither the least nor the greatest element; 
(ii) there exists g eG such that <(;,) = <g. (Cf. [6], [7].) 
Let C{G) be the set of all regular cuts in G. Let us have distinct cuts /ẑ , /22, h^ e 

eC{G). We denote <(Й,) = <i (г = 1,2,3). We put [h^,h2,h^'] if there exist 
X, y, z e G such that 

For each of e G let <̂ (é̂ ) = < r 
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2.1. Theorem. (Cf. [7].) The set C(G) equipped with the ternary relation [/г ,̂ /i2, 
из] is a cyclically ordered set. The mapping (p is an isomorphism of the cyclically 
ordered set G into C{G), 

We shall often identify the elements g and <p{g); hence we consider G as a subset 
of C(G). The cyclically ordered set C(G) is said to be the completion of the cyclically 
ordered set G. 

A cut h G C{G) will be called proper if h does not belong to G. 
In what follows we assume that G is a cycHcally ordered group. The notations 

introduced in the introduction and in Section 1 will be applied. 
Let 0 Ф Gl be a subset of C((J) with G Я G^. Suppose that a binary operation + j 

is defined on G^ such that the following conditions are fulfilled: 
(i) (Gl, + i ) is a cyclically ordered group (under the cycHc order inherited from 

C{G)). 
(ii) (G; + ) is a subgroup of (Gi, + i ) . 

Then (Gi; + i ) is said to be an extension of G in C{G), We shall often write Gi 
instead of (Gi; + j). Let ^(G) be the set of all extensions of G in C{G). For Gi, G2 G 
G ^(G) we put Gl ^ G2 if Gl is a subgroup of G2. Then ^(G) is a partially ordered 
set. If ^(G) possesses a greatest element Ji(G), then d^iG) is said to be a completion 
of the cyclically ordered group G. 

Let a(Go) be the archimedean kernel of GQ. Because a(Go) is an archimedean 
Hnearly ordered group, it is isomorphic to a subgroup i^i of -R (with the inherited 
Hnear order). We shall often identify «(GQ) and R^. 

From L3 it follows that Go is a characteristic subgroup of G (in the sense that 
x(G(^ ~ Go whenever 1 is an automorphism of the cyclically ordered group G). 
Moreover, a(Go) is the largest archimedean convex subgroup of GQ. Thus <2(Go) 
is a characteristic subgroup of G as well. In particular, a{G^ is a normal subgroup 
of G. 

A cut /i G C{(j) will be said to be of type a{G^ if there are g^, дг^ G such that 
(i) 0 < 0̂2 ~ ö'i ^ a(Go), and (ii) [ö'i, /г, g2] in C{G). Otherwise h will be said to be 
of type a^Gfj). 

When investigating the cyclically ordered set C{G) we distinguish two cases. 
First suppose that Go = {0}. Then G'JGQ is isomorphic to G, whence in view of 

1.5, G is isomorphic to K^^; thus G is isomorphic to a subgroup of K. If G is finite, 
then clearly C{G) = G; if G is infinite then it is easy to verify that the cyclically ordered 
set C(G) is isomorphic to the cyclically ordered set K. Conversely, if the cycHcally 
ordered set G is isomorphic to K, then there are no proper cuts in G. We arrive at 
the following result: 

2.2. Lemma. Assume that Go = {0}. (i) / / G is finite, then C{G) = G. (ii) / / G is 
infinite, then C{G) is isomorphic to K. (iii) / / the cyclically ordered set G is iso
morphic to K, then C{G) = G. 
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Now suppose that Go ф {O}. The following three examples illustrate some typical 
situations which may occur. 

2.3. Example. Let Lbe the additive group of all rational numbers with the natural 
linear order. Let K^ be the subgroup of К consisting of the elements 0, ̂ , ^, | . 
Put Gl = L®K^, Further, let G\ = R ® K^. Let y^ be an irrational number. 
Put VQ = (3/1, 0). For Vi, V2 e Gl we put v^ < V2 if the relation [VQ, V^, V2] is valid 
in G[. Then < is a linear order on Gj. The linearly ordered set (Gi; <) has no least 
and no greatest element. The cyclic order on Gi generated by the linear order < 
coincides with the original cyclic order defined on Gi. Hence < is a proper regular 
cut in Gl- This cut is of type a{Go)-

2.4. Example. Let Gi be as in 2.3 and G[ = L® K. Let a^ = I, VQ = (0, i) e G[. 
For Vi, i>2 e Gl we put ^i < V2 if {VQ, V^, VZ^ is valid in G[. Then < is again a proper 
regular cut on Gi; this cut is of type a'(^o)-

2.5. Example. Let L be as in 2.3. Let Ki be the subgroup of К consisting of all 
elements аеК such that a is rational. Put Gi = L® Xi and let G[ be as in 2.3. 
Let a^eKsK^ and VQ == (0, «i). For t̂ i, i?2 e Gi we put Vi < V2 if [t̂ o? ̂ ь ^2] 
holds in G[. Then < is a proper regular cut on Gi of type a'(Go). 

2.6. Example. Let L be the additive group of all reals with the natural linear order. 
Put G = L® K. Let aoGK, 00=^0. A new element h will be added to G, and on the 
set G' = G u {/г} we define a ternary relation [t>i, V2, г̂ з] as follows: for ^i, ^2, ?̂з e G 
the new relation on G' has its original meaning. If v^, v^, e G, v^ = (xi, ^i), v^ = 
= (хз, аз), Vi ф ü3, V2 = К then we put [^i, Ü2, v^], [v2, t>3, ^̂ i] and [v^, v^, V2'] if 
some of the following relations is valid: 

(i) a^ S ao < a^; 
(ii) ao < 03 < a^. 

This ternary relation is a cyclic order on G'. For g^, 02^ G we put g^ < g2 if 
[h, g I, g2^ is valid in G'. Then < is a proper cut in G; this cut is of type a'{G(). 

Let G be a cyclically ordered group and let w be a fixed element of G. Then the 
mapping ф^: G -> G defined by <p^{v) = w + t; for each г e G is an automorphism 
of the cyclically ordered set G. Let h = < be a regular cut on G. For v^, i72 e G we 
put Ü1 <' V2 if (<?>w)~̂  (̂ 1) < (^w)~^ (̂ 2) is valid. Then < ' = /i4s again a regular 
cut on G. We denote W = <pj<h)- The cut h' is proper (or of type a(G^, or of type 
a'(Go)) iff h is proper (or of type a(Go), or of type а'{ро), respectively). 

Let X, Y, Z be nonempty subsets of G. We put [Z, 7, Z] if, whenever x G X, 
y e У and z e Z, then [x, y, z] is valid. If, e.g., X = {x} is a one-element set, then 
we write [x, Y, Z] instead of [{x}, У, Z]. 

In the following Lemmas 2.7-2.10 we assume that й is a proper cut of type a\Go) 
and that a(Go) Ф {0}. 

We denote by X the set of sdlg EG having the property that there exists gQ e a{Go) 
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such that [go,9> Щ is valid in C{G). Put Y= G\X. From the assumptions just 
mentioned we immediately obtain the following three lemmas: 

2.7. Lemma. GQ ^ X. If g^e X, g e G and [0, g, g^], then g eX, 

2.8. Lemma. Assume that Г Ф 0. Then Y is the set of all y eG such that [X, h, y] 
is valid in C{G). Thus [X, h, 7 ] in C{G). 

2.9. Lemma. X + g^ = X = g^ + X for each go e a{Go). If Y Ф 0, then 7 + 
+ go = Y= gQ + Y for each go e a{Go). 

2.10. Lemma. Let 7 4= 0. Let h^ be a proper regular cut in G such that \X, h^, 7 ] 
is valid in C{G). Then h^ = h. 

Proof. Let h^ = <i and let g^, ^2 ^ G. Because [Z, hi, 7 ] , the relation gi < 1 ^̂ 2 
holds if and only if some of the following conditions is valid: 

(i) giE 7 and g2EX; 
0 0 g и g 2 e 7 and \gu g 2, дз] for each дзвХ; 

(iii) g и 0̂ 2 e X and [g^, g^ g2^ for each g^, e 7 
Thus hi = h. 

3. CUTS OF TYPES a\Go) AND G'Q IN G 

Let G and C(G) be as above. 
We are interested in the following question: for which h GC{G) does there exist 

Gl e ^(G) such that h e G^l 
If h e G, then we can take G^ = G. Let h ф G. We begin with the case when h is 

of type a'(^o)-

3.1. Lemma. Let a(Go) Ф {O}, a(Go) Ф G. Let h be a proper regular cut of type 
a'(Go) in G. Let G^ be an extension of G in C{G), Then h does not belong to G^. 

Proof. By way of contradiction, assume that h belongs to G^. Let X and 7 b e as 
in Section 2. Suppose that 7 4= 0. In view of 2.8 we have 

[X,h, 7 ] in G l . 
Let 0 Ф go^ a(Go). Then 

[ Z + go, h +igo, 7 + 0̂ 0] ^^ G^ . 
Thus according to 2.9, 

[X,h +10^0,^] in G l . 
The element h +1 go determines a proper cut of type a{Go) in G. Therefore according 
to 2.10 we infer that h -^i go = h, which is a contradiction. 

Now suppose that 7 = 0 . Choose 0 < 0̂ 0 ̂  a{Go)- Put 7o = G \ a(Go). Then 
7o Ф 0 and we have 

[a(Go), 7o, /1] in Gj , 
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thus 
[a{Go) + go, Yo + do, ^ +1 go] in Oj . 

Because а{Со) -h go = ci^Go) and YQ + gQ = YQ, we obtain 

[a{Go), YQ, h +1 go] in G^ . 

Hence we infer that h = h -\-1 б̂ о. which is a contradiction. 

3.2. Lemma. Let {0} ф flf(Go) = G. Then there is one (and only one) proper cut 
of type Ü^GQ) in G; this cut coincides with the linear order given on G. 

This is an immediate consequence of the definition of a cut of type a'(Go). 

3.3. Lemma. Let {0} Ф a(Go) = G. Let G^ e ^(G). Let h be a proper cut in G 
of type a'(Go). Then h does not belong to Gj. 

Proof. By way of contradiction, assume that h belongs to Gj. Let T̂Q e a(Go), 
^0 Ф 0- Then h + 1 6 ^ 0 ^ ^ ! ^"^ ^̂  +1 do determines a proper cut of type a'(Go) in G. 
Hence in view of 3.2, h -\-1 go = h, which is a contradiction. 

Now 3.1 and 3.3 imply: 

3.4. Proposition. Let G be a cyclically ordered group and let G^ e ^(G). Let 
Ü[GQ) Ф {0}. Let h be a proper cut of type a^G^) in G. Then h does not belong to G^. 

Now suppose that Go Ф {0}. Let h e C{G). If there exist g^, g2^G such that 
(i) 0 < g2 - giE Go, and 

(ii) [g^, h, g2] is vahd in C(^G), 
then h is said to Ы a. cut of type GQ. Otherwise h is said to be of type GQ. 

By the same method as above (with a(Go) replaced by Go) we obtain the following 
result: 

3.5. Proposition. Let G be a cyclically ordered group and let G^ e ^(G). Let 
GQ Ф {0}. Let h be a cut of type GQ in G. Then h does not belong to G|. 

4. PARTIAL ORDER ON 'Г(С) 

In this section it will be shown that the partial order on the set ^(G) introduced 
in Section 2 coincides with the set-theoretical inclusion. 

Let L be a linearly ordered set. For a subset Л of L we denote by Л" and A^ the set 
of all upper bounds or lower bounds of A, respectively. Let D(L) be the system of all 
sets {A")\ where A runs over the family of all nonempty upper bounded subsets of L. 
The elements of D{L) will be called Dedekind cuts of L. The system D L) is partially 
ordered by inclusion; in fact, D[L) is a linearly ordered set. For x e L, the element x 
will be identified with ({x}")^ In this way, the linearly ordered set L is considered 
to be embedded into D[L). 

Let Li be a nonempty subset of L. For A ^ L^ let A''^"^ and A''^^^ be the set of all 
upper bounds or all lower bounds, respectively, of A in L^. We construct D[Li) 
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analogously as D[L) (by means of the sets (A''^"^y^^\ where A is a nonempty upper 
bounded subset of L). The mapping 

is an injection of Di^L^) into D(L); by using this injection we can consider D{Li) 
to be a subset of D(L). Let us remark that the injection / preserves the H near order, 
but it need not preserve, in general, suprema and infima. 

A subset M of Li will be said to be dense in L^ if L^ ^ D{M), If M is dense in L^ 
and Ml is dense in M, then M^ is dense in L^. 

Let G be a nonzero cyclically ordered group. Let /IQ = <o be the regular cut on G 
generated by the element 0. Let h e D{{G; <o))- P^it 

Ä^{geG:Oug <h}, B = [ge G: h й g] 

and ht К = В @ Л hQ the ordinal sum of the Hnearly ordered sets A and B. Then 
the hnear order к on X is a regular cut in G. Put к = /(/i). For each regular cut к of G 
there exists h E D[(G; <Q)) such that к == f{h). 

Let /ci, /c2, А'з be distinct elements of C{G) and let /c,- = f{hi) [i = 1, 2, 3). Then 
the relation [/c ,̂ ^2? ^̂ 3] is valid if and only if some of the following conditions holds 
in D((G; <o)): 

h^ < /̂ 2 < /13 ; h2 < h^ < h^ ; /13 < h^ < /Ï2 . 

Therefore C(G) is uniquely determined by D({G; <o))l we shall often identify the 
elements h and/(/г). 

4.1. Lemma. Let A and В be cyclically ordered sets. Let cp be an isomorphism 
of A onto B. (i) There exists an isomorphism <p' of C{À) onto C(B) sueh that (p\a) — 
= <p[a) for each a e A. (ii) Let A ^ A^ я C{A) and let ф be an isomorphism of Ai 
onto (p\A^) such that <p{a) = \l/{a) for each a e A. Then <p\a^ = 1/̂ (̂ 1) for each 
a^eAi. 

Proof. This is an immediate consequence of the definitions of C(A) and C(B). 
Let ^ be a fixed element of G. For each f G G we put 

<Pg{t) = 9 + t, (p^{t) = t + g . 

Then (Pg and cp^ are automorphisms of the cychcally ordered set G. In view of 4.1 (i) 
we can construct automorphisms [cpg)' and (cp^y of the cyclically ordered set C[G); 
in view of 4.1 (ii), [cpg)' and [(p^У are uniquely determined. For h e C{G) we denote 

{(Poy{h) = g +oh, {cp^y{h) = h-hog. 
Let Gl G ^(G). Thus G £ Gi с C{Gy The mapping ' 

ij/it-^ g +^t (teG^) 

is an automorphism of the cyclically ordered set G^. From 4.1 (ii) we obtain: 

4.2. Lemma. Let G^ e ^(G) and g eG. Then g +it = g +0 t for each t e G^. 
Analogously, t +1 g = t +0 9 for each t e G^. 
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4.3. Corollary. Let G ,̂ G2 e ^(G), g e G, Г G Gi n G2. Then g +1 t = g -{-2 ^ 
and t +1 g = t +2 9-

4.4. Lemma. Let G^ e ^(G), g^ e Gj. Т/геи C(Ö Î +1 G) = C{G). 
Proof. Since G Я Gl я C(G), we infer that G is dense in G .̂ Because the mapping 

t -^ Qi +1 ^ (where t runs over G )̂ is an automorphism of the cyclically ordered 
set Gl, the set g^ Ч-̂  G is dense in G .̂ Moreover, Ĝ  is dense in C(G); therefore 
gi +1 G is dense in C{G) as well Thus C{gy^ +1 G) = C{G), 

Under the same assumptions as in 4.4, consider the mapping (p of the set G onto 
gi +1 G defined by (p{t) = g^ +1 t for each t e G. Then (p is an isomorphism of the 
cyclically ordered set G onto the cychcally ordered set 0̂1 +1 G. In view of 4.1 we 
have the commutative diagram 

G ^—0^1 + i G 

C(G) -^ ->C(^ i+ iG) 
where î  and /2 are embeddings. Moreover, according to 4.1 (ii), cp' is uniquely 
determined and 4.4 implies that C(gi +1 G) = C(G). Therefore (p' is an auto
morphism of the cychcally ordered set C(G). 

For each g2 e C{G) we denote <p'{g2) = di +01 di- Hence we have 

4.5. Lemma. Let Gj e ^(G), gi e G .̂ The mapping defined by 
<p\92) == 9x+oi 92 {92 e C{G)) 

is an automorphism of the cyclically ordered set C(G). If g2 ^ G ,̂ then g^ +1 0̂2 = 
= 9i + 0 1 0̂ 2-

Now suppose that the assumptions of 4.5 are fulfilled and that G2 e ^G), G^ я G2. 
We apply the previous construction with the distinction that instead of ^^ +1 G 
we now have g^ +2 G; the corresponding mappings will now be denoted by x and x' 
(instead of (p and (p'). Hence in view of 4.5, x' is an automorphism of the cychcally 
ordered set C(G). According to the constructions of cp' and / we have (p^g) = /{9) 
for each g e G. Thus in view of 4.1 (ii) we obtain 
(1) <p'ih) = x'(h) 
for each h e C{G). 

Analogously as in 4.5 we put XX92) = 9i +02 92 ^^^ ^^ch g2 e C(G). According 
to 4.5 we have 

9l +2 92 = 9i +02 92 
for each g2 e G .̂ Hence in view of (1) we infer that gi +1 92 = 9i +2 92 for each 
g2 G Gj. Summarizing, we get 

4.6. Proposition. Let G ,̂ G2 G ^ ( G ) , GJ С G2. Then G^ is a subgroup of G2. 

4.7. Corollary. Let G ,̂ G2 G ^ ( G ) . Then Ĝ  с G2 <=> ^i ^ ^2-
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4.8. Corollary. / / there exists G^ e ^^(G) such that Gj £ G^ for each G^ e ^(G), 
then G^ is the completion of the cyclically ordered group G. 

Let X be an element of D{GQ). Let X be the set of all elements of GQ such that x^ ^ x 
is valid for each x̂  G Z . There exists a uniquely determined regular cut 3; = < in 
C{G) such that g < Xi whenever X j G Z and g e G\X. The mapping x -> j ; is an 
injection of D{GQ) into C{G); we shall identify the elements x and y. In this sense 
we consider D[GQ) as a subset of C{G). The following lemma is easy to verify. 

4.9. Lemma. Let a,be D(G^, с e C((j), such that a < b holds in D[Go) and 
[a, c, b\ is valid in C{G). Then с e D{GQ) and a < с < b holds in D[Go). 

5. THE LINEARLY ORDERED GROUP w(Go) 

We continue assuming that Go + {0}. 
Let 0̂ 1 and g2 be elements of D{Go), Hence there are subsets X and Y of Go such 

that Z = (Z«)^ Y = {Y% g^ = Z , 5̂2 = Y. We define g^ = g,+ g^ by putting 

g=^{{X+ yyy. 

In particular, if g^ and g2 belong to GQ, then the operation g^ +6^2 ^^ ^(^0) 
coincides with the original operation 6̂ 1 + 6̂2 in GQ (under the natural embedding 
Go -^ ^ ( G O ) mentioned in Section 4). 

5Л. Lemma. With respect to the operation + , I>(Go) is a linearly ordered semi
group. The set m(Go) consisting of all elements of D{GQ) which have inverses 
in D[GQ) is a linearly ordered group. 

Proof. The fact that D(Go) is linearly ordered was already observed in Section 4. 
For the remaining assertions of the lemma cf., e.g., [3], Chap. V, Section 10. 

Also, from the definition of I>(Go) we immediately obtain the following two 
lemmas: 

5.2. Lemma. Let A cz D(Go), A ф 0. If A is upper bounded (lower bounded) 
in D[Go), then sup ^ ( in f Л) exists in D[GQ), 

5.3. Lemma. Let h^, Й2 e I>(Go) and let {xi}i^j and {yj}jej be subsets of GQ such 
that the relations h^ — \/içj Xi and /î2 = Vjej У] hold in D[Go), Then h^ + /12 === 
= Vi,ji^i + yj)' 

(The assertion dual to 5.3 concerning infima is also valid.) 

5.4. Lemma. Let {gi}iei be an upper bounded subset of D{Go) and g e D(GO). 
Then g + V.e/ 0i = Уш [д + ^0-

Proof. There exist subsets {x^y},ej(o {^^^) ^^"^ {Ук}ык of Go such that in i)(Go) 
we have Уык Ук == 9 and for each i e I, Vjej(o ^ij == dt- Thus in view of Lemma 5.3, 

g + 91"== VkeK Ук + Vj6.(t) ^ij = VksKJeJH) (Ук + ^ij) > 
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hence 

V(e r {g + ^ , ) = yieI,keKJsJ(i) (У^ + ^ u ) • 
Next, we have 

9 +\/ieigi = Wk^K У к + VîBiJeJii) ^ij = VfceK,i6rje/(f) {Ук + ^ij) > 

completing the proof. 
Analogously we have: 

5.4'. Lemma. Let {gi]iei and g be as in 5.4. Then 

{Ушдг) + д=Уш{91 + 9). 

The assertions dual to 5.4 and 5.4' are also valid. 

5.5. Lemma. Let g e Go, G^ e ^(G), g^eG^n D{Go). Then g +igi = g + g^. 

Proof. For g^eGo the assertion is trivial. Let 6̂ i ^ Ĝ o- Let X (and У) be the set 
of Xi 6 Go {yj e Go) such that Xi < g^ < yj. Then X Ф 0 Ф 7 a n d the relation 

Vi^i = gi = Aj-yj 
holds in D(Go). In view of 5.3 and the assertion dual to 5.3 we have 

(1) Wi {g + ^.) = g + gi = Aj{9 + yj). 
For each x ^ e Z and each j ^ e 7 the relation [x^, ö î, Jy] is valid, thus [g +^ x^, 
g +igu 9 + 1 Jj]- According to 4.2, g +iXi-= g -^ Xi and g +^yj = g + y.. 
Hence 

ig + Xi, g л-^дъ g + УА 

for each x̂  G X and each y^ e 7. Since g ^- Xi,g Л- yj e D(Go) and g + Xi < g Л- yj, 
in view of 4.9 we infer that g + 1 é̂ i e D(Go) and 

g + Xi< g +^g^< g + yj. 

Therefore in view of (1) we have 

g + gi= \/i{g + x,.) ^g л-гд^^ Aj{9 + yj) = g + gi-

Hence we have 0^+10^1 = 0̂  + 6̂ 1. 
Similarly we have: 

5.5'. Lemma. Let g and g^ be as in 5.5. Then gi -^i g = gi + g. 

5.6. Lemma. Let Gi e ^(G) and let gi, gz,^ G^ r\ D(GQ), Then gi+igi — 
= g2 + gi-

Proof. For g2 e GQ the assertion holds by 5.5. Let g2 Ф GQ. Let Z (and T) be the 
set of Zi 6 Go {tj e Go) such that ẑ  < ^2 < tj- Then Z and Tare nonempty, and 

Vi Zi = g2 = Aj tj 
is valid in D(Go). Hence according to 5.4' and its dual we obtain 

(1) Vi {zi + âfi) = g2 + gi = Aj {tj + ^1) . 
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For each z^eZ and each tj e T WQ have [^i, 0̂2 Лу], hence [z^ +iö^i, g 2 + iö^b 
h' + 1 ö'i]. According to 5.5, ẑ  + 1 ^1 = ẑ  + ö'i and tj +1 ö'i = 0' + ^i - Thus 

l^i + g^ g2 +igi, tj + gi] 
is vaHd for each z^e Z and each tj e T. Therefore in view of (1) we obtain g2 + 1 ^ 1 = 
= 92 + 9i' 

5.7. Lemma. Let G^ e ^(G), g^eG^n D{Go). Then - 1 6̂ 1 e Z)(Go). 

Proof. There exist g2, дъ ^ Go such that g2 < g^ and [0^2. ̂ ь 9з]- Thus -0^3 < 
< - ^ 2 - Clearly -0^3 = - 1 0̂ 3 and -g2 = - 1 0̂ 2- Next, we have [ - 1 g^, - 1 ö'i, 
-10^2]» hence [--0^3, - l ö ^ i , -0^2]- Now by analogous reasoning as in the last 
part of the proof of 5.5 (i.e., by using 4,9) we obtain that — i д±е D(^GQ). 

5.8. Lemma. Let gi be as in 5.7. Then —i gi is the inverse of the element x^ in 
the semigroup D(^GQ), 

Proof. This is a consequence of 5.7 and 5.6. 
From 5.7 and 5.8 we infer: 

5.9. Proposition. Let G^ e ^ ( G ) , h e D{GQ). If h has no inverse in JD(GO), then h 
does not belong to G^. Let us remark that for g^, 6̂2 ̂  ^ ^̂^̂  ^^^^ 

0 < g2 - gi^GooO < -g^ + 0̂2 e GQ . 

5.10. Lemma. Let h be a cut of type GQ in G and let Gj e '?(G). / / h e G^, then 
there exists gi^G such that —g^ + ^h belongs to m[Go). 

Proof. Suppose that h e G^. There are elements g^, g2^G such that [ßi, /i, 0̂ 2]? 
-9i + g2^Go and 0 < -g^ + g2 in GQ. Hence [0, -g^ +1 h, -g^ +10^2]» 
whence -g^ + 1 he D(Go) (because of -g^ + 1 0̂ 2 = -9i + 0̂ 2)- Since -g^ +1 
+ 1 he Gl, in view of 5.9 we infer that —gi +1 h belongs to m(Go). 

6. THE SUBGROUP Gf 

Suppose that GQ Ф {0}. 
Let g e G. We introduce a hnear order < on the set ^̂  + Go as follows. For 

9u 92^9 + GQ VsfQ put g^ ^ 0̂ 2 if -9 + 9i й -9 + 92 holds in GQ. The linear 
order < on ^ + Go is independent of the choice of the element g of g + GQ and the 
mapping (p{t) = g + t is an isomorphism of the Hnearly ordered set GQ onto the 
Hnearly ordered set of + Go-

We denote by T(g) the set of those cuts h of type GQ . in G for which there are 
9u92^9 + GQ with ^^ < g2, [ö'i? й? ̂ 2]- The mapping <p induces uniquely an 
extension <p^ which maps isomorphically the cycHcally ordered set D{GQ) onto the 
cyclically ordered set T{g). For h^,h2eT{g) we put h^ й ^2 if (9 ' )~M^i) = 
^ {(p')~^ (/Ï2) is valid in D(Go). We obtain a Hnear order on T(g) extending the 
Hnear order on g + GQ. 
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Let Z>i(G) be the set of all cuts of type GQ in G. Let h e />i(G). There exists g eG 
such that h e Т(д). Put 

u{h) = {xe T{G): x ^ h}, Щ = {xe T{G): x ^ h}. 

If h^ e T{g^), /̂ 2 e T{g2), x^ e /(/г^) and X2 e l{h2) (or x^ e u{h^) and X2 e u{h2)), 
then Xi + ^2 belongs to T(g^ + 0̂ 2)- Denote 

ft^ +*/i2 = sup(/(/ii) + /(/^2)) 

(this supremum clearly does exist in T{gi + 0̂ 2))- The verification of the following 
lemma is a routine. 

6.1. Lemma, (i) /i^ + * /̂ 2 = inf (M(/II) + "(/12)). 
(ii) The operation + * on JOI(G) is associative. 

(iii) / / fti, /12. h^ e i)i(G), /i e D^{G) and [h^, /^2, из], then [h^ + * /z, Й2 + * ft, 
/Z3 +* h] and [h + * /Î^, h + * /z2, ft + * h^]. 

(iv) / / Gl e ^(G) anJ fei, Й2 ^ G^, r/i^n /г̂  + * ^2 = й^ + i /Ï2. 

(v) / / /zi, ^2 e i)(Go), fften /zi + * /̂ 2 = fti + ^2-
The zero element of G is clearly a neutral element of the semigroup Di(G).The 

set G* of all elements of D^{G) having inverses is a cyclically ordered group. From 
(iv) we infer that for each G^ e ^(G) we have G^ ^ G*. Hence we obtain 

6.2. Theorem. Le^ GQ + {0}. Then G* Z5 a completion of the cyclically ordered 
group G. 

6.3. Proposition. Let GQ ф {0}. Le^ h be a regular cut in G. Then the following 
conditions are equivalent: 

(i) h belongs to the completion of the cyclically ordered group G. 
(ii) h is a cut of type GQ and there exists g E G such that g +^ h belongs to the 

completion of the linearly ordered group GQ. 

Proof. Let (i) be valid. According to 3.5, h is of type GQ. Hence there is 0̂ 1 e G 
such that h e T(g^). Thus there is h^ e D[GQ) with h = g^ + * /zi- In view of 6.2 
we have h e G\\ clearly g^ and ~g^ belong to G*. Put g = —g^. Then g + * /z e G*. 
Since 0̂  + * 0̂ 1 = 0̂  + 0̂ 1, we obtain ^ + * ^^ = 0, whence 

g i-'^h^g + * ( ^ i +^h,) = {g + * ^ i ) + * / z i = h,. 

Therefore /ẑ  e G* and thus the element h^ has an inverse in G*, hence it has an in
verse in D[GQ) (cf. Lemma 5.7 and Lemma 5.8 with G^ = G*) and so it belongs to 
the completion of the Unearly ordered group GQ. 

Conversely, suppose that (ii) holds. Hence g +^ h = h^, where /ẑ  e m(Go). 
Then we have h = -g Л-"" h^. Put h' = ( - й ^ ) + * д. We obtain /z + * /z' = О, 
whence h G G*. In view of 6.2, (i) is vahd. 

In the analogous way as in the proof of 6.3 we obtain: 

6.4. Proposition. Let a{G(^ Ф {O}. Let h be a regular cut in G. Then the following 
conditions are equivalent: 
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(i) h belongs to the completion of the cyclically ordered group G. 
(ii) h is of type a(Go) and there is g e G such that g -{-"^^ h belongs to the com

pletion of the linearly ordered group a(Go). 

7. COMPLETE CYCLICALLY ORDERED GROUPS 

First let us suppose that Go = {0}; this assumption will be appHed in 7.1 — 7.4. 
Hence (in the notation as in Section 1) the projection of G into L is {0}. Thus G is 
isomorphic to a subgroup of X. Therefore without loss of generality we may suppose 
that G is a subgroup of К (with the inherited cyclic order). 

First assume that G is finite. Then clearly C{G) = G and hence we have (recall 
that if G is finite then Go = {0}). 

7.1. Proposition. Let G be a finite cyclically ordered group. Then ^i(G) = G. 

Now suppose that G is infinite. If gi, g2 are any distinct elements of G, then there 
is g^eG with [0^1,0^3.0^2]-

Let /zi = < i be a cut in G. There exists a uniquely determined real r with 0 g 
^ r < 1 such that for any distinct elements 6̂ 1, 0̂2 of G the relation g^ < 1 0̂ 2 holds 
if and only if some of the following conditions is fulfilled: 

(i) g2 <r й gu 
(ii) 9i< 92 < r, 

(iii) r Sgi< gi-
The mapping ф: h^ -^ r is an isomorphism of the cyclically ordered set C{G) onto 
the cycHcally ordered set K. If g e G, then il/{g) = g. Thus C{G) can be identified 
with K. 

Because G is a subgroup of i^ we infer that К is an element of ^(G). The symbol + 
will denote the group operation in both G and K. From 4.6 we infer: 

7.2. Lemma. Let G^ e ^ ( G ) . Then G^ is a subgroup of K, 

As a corollary we obtain: 

7.3. Theorem. Let G be an infinite cyclically ordered group. Suppose that GQ = 
= {0}. Then d^{G) is isomorphic to K, 

7.4. Lemma. Let G be as in 7.3. Assume that G is isomorphic to K, Then 
d^{G) = G. 

Proof. Since G is isomorphic to K, each regular cut of G belongs to G; hence 
d^{G) = G, 

7.5. Theorem. Let G be a cyclically ordered group. Then G is complete if and 
only if some of the following conditions is satisfied: 

(i) G is finite. 
(ii) G is isomorphic to K. 

(iii) Go Ф {0} and m(Go) = GQ. 
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If a(GQ) Ф {0}, then G is complete if and only if G satisfies the condition 
(iv) a(Go) is isomorphic to Z or to R. 

Proof. Consider the condition 
(a) di(G) = G. 

In view of 7.1 and 7.4 we have (i) => (a) and (ii) => (a). If (iii) holds, then G"^ = G 
and hence according to 6.2, (a) is valid. Assume that a{Go) ф {0}. Let (iv) be fulfilled. 
Then a(Go) is a complete hnearly ordered group. It was proved in [5] that in such 
a case we have m(Go) = GQ (in [5] it was assumed that the linearly ordered group 
under consideration was abelian, but the argument remains valid for the non-abelian 
case as well). Therefore (a) holds. 

Conversely, suppose that (a) is vaHd. By way of contradiction, suppose that neither 
of the conditions (i) —(iii) is fulfilled. In particular, G is infinite and G fails to be iso
morphic to K. Hence in view of 7.3 we have GQ Ф {0}. Thus according to 6.2, 
G* = G. In view of 6.3 we infer that m(Go) = GQ, which is a contradiction. Thus some 
of the conditions (i), (ii) or (iii) holds. Suppose that, moreover, a(Go) Ф {0}. Then 
Go Ф {0} and hence (iii) must be valid. Now (a) and 6.4 imply that a(Go) is a complete 
linearly ordered group, whence (iv) holds. 

7.6. Corollary. Let G be a linearly ordered group. Then the following conditions 
are equivalent: 

(i) G {considered as a linearly ordered group) is complete. 
(ii) G (considered as a cyclically ordered group) is complete. 

Let Li and K^ be as in Section 1. Let us consider the relations between the con» 
dition (a) above (cf. the proof of 7.5) and the conditions saying that L^ or K^, 
respectively, is complete. The following examples illustrate the situations which 
may occur. 

7.7. Example. (G is complete, L^ and i^i are complete.) Let L^ = R, K^ = K, 
G = L,® K,. 

7.8. Example. (G is complete, both L^ and K^ fail to be complete.) Let G* = 
= R ® K. Let G be the set of all g e G*, g = (x, a) such that 

(i) both X and a are rational numbers; 
(ii) X — a is an integer. 

Then G is a subgroup of G*. The largest hnearly ordered subgroup Go of G 
consists of all elements g = (x, a) of G such that a = 0 and x is an integer; hence Go 
is complete and thus in view of 7.5, G is complete. L^ is isomorphic to the additive 
group of all rational numbers with the natural hnear order. Ki is the subgroup of К 
consisting of all rational numbers a with 0 ^ a < 1. Neither L^ nor K^ is complete. 

7.9. Example. (G and L^ are complete, K^ fails to be complete.) Let L^ = R and 
let K^ be as in 7.8. Put G = L^ ® K^. Then GQ is isomorphic to JR, hence in view of 
7.5, G is complete. 
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7.10. Example. (G and К^ are complete, L^ fails to be complete.) Let L be the 
additive group of all rational numbers with the natural linear order. Put G"^ = L® К 
and let G be the subset of G* which consists of all (x, a) e G* having the property 
such that there exist integers m, n with mx + na e Z (the multiplication na being 
performed as in R, i.e., it is not taken mod 1). Then G is a subgroup of G* and GQ 
is isomorphic to Z. In view of 7.5, G is complete. Moreover, L^ is isomorphic to L 
(whence it is not complete), K^ is isomorphic to К (whence it is complete). 

7.11. Example. (G, L^, K^ fail to be complete.) Let Lbe as in 7.10 and K^ as in 7.8, 
G = L^® K^. 

7.12. Example. (G, L^ fail to be complete, K^ is complete.) Let L be as in 7.11, 
G = L®K, 

7.13. Example. (G is not complete, Lj and K^ are complete.) Let G^ = R ® K, 
Let G be the subset of G* consisting of those g = (x, a) for which x + a is a rational 
number. Then G is a subgroup of G*, and GQ is isomorphic to L^ from 7.8. Hence 
in view of 7.5, G is not complete. Both L^ and K^ are complete, since L^ is isomorphic 
to jR and K^ is isomorphic to K. 

7.14. Example. (G and K^ fail to be complete, L^ is complete.) Let X^ be as in 7.8, 
G = Ki , hence L^ = {0}. 

The question whether it is possible for G and K^ not to be complete, and for L^ 
to be a nonzero complete linearly ordered group, remains open. 
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