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Czechoslovak Mathematical Journal, 37 (112) 1987, Praha 

SEQUENTIALLY DETERMINED CONVERGENCE SPACES 

R. BEATTIE, Sackville and H.-F. BUTZMANN, Mannheim 

(Received September 11, 1985) 

1. INTRODUCTION AND PRELIMINARIES 

It occurs repeatedly in doing analysis and functional analysis in convergence spaces 
that countability conditions of one kind or another are present. (See e.g. [A], [Be 1], 
[Be 2], [KM]). In such cases, sequential arguments are often both easier and more 
natural than their filter counterparts. Even series arguments are occasionally called 
for. 

Unfortunately, in general, first countable convergence spaces are not determined 
by their convergent sequences. Distinct first countable convergence spaces may 
have precisely the same convergent sequences with the result that continuity and 
sequential continuity are very different notions. 

The problem which arises then is the following: if Я is a convergence structure 
and Л(Х) is the set of all first countable convergence structures having the same con
vergent sequences as Д, to choose in /1(Я) a "special" convergence structure. As we 
know from [BeBuH], Л{Х) is a complete lattice with a largest element (p{X) and 
a smallest element y(X), and so these are two natural candidates. Both have their 
advantages. The convergence spaces obtained in the first way were introduced by 
Fric and later studied by Fric and Kent, who called them sequential. Sequential 
convergence spaces have some very nice properties and are, moreover, very well 
suited to study for example the sequential continuous convergence on ^(Z) — see 
[FMR]. On the other hand, <p[X) is rarely topological even when 1 is — for example 
even (p(v) is not topological for the natural topology v on the real line. Also <p does 
not preserve algebraic compatibility. 

In this paper we study the convergence spaces which arise by choosing y(X); we 
call them sequentially determined. 

In Section 2 we show that large classes of convergence spaces are sequentially 
determined, in particular all first countable pretopological spaces, the ^-duals of 
separable Fréchet spaces and all web-spaces. We study basic properties, such as 
permanence properties, and show that the notions of continuity and sequential 
continuity coincide for sequentially determined convergence spaces. 

In Section 3, we show that y preserves algebraic structure. We study the convergence 
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group completion of an abelian HausdorfiF convergence group due to Fric and Kent 
[FKe 2] and show the following: if the convergence group is sequentially determined, 
so is its completion and if its sequential convergence is maximal, so is that of its 
completion. A consequence of these results is a close relationship between this 
completion and the sequential convergence group completion of Novak [N] : One 
can always construct Novak's completion using that of Fric and Kent and under 
special conditions one can go the other way as well. 

Although we are mainly interested in convergence spaces we will also deal with 
the more general notion of a filter convergence space introduced in [BeBuH]. This 
will enable us to better connect convergence structures defined by filters and those 
defined by sequences. 

In the notation we follow [B]. Furthermore, if X is a set, then P(X), F[X) and 
S[X) denote its power set, the set of all fiters and the set of all sequences on X, 
respectively. If (̂  e S{X), then < 0 is the Fréchet filter generated by ^ and sometimes 
we write also Ç = {^{n)\^^ or simply ^ = {^{nf), 

1.1. Definition. The pair (X, J^) is called a sequential convergence space and i f 
a sequential convergence structure on X if X is a set and ^ a mapping from X into 
the power set of S{X) satisfying for all x 6 X the following conditions: 

(51) If (̂  G S{X) and ^{n) = X for all neN, then ^ G ^ ( X ) . 
(52) If (̂  G ^{x) then f G ^(x) for each subsequence ^' of ^. 
(53) If (̂  G S{X) and (^{n + l))„,д,G ^ ( x ) , then ^ G ^ ( X ) . 

Both (Z, J^) and i f are called maximal or Urysohn if moreover the following is 
satisfied 

(54) If (̂  G S{X) and if every subsequence ^' of ^ contains a subsequence С e i f (x) 
then ^ G i f (x). 

Finally, a mapping / : {X, 5£) -> (У, Jt) between sequential convergence spaces is 
called continuous iffo^e e#(/(x)) for all x G Z and all ^ G ^(X). 

1.2. Example. If (Z, X) is a convergence space then 

^{X}: X ~> P{S{X)) defined by ^ G ЩХ) (x) if < 0 e A(x) for all xeX 

is a sequential convergence structure on Z . 

1.3. Definition. For every sequential convergence space (Z, ^) we define 

y{^):X-^P{F{X)) 
by stating that a filter #" G F{X) belongs to y{<S^) (x) for some x G Z if there is a filter 
^ cz #" with a countable basis satisfying the condition 

Sj^^) If (J G S{X) and < 0 =э ^ then ^ G if(x) . 

We set y{X) = y(if(>^)) for a convergence structure A on Z . Evidently a filter ^ with 
a countable basis belongs to y{<^) (x) for some x G Z if and only if it satisfies the 
condition Sj^^). Furthermore 7(i^) (x) contains x, the trivial ultrafilter generated 
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by X and also ^ E y[^) (x) impHes ^ e y{^) (x) for all filters ^ => J^. But in general 
7(0^) (x) is not closed under finite intersections and so y{^S^) is not a convergence 
structure on X. Therefore we define: 

1.4. Definition. The pair (X, X) is called a filter convergence space and A a ^/^er 
convergence structure on X if X is a set and Я is a mapping from X into the power set 
of F(X) such that the following are satisfied for all xeX: 

(Fl) X e X{x) 
(F2) If #" 6 Я(х) then ^ e Я(х) for all ^ e F{X) with ^ => #". 

Clearly a filter convergence space {X, X) is a convergence space if and only if 
^ r\^ e X{x) for all X G X and all J^, ^ in Я(х). We transfer all definitions which are 
usually given for convergence spaces, hke adherence, separation axioms or con
tinuity, in the obvious way to filter convergence spaces. Also the definition of S£{X) 
in 1.2 makes sense for filter convergence spaces and yields a sequential convergence 
structure again. 

Recall that a filter convergence space (Z, A) and the structure Я are called first 
countable if for every XEX and every ^ е Я ( х ) there is a coarser filter ^ с #" 
such that ^ e Я(х) and ^ has a countable basis. 

1.5. Lemma. If ^ is a sequential convergence structure on X then y{S£^ is a first 
countable filter convergence structure on X. Moreover, if X is a convergence structure 
on X, then у(л) is also a convergence structure. 

Proof. We only prove the last part. So assume that Я is a convergence structure 
on X and that #"", ^ ~ e y(X) (x) for some x e Z . Then there are filters ^ с #"" 
and ^ cz ^^ with countable bases 

{F^meN} and {G^:neN}, 

respectively, satisfying S^{^{À)). Without loss of generality one may assume that 
Fn+i ^ F^ and G„+t cz G„ for all n e N. Take any sequence ^ e S{X) with < 0 =̂  
ZD ^ n^. Define 

/ = {i e TV: there is a ke N such that ^{i) e Fj^\ G j , 

and J = N\L Then for all ne N 

m-i^I} n ( F „ u G „ ) c = F , 
and 

{ ^ ( 0 : / e J } n ( F „ u G „ ) c = G , . 

If < 0 Ф ^ and < 0 Ф ^ then / and J are infinite and (^(O)iei and (^(0)/ej define 
subsequences ĉ ' and ^'' of £, with 

<r> ^ ^ , <n ^ ^ and < 0 = < r> П < r > . 

The following lemma contains basic facts needed in the sequel. These can be proved 
by routine arguments. 
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1.6. Lemma. Let X be a set, S£ a sequential convergence structure on X and À 
a first countable filter convergence structure on X. Then the following hold: 

(i) id: (Z, J^^(7(J^))) -^ (X, ^) is continuous. 
(ii) id: (Z, X) -> (X, y{X)) is continuous. 

(iii) ^{у(^{Щ = ^(X) and y{^(y{^))) = y{^). 
(iv) i f (Я) is Hausdorff if and only if X is Hausdorjf. 
(v) / / J^ is Hausdorff then y{^) is Hausdorff. 

(vi) 1 and ^(X) share the same adherence. 

It is easy to give an internal description of sequential convergence spaces (X, J^) 
satisfying the condition J^ = jèf(y(j^)). They were called {FLyspaces by Fric and 
Kent and Proposition 2 in [BeBuH] contains a fist of equivalent conditions. We 
note that (X, i f) is an (FL)-space if i f is a maximal sequential convergence structure. 
Filter convergence spaces satisfying Я = y(X) are our main objects of interest in this 
paper. 

It was shown in [BeBuH] that i f induces a concrete functor from the category of 
all filter convergence spaces into that of all sequential convergence spaces and this 
functor has a left adjoint. Likewise, у induces a concrete functor from the category 
of all sequential convergence spaces into that of all first countable filter convergence 
spaces and this functor also has a left adjoint. A consequence of this is the following 
proposition which can also be verified by direct calculation: 

1.7. Proposition. 
(i) i f preserves embedding s and products, i.e. iff: {X, 1) -> (У, /j) is an embedding 

between filter convergence spaces thenf: (X, ^(X)) -^ (Y, ^(fi)) is an embedding 
and if {{Xi, À^: i el} is a family of filter convergence spaces then 

(nx„ if(m,)) = (nz,, П ^{x,)). 
(ii) y preserves embeddings and countable products. 

2. SEQUENTIALLY DETERMINED CONVERGENCE SPACES 

2.1. Definition. A filter convergence space (X, X) is called sequentially determined 
if A = 7(A). 

Our first task will be to exhibit large classes of sequentially determined filter 
convergence spaces. We start with an easy but useful characterization: 

2.2. Proposition. For every filter convergence space (X, X) the following are 
equivalent: 

(i) {X, X) is sequentially determined. 
(ii) {X, X) is first countable and a filter ^ with a countable basis belongs to X{x) 

for some x eX whenever it satisfies the condition Sx{X) := jS^if(A)). 
(iii) There is a sequential convergence structure ^ on X with к = y{^)' 
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A (fiilter) convergence space is called pretopological if for all x eX 

Цх) = f]{^: ^ e À{x)} e X{x), 

2.3. Proposition. A pretopological convergence space (X, X) is sequentially de
termined if and only if it is first countable. 

Proof. The non-trivial direction follows from the fact that for every filter #" e F(X) 
with a countable basis we have 

^ = C]{<0:ieS{X), < 0 = ^ ^ } . 

2.4. Definition. A filter convergence space (X, X) is called strongly first countable 
if for each x eX there is a countable local basis of (X, X) at x, i.e. there is a col
lection J*̂ . of countably many subsets of X with the property that, for any filter 
#" G Я(х), there is a coarser filter ^ cz ^ such that ^ G Я(Х) and ^ has a basis 
consisting of elements of J? .̂. 

Strong first countabiUty is another generalization of the notion of first countability 
of a topological space and was thoroughly studied in [BeBu]. 

2.5. Proposition. Every strongly first countable filter convergence space (X, X) 
is sequentially determined. 

Proof. Evidently (X, A) is first countable. Choose any xeX and any filter 
#" G F{X) with a countable basis satisfying S^(X). Let J*7 be a local basis of (X, X) 
at X and assume J^ ф X[x). Then 

^ ^ = {Б G J*7' J5 ^ J^} = {B„: neN} 

is also a local basis of (X, X) at x and J^^ n #" = 0. Choose a basis {F„: n G TV} of J^ 
with F„+i CI F„ for all neN. Then F^ ф Д, for all m, n and so there are elements 
^т ,и^^»Л^п ^or all m, w. List the collection {x^y. m ^ n} to obtain a sequence 
5 = (^m(o,n(o)- We show that < 0 ^ ^ . 

For all m G Л̂  the set {(д, v): v ^ /x ^ m} is finite and so there is some k^e N 
such that m{i) > m for all i ^ /c,„. Hence 

^(0 G F , for all I ^ /c^ . 

Thus < 0 ==> ^ and so < 0 G 1(X). This implies the existence of some TQ G N with 
Л̂У G < 0 and so there is some IQ G N with 

{^(f): i ^ /o} c: Б , , . 

However, х,„ ^o Ф ^ro ^^^ ^^^ '̂ ^ = ''o and so there are infinitely many i e N with 

This contradiction completes the proof. 
In [Be 1] the class of web-spaces was introduced in order to generalize and 

sharpen the classical closed graph theorem. 

2.6. Corollary. Every second countable filter convergence space is sequentially 
determined and also every web-space. 
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Proof. Both classes are strongly first countable [BeBu]. 
Given a topological vector space E we denote by ^^E its ^-dual, that is the space 

of all continuous linear functional on E endowed with the continuous convergence 
structure [B]. In the following proposition we characterize the sequential deter-
minedness of the ^-dual of a Fréchet space: 

2.7. Proposition. For a metrlzable locally convex topological vector space E the 
following are equivalent: 

(i) E is separable. 
(ii) ^^E is strongly first countable. 

(iii) ^^E is sequentially determined. 
(iv) ^^E is first countable. 

Proof, (ii) => (iii) follows from 2.5 and (iii) => (iv) is clear. 
(i) => (ii): Since E is second countable also ^^E is second countable (see [B], 

Theorem 79) and the result follows from 2.6. 
(iv) => (i): Let {U„: n e N} he a, zero neighbourhood basis of E and denote by a^ 

the restriction of the weak*-topology a(^E, E) to U^, the polar of U„. Then all 
{U^, (T„) are subspaces of ^^E and therefore also first countable. Consequently 
there are sequences 

{Л„ ,„: n, me N} of finite subsets of E such that for all n e N 

is a zero neighbourhood basis in (t/^, Ö-„). Then 

^ = и{Лт,т'- n,me N} 

is countable. We claim that the Q-vector space generated by A is dense in E and in 
order to prove this it is sufficient to show that A^ = {0}. Take any <p e A^. Then 
there is an ne N such that <p eU^ and therefore (p eU^^n Л^,„ for all m e N. 
Since a„ is Hausdorff we get cp = 0. 

The following theorem summarizes the permanence properties of sequentially 
determined spaces and therefore yields more classes of sequentially determined 
spaces. 

2.8. Tlieorem. Subspaces, sums and countable products of sequentially de
termined filter convergence spaces are sequentially determined. 

Proof. Subspaces and countable products follow from 1.7, sums by an easy 
calculation. 

As the following example shows, inductive Hmits and hence also quotients of 
sequentially determined (filter) convergence spaces may fail to be sequentially 
determined. 

2.9. Example. Let E be an infinite dimensional Fréchet space and define a conver
gence structure Д on £ by stating that a filter # ' in F(E) belongs to Я(х) for some 
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X e E if and only if ^ converges in £ to x and #" contains a subspace of £ of countable 
dimension. 

Then (£, X) is a first countable convergence (vector) space and a (strict) inductive 
limit of the subspaces of E of countable dimension. Since E and (£, X) have the same 
convergent sequences, we get E = (E, y[X)) and since (E, X) is evidently not topo
logical it is not sequentially determined. 

We note that, with regard to the above example, the identity mapping 

id: E -> (E, X) 

is sequentially continuous but clearly not continuous since otherwise E and (E, X) 
would be isomorphic. This situation cannot occur for sequentially determined 
spaces as the following theorem shows. 

2.10. Theorem. Let (X, X) and (Y, JLL) be filter convergence spaces, (X, X) first 
countable and (У, /г) sequentially determined. Then f: (X, Я) -> (У, //) is sequen
tially continuous if and only iff is continuous. 

Proof. The sequential continuity of/: (X, X) -> (7, ji) is precisely the continuity 
o f / : (X, .^(Я))-> (7, J^(/i)). Since ^ is functorial, continuity implies sequential 
continuity. On the other hand, i f / i s sequentially continuous, 

f:{X,y{Se{X)))-.{Y,y(ä'(ft))) 

is continuous since у is functorial and the continuity of / now follows from 1.6(ii). 

2.11. Corollary. 
(i) Л mapping between sequentially determined filter convergence spaces is 

continuous if and only if it is sequentially continuous. 
(ii) Two sequentially determined filter convergence structures on a set with the 

same sequential convergence coincide. 
(iii) If À is a first countable filter convergence structure on a set X, then y{X) is the 

only sequentially detemined filter convergence structure on X with the same 
sequential convergence as A. 

At this point let us compare y(^) with Fric's modification ([F 1]): Given a sequen
tial convergence space (X, ^ ) , the filter convergence structure <p(j^) on X is defined by 

^ e (pÇ^ (x) if there is a ^e ^{x) with ^ з < 0 

for all x e X , ^ 'eErfX); Fric and Kent called a. filter convergence space fX, A) 
sequential if /I = <^(^) for some sequential convergence structure ^ on X. As the 
following shows, (p[^) is very seldom topological: 

2.12. Proposition. / / (X, if) is a Hausdorff (FLysequential convergence space 
such that (X, (p{^)) is topological, then (p[^) = y[^^ and each point in (X, Ц>[^^ 
has a basis consisting of countable, open, compact sets. 

Proof. Since (X, çi-^)) is topological it is sequentially determined by 2.3. Since 
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[X, J5f) is an (FL)-space, we have 

by Proposition 2 in [BeBuH] and then <p{^) = y{^) by 2.11(iii). Take now any 
xeX and any neighbourhood U of x. Since <p(if) is topological, there is a sequence 
^ e ^(x) such that < 0 is the neighbourhood filter of x. Therefore there is a /c e TV 
such that 

Furthermore, there is an open neighbourhood F of x and an n e TV with 

W:= {Ф): i^n} czVcz {^(f): i ^ k] 

and so W is open since V\{i{i): i ^ n] is finite. Evidently W is countable and 
compact. 

2.13. Corollary. / / a non-trivial Hausdorff topological space is either connected 
or uncountable Lindelöf then it is not sequential. 

Since large classes of filter convergence spaces consist of sequentially determined 
spaces one cannot expect that these spaces have as attractive properties as their 
sequential counterparts. On the other hand, one can hope that good sequential 
properties will imply good properties of the filter convergence space itself. One such 
example is given in 2.15 below. 

2.14. Definition. A filter convergence space (X, X) is called a Choquet space if 
a filter J^ on X belongs to Я(х) for some xeX whenever every ultrafilter ^ ID J^ 
belongs to l(x). 

Similarly, {X, X) is called count ably Choquet if this property holds for every ^ 
with a countable basis. 

Choquet spaces are also called pseudotopological [FKe 1] and soHd [S]. 

2.15. Theorem. / / J^ is a maximal sequential convergence structure on a set X, 
then (X, y{^)) is countably Choquet, 

Proof. Let J^ be a filter with a countable basis such that .'F ф y{^) (x) for some 
xeX. We show that there is an ultrafilter ^ =) #" such that ^ ф y{^) (x). 

There is a sequence ^ e S^X) such that < 0 =̂  ^ and ^ ф if(x). By the maximality 
of ^ there is a subsequence rj of ^ no subsequence of which is in J^(x); take any 
ultrafilter ^ =5 <?;>, we show that ^ ф y{.^) (x). Assume on the contrary that ^ e 
ey(j^)(x). Then there is a filter Ж ey(^){x) with a countable basis {Я„: ne N} 
such that Ж Cl ^. Consequently, 

{ri{{): i ^ /c} n Я , Ф 0 for all /c, и in TV. 

and so by induction one can choose a subsequence С of rj with C{n) e Я„ for all n e TV. 
But then <C> => Ж and so <C> e y{^) (x), implying С e ^{у{^)) (x) = ^ ( x ) since ^ 
is maximal, contradicting the choice of rj. 
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2.16. Corollary. / / (X, Л) is a sequentially determined filter convergence space 
such that c^(A) is maximal, then (X, X) is countably Choquet. 

As the following examples show, the above results cannot be essentially 
strengthened : 

2.17. Examples. 
(i) Let j / = {A. c: i ? : ^ | a | < 00} and define a convergence structure Я on R 

as follows: "^"^ 
#" G Я(х) for X Ф О if J^ = X 
J^ G A(0) if #" converges to 0 in the natural topology and if J^ n j / Ф 0. 

It it easy to see that any subsequence of ^ = (Ijn) contains a subsequence in J^(A) (0) 
but ^ Ф о^(Я) (0). Thus (R, X) is Choquet and sequentially determined but ^(X) is 
not maximal, 

(ii) Define a sequential convergence structure câf on X = [0, 1] as follows: 

^ e J^(x) for X Ф 0 if {i: ^(i) Ф x} is finite 
(^GJ^(O) if r\{x}) is finite for all х ф О . 

We claim that {X, y{^)) is not a Choquet space. A filter ^ e FyX) belongs to y(^) (0) 
if and only if there is a countable family {F„: n e N} a ^ with f]{F„: n E N} a {0}. 
Therefore 

S^o = {F czX:X\F is finite} ф y{^) (0). 

But if ^ :D ^Q is an ultrafilter then ^ converges in the natural topology to a point 
xeX and so there is a countable family {t/„: ?i G TV} of neighbourhoods of x in the 
natural topology with Ç]{U„: n e N} = {x}. Since ^ ID J^Q we have ^ ф x and 
so UQ = X\ {x} G ^ , implying that 

{U„:nENu{0}} Œ^ and П{^/.:/t e TVu {0}} = 0 . 

Consequently ^ G y(c^) (0) for all ultrafilters ^ => J^o- Evidently ^ is maximal 
and so (X, 7(0^)) is countably Choquet and sequentially determined, but, as was 
just shown, it is not a Choquet space. 

We cannot characterize sequentially determined Choquet or countably Choquet 
spaces by means of their sequential convergence. For strongly first countable filter 
convergence spaces, however, we know more: such a space is countably Choquet 
if and only if its sequential convergence is maximal (see [BeBu]). 

3. SEQUENTIALLY DETERMINED CONVERGENCE GROUPS 
AND THEIR COMPLETIONS 

As usual, a (filter) convergence group or a sequential convergence group is a group 
carrying a (filter) convergence structure or a sequential convergence structure, re
spectively, making the composition and the inverse operations continuous. Since 
we are mainly interested in abelian groups, the group operation will be assumed to 
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be addition. We start with a result which, in spite of its easy proof, is of fundamental 
importance. 

3.1. Proposition. / / (G , 5£) is a sequential convergence group, then (G, y{^)) is 
a filter convergence group. 

Proof. Since the addition is Ĵ f x i f - <^-continuous, it is also y{^ x ^)-y[^y 
continuous.Buty(if X ^ ) = y(j^) x y(j^) by 1;7 and so the addition is a continuous 
operation on (G, y[^)). Evidently the inverse operation is y(if)-'y(=$f)-continuous. 

3.2. Corollary. / / ( G , X) is a filter convergence group, then [G, y{X)) is also a filter 
convergence group. 

Proof. Clearly (G, =^(Я)) is a sequential convergence group. 
Similarly one can show that if (Л, ^) is a sequential convergence vector space 

or a sequential convergence algebra, then [A, y{<^)) is a filter convergence vector 
space or a filter convergence algebra, respectively. Thus у preserves algebraic com
patibility. This is not true for <p as the following shows: 

3.3. Proposition. Let (G, =^) be a Hausdorjf sequential convergence group. 
Then (G, <p[<^)) is a filter convergence group if and only if 5£ is discrete. In parti
cular, if{G, X) is a non-discrete first countable topological group, then (G, <p(j^(A))) 
is not a filter convergence group. 

Proof. We show the "only if" part. If i f is not discrete, there is a sequence ^ = 
= (x„) 6 i f (0) with 

^m "^ ^n ^ ^ foi* all m Ф n . 
We claim that < 0 + < 0 ф <p{S^) (0). Assume on the contrary that there is a sequence 
Ц = {y^ e if(0) with < 0 + < 0 ^ <^>. Then there is a /c e Â  such that 

{y^: ieN} ID {x^ + xy. i,j ^ k} . 
Consequently, 

x„ + Xj^e {У}-. i e N} for all n ^ к , 

and so there are i„ e A^such that x^ + Xj, = y,-̂  for all n ^ k. Since x^ + x^ Ф x„ + 
+ X;̂  for all m Ф w, we have i,n =+= in for all m Ф и and so there is a subsequence 
(yi ) of rj such that 

^nr + 4 = У/„,. for all re N. 
It follows that the constant sequence with the value x^. converges to 0. This contradic
tion completes our proof. 

As 3.3 shows, one has to consider in all non-trival cases the (filter) convergence 
group modification (G, g, + ) of (G, (^(if)). This was done in [F 1] but then the 
situation often gets rather complicated, as for example the lengthy proof of 3.2 there 
shows. 

This modification differs from y(if) even for maximal convergences as the fol
lowing example shows: Denote by i f the natural convergence on the reals. Then 
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7(=^) is the natural topology on the reals. On the other hand, every ^-convergent 
filter contains a countable set. 

Let (G, X) be a filter convergence group with the property that Ж n 0* e Я(0) 
whenever ^ e Я(0). Then for all #", ^ e Я(0) 

J^ n^ ID {.^ n 0') + (f# n 0*) G Я(0) 

and so (G, Я) is indeed a convergence group. Therefore, the final filter convergence 
group structure on a group G with respect to a family of group homomorphisms from 
convergence groups into G is again a convergence structure. Consequently, quotients, 
direct sums (coproducts) and (inductive) limits of convergence groups in the category 
of filter convergence groups are convergence spaces and therefore coincide with the 
corresponding constructions in the category of convergence groups. In addition to 
the permanence properties proved in 2.8 we get the following for groups: 

3.4. Proposition. / / (G;, ^tji^i is a family of sequentially determined filter con
vergence groups, then ф (Gj, Я̂ ) is also sequentially determined, 

iel 

Proof. Clearly (G, Я) = © (G,-, Â ) is first countable. For any iel we denote 
isl 

by 71̂ : (G, Я) -^ (G^, l^ the projection and for any finite set J с / we set {Gj, Xj) = 
= Y[ (ßh ^i)' Finally, we denote by Cji (Gj, Xj) -> (G, X) the embedding. Then Я 

ieJ 

is the final filter convergence structure with respect to the family (ej). Take any 
z E G and any filter ^ e F{G) with a countable basis satisfying the condition 5'д.(Я). 
We first show the existence of a finite set J cz I with ej[Gj) E ̂ \ If this is not the case, 
then we construct a sequence (z„) in G and a sequence (f„) of pairwise distinct elements 
in / with the property that z„ e F„ and 7r,-̂ (z„) ф 0 for all ПЕ N. We do this by induc
tion as follows: Clearly F^ #= {0} and so there are z^ EF^ and /\ e / such that 
^r,(2^i) + 0. If Zi, ..., z„ and /"i,..., /„ have been chosen we set J = {г\, ..., /„}. Since 
F,,+ i Ф ej(Gj) there are z„+i G F „ + I and /„+i ^ J such that 7r,-^^,(z„+i) Ф 0. 

Since <(z„)> =) #" we have <(z„)> e Я(z) and so there is a finite set J с / with 
ej[Gj) E ̂ . Therefore there is an HQ E N with 

7r.(z„) = 0 for all i EI\ J and all n ^ n^ . 

But {/,,: П ^ Псу] is infinite and so ij, ф J for some к ^ HQ, implying that 

7r,-̂ .(z;t) Ф 0 and ?*;, EI \ J and k^ n^ . 

This contradiction shows that there is indeed a finite set J cz / with ej[Gj) E J ^ . 
Without loss of generality, we may also assume that z e ^ X ^ J ) ' ^̂ ^ '̂  ^ ^J ^^ ^̂ ^̂ ^ 
that ej[u) = z. Now ey. (Gj, y[Xj)) -> (G, y[X)) is an embedding by 1.7 and therefore 
е/Ч^^) e y{Àj) (и). But 7(Я )̂ = Ij by 2.8 and so #" = ej{Qj\^)) E À{Z), 

A direct sum of uncountably many non-trivial sequentially determined con
vergence groups is perhaps the simplest example of a sequentially determined space 
which is not strongly first countable. 
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Up to now, the theories for sequentially determined convergence spaces and for 
their filter convergence counterparts are more or less parallel. The situation becomes 
different, however, in dealing with completions. It is well-known that every abehan, 
Hausdorff convergence group has a completion. An analogous result can be shown 
for abelian, Hausdorff filter convergence groups. But the filter convergence group 
completion of a non-complete convergence group is not a convergence space and 
therefore differs from its convergence group completion. As was already pointed 
out, our main interest hes in the study of convergence spaces and therefore in what 
follows we will study the convergence group completion. 

3.5. Definition. The triple (G, I, CQ) is called a completion of the abehan, Hausdorff 
convergence group (G, X) if (G, X) is a complete abeHan, Hausdorff convergence 
group and e^ is an embedding from (G, X) onto a dense subgroup of (G, X) satisfying 
the following property: 
(EP) Given a complete abelian, Hausdorff convergence group (Я, JLL) and a con

tinuous group homomorphism / : (G, X) -> (Я, /г) there is a unique continuous 
group homomorphism 

/ : ( G, A) -> (Я, fi) such that / о e^ = / . 

The following theorem summarizes the main results of [FKe 2] : 

3.6. Theorem. Every abelian Hausdorjf convergence group has a completion. 

Evidently, by (EP), a completion of a convergence group (G, X) is unique up to 
isomorphism. We will refer to it as the completion and denote it by (G, X, CQ). We 
also need the following results the first of which was proved in [FKe 2]. 

3.7. Lemma. / / Ж is a filter which converges in the completion of the abelian 
Hausdorjf convergence group (G, 1), then there are elements z^, ...,z^^e G such 
that (zi + eo{G)) u ... u (z„ + e^iG)) e Ж. 

3.8. Lemma. Let Ж be a Cauchy filter in a first countable filter convergence 
group (G , X). Then there exists a Cauchy filter Жо cz Ж with a countable basis. 

Proof. There is a filter ^еЯ(О) with a countable basis {D„: n e N} such that 
^ Œ Ж - Ж. Choose for all n e TV a set Я„ e Ж such that D„ =) Я„ - Я„ and 
Я„^.1 с Я„ for all n e N. Then {Я„: n е N} is the basis of a Cauchy filter Жо in 
(G, Я) such that Жо с: Ж. 

The following two theorems illustrate properties preserved by the completion. 

3.9. Theorem. Let (G, Я, CQ) be the completion of the abelian Hausdorff con
vergence group (G, X). Then the following hold: 
(i) If 1 is first countable, then 1 is first countable. 

(ii) / / ( G , Я) is sequentially determined, then (G, X) is also sequentially determined. 

Proof. 
(i) Assume that A is first countable and define a convergence structure fi on ô 

242 



by stating for all z G G and all Ж e F{G): 
Ж e //(z) if there is a filter J f Q G X(Z) with a countable basis such that Ж ID Ж^. 

Evidently ( ô , /i) is a convergence group and e^: (G, Я) -» (G, fi) an embedding. We 
show that (Ô, fi) is complete. 

Given a Cauchy filter c^ on (G, /i) there is by 3.8 a Cauchy fiher Жс, с . ^ with 
a countable basis. Since ЖQ converges in (G, 1), it also converges in (G, jt(). 

Since CQ'. (G , Я) -^ ( G , //) is continuous, by (EP) also id: (G, X) -> (G, //) 
is continuous and so I = /i. 

(ii) Assume that Я is sequentially determined and that Ж e y[X) (z) has a countable 
basis {Я„: n G TV}. We first show that there are elements w^, ..., w,^e ô with 
(wi + %(G)) u .. . u (w;̂  + ^(;(G)) e ^ . If this is not the case, one can inductively 
find z„ G Я„ such that 

n̂ Ф (^1 + %(<^)) ^ ... u i^n-1 + ^6'(G)) for all n^2. 

But then <(z„)> :D Ж and so <(z„)> e A(z). On the other hand we have that z^ — Zj.$ 
Ф eQ{G) for all n Ф k, contradicting 3.7. So we can choose w^, ...,Wj, in G with 

(wi + ea[G) и .,.vj{wk + eo{G)) e Ж . 

Without loss of generality we may assume that Ж has a trace on every vv,- + ^G(G) 
and so for every i e {1, ..., A:} 

(Я , n (w, + eo{G)): n e N} 

is the basis of a filter Жi on G. We have 

Ж = Ж^п ...n Ж},. 

Since y(l) is HausdorfF by 1.6 we are done if we prove that Ж^ is a Cauchy filter 
in (G, I) for every г G (1, ..., к]. 

Since (G, 7(1)) is a convergence group by 3.2, 

(^.- - w,) - {Ж, - w,) = . ^ , - Ж, G у(Я) (0) . 
If now 

^ = {Fc:G:ea{F)eЖ,-w,}, 

then %(#") = Ж1 — Wf and so 

ео{^ - #-) = ^o(^) - ^ G ( ^ ) = ( ^ / - w,) - [Ж, - w,) G y{l) (0) . 

But e^: (G, у{Х)) -^ (Ô, 7(1)) is an embedding by 1.7 and therefore #" is a Cauchy 
filter in ( G , Я) and so Ж^ - w,- = ео{^) is a Cauchy filter in ( ô , 1). 

3.10. Theorem. / / (G, Я) fs a sequentially determined, abelian Hausdorff con
vergence group and (ô , 1, eo) its completion, then ^(X) is maximal if and only 
if ^(X) is maximal. 

Proof. The "only if" part is clear so assume that ^{X) is maximal. Take an element 
ze Ô and a sequence С e S(ô) with the property that every subsequence contains 
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a subsequence in if(I) (z). With the help of 3.7 one can show in the usual way that 
there are Wj, ..., W;̂  in 6 with (w^ + %(G)) u ... u (w^ + %(G)) e <C>. 

Since Я is a convergence structure we may assume that /c = 1, i.e. 

w + ^^(G) G <C> for some w e G , 

Since (Ô, Я) is Hausdorff, it is enough to show that <C> is a Cauchy filter. By 3.9(ii) 
we know that ( ô , X) is sequentially determined and so consider any rj e S{G) with 
<^> ^ <0 - <C>. Since 

eo{G) = (w + e^(G)) - (w + ^^(G)) e <C> - <C> c: <^> , 

we can assume that f][n) e %(G) for all n e N and since ^(X) is maximal and eQ an 
embedding we are done if we show that rj contains a subsequence which converges 
to 0. 

Now there is an î̂  e TV with 

{C(0 - C(j): ij eN} :=^ {ri{n): n > « J 

and so one can choose г\ and j ^ with 

пЫ = cih) - cO'i). 
Since 

{C(0 - C{j):i > lu J > J i } e < ^ > , 

there are «2 > n^, /2 > i^ and J2 > ]\ with 

Inductively one gets strictly monotone sequences (щ), (f^), and {j\) with 

riin,) = m - m for all fceA^. 

By assumption there is a strictly monotone sequence [k^) such that both (C(0 ) ^^^ 
( C ( A J ) converge to z and so {г}{щУ) converges to 0. 

The above theorem allows us to set this completion theory in relation to the com
pletion theory for abelian maximal sequential convergence groups developed in [N] . 

3.11. Proposition. / / (G, c^) is an abelian sequential convergence group and ä, 
a sequence in G, then < 0 i^ <̂  Cauchy filter in (G, 7(=^)) if and only if^oa — 
— ^ о ß e =^(0) for all finite-tO'One mappings a, ß: N -^ N. 

Proof. Assume that < 0 is a Cauchy filter in (G, y(^)) and that a, ß: N-^ N 
are finite4o-one mappings. Then 

<^ о a> = <^ о JS> = < 0 
and therefore 

<^ о a - ^ о iS> ID <^ о a> - <^ о ^> = < 0 - < 0 e y (^ ) (0) 

and so (̂  о a - (̂  о î  G ^(0). 
Conversely, if i has the required property and ?/ is a sequence in G with <^> з 
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э < 0 - <0^ then for all п e Л'̂  there is a fc„ e V̂ with 

{i{i)-^):i,j^n}=>{rj{k):k^k„}. 

Consequently, for all к '^ ki there arc a(/c) and ß{k) with 

f,{k) = ^(a(/c)) - mk)) 
and 

a(/c), ß{k) ^n if k^ k„. 

But then a and ß are finite-to-one mappings and we have therefore rj e ^{0), implying 
that < 0 - <Oey( i f ) (0 ) . 

3.12. Corollary. / / (G, J^) is a maximal abelian sequential convergence group 
and ^ a sequence in G, then < 0 i^ ^ Cauchy filter in (G, y{-^)) if and only if t! — 
— ̂ " G :^(0)for all subsequences ^' and ^" of ^. 

Proof. We have to show that ^ooc — ^oße =âf(0) for all finite-to-one mappings 
a, /? if (̂ ' — (̂ " G =âf(0) for all subsequences ^' and f " of ^. Now any subsequence of 
^ о a — ̂  о j5 contains a subsequence of the form ^' — (̂ " where < '̂and ^" are subse
quences of ^ and s o ^ o a — (^OJ9G ^ ( 0 ) by the maximality of ^ . 

J. Novak called a sequence (̂  in a maximal, abelian Hausdorff sequential con
vergence group (G, if) a Cauchy sequence if (̂ ' — Ce^{0) for all subsequences ^' 
and ^" of (̂  and called (G, ^^complete if every Cauchy sequence in (G, if) con
verges. He then showed that (G, i f) can be densely embedded into a complete, 
abehan Hausdorff sequential convergence group. (See [N].) We are now in a position 
to prove this result in the framework of the theory of convergence group comple
tions. 

3.13. Lemma. Ä maximal, abelian Hausdorff sequential convergence group 
(G, if) is complete if and only if{G, y{^)) is complete. 

Proof. The "if" part follows directly from 3.12. Now, assume that Ж is a Cauchy 
filter in (G, 7(if))- By 3.8 there is a Cauchy filter J f о с: j/f with a countable basis. 
Choose a sequence ^ e S(G) with < 0 ^ ^ o - Then (̂  is a Cauchy sequence in the 
complete space (G, S£). Since (̂  G S£{X) for some xeG from < 0 G y{S£) (x) and 

we get J f G 7(if) (x). This proves the "only if" part. 

The sequential convergence structure if(7(J^)) will be of great importance to us 
in what follows. Therefore we introduce a simpler and more suggestive notation 
for it. For any sequential group convergence structure i f on a group G we set 

3.14. Theorem. Let (G, SÛ) be a maximal abelian Hausdorff sequential con
vergence group. Then ( ô , ^) is a complete maximal abelian Hausdorff sequential 

convergence group and CQ is an embedding onto a dense subgroup. 
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Proof. Since i f is maximal we have Se = if(r(=^)) and so «̂ ^ = ^(у(=^)) is 

maximal according to 3.10. But then (fi.È) = (ö , J^f(7(.^))) is complete by 3.13 

and 3.10. Since 'y(j^) is first countable, ^(Jêf) has the same property by 3.9(i) and so 
e(j(G) is dense in (G, i f ) by 1.6(vi). Finally, eQ is an embedding by 1.7. 

3.15. Theorem. Let (G, <if) a n i (Я, ^ ) be maximal abelian Hausdorff sequential 
convergence groups and [H, ^) complete. Then to every continuous group homo-
morphism f: (G, <if) -> (Я, ^ ) ^йвге is a unique group homomorphism f: ( ô , i f ) -> 
-^ (Я, J^) such that f о CQ = f. 

Proof. The uniqueness is clear. Since (H,y{Jf)) is complete by 3.13, we get 

from 3.6 the existence of a continuous group homorphism / : (G, y(if)) -> (Я, y{.£)) 

with / о CQ = / . But then / i s also ^(y[^)) — 5£{y^\Ji)) — continuous and since Ji 
is maximal we have Ji --

3.16. Corollary. Let (G, i f ) be a maximal abelian Hausdorff sequential conver
gence group. Then (ö , ^) is isomophic to Novak's completion (G, <^). 

Proof. This is a direct consequence from 3.15 and the fact that the analogous 
statement of 3.15 also holds for ( G , =^), as was shown in [F 2] (see also [R]). 

The above results show that Novak's completion can always be constructed from 
the convergence group completion. The next two results show that if [G, X) has 
a maximal sequential convergence, then the convergence group completion can be 
constructed from that of Novak. That this condition cannot be relaxed is clear 
since ^ is always maximal. 

3.17. Theorem. / / (G, ^) is a maximal abelian sequential convergence group 

then (Ô,y(if)) = ( Ô , r ( ^ ) ) . 

Proof. y{^) = y{^{y{^))) = y(Se) by 3.8(ii). 

3.18. Corollary. / / (G, A) is an abelian sequentially determined Hausdorff 
convergence group such that ^(X) is maximal, then 

(Ô,1) = (Ô,A))) . 
Proof. y{^{Xj) = 7(if(A)) = :î by 3.17. 
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