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UNIQUELY REALIZABLE SCORE LISTS 
IN BIPARTITE TOURNAMENTS 

KuNWARJiT S. BAGGA*) and LOWELL W. BEINEKE, Fort Wayne 

(Received November 27, 1985) 

1. INTRODUCTION 

An ordinary tournament is well-known as a finite directed graph in which each 
pair of vertices is joined by exactly one arc. Such a digraph can be obtained by 
assigning an orientation to each edge of a complete graph. A bipartite tournament 
is defined as an orientation of a complete bipartite graph. Thus an m x n bipartite 
tournament T consists of two partite sets (say) X = (х^, X2,.. . , x,„} and Y = 
— { j b Ĵ 2? •••5 л } of vertices, and mn arcs between X and Y. If the scores (or 
outdegrees) of x̂  and yj are denoted by ai and bj, respectively, for 1 ^ / ^ m and 
1 S j :^ n, then Ä = [a^, «2? •••? ^m] ^^^ ̂  — [^i? ̂ 2? •••' ^/i] ^re called the score 
lists of T. 

If A and В are lists of nonnegative integers, then the pair (A, B) will be called 
realizable if there exists a bipartite tournament with score lists A and B. Several 
forms of necessary and sufficient conditions for realizabiUty are known, and we 
shall state these in the following section. If A = [a^, (32,..., a,„] ^^^ ^ = [^i^ 
^ 2 J " - 5 ^ / I ] ^^^ integer lists, we define their dual lists Z = [n — д^, n — «2? ••• 
...,n — a^nl and В = [m — b^, m — b2,..., ni — fe„]. Clearly, if (Л, B) is realizable, 
so is (Л, B) — one just reverses the orientation of all the arcs in a realization. 

If a pair (A, B) is realizable and all its realizations are isomorphic, then (A, B) 
will be called uniquely realizable. As an illustration, it is easily seen that if one of 
the lists in a realizable pair has all its entries as I's (we say that this list is constantly 
1), then all realizations must be isomorphic. This is indicated in Figure 1, where 

> - ^ L 

Figure 1 

*) Some of the results proved in this paper form part of this author's doctoral thesis. 
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we assume that Ä = [1, 1, ... , 1] = [l"*], В = [bi, ^ 2 , . . . , b„], and that only 
X to У arcs are shown. 

We also observe that a pair (A, B) is uniquely reahzable if and only if {A, B) is 
uniquely realizable. 

The purpose of this article is to determine which pairs {A, B) are uniquely realizable. 
We shall answer this question for irreducible (i.e., strongly connected) bipartite 
tournaments. In this paper, we refer to irreducible components simply as com
ponents. From a known result stated in the next section (Theorem 2.4), it follows 
that the score lists determine a bipartite tournament up to its components. Thus 
a solution to the above problem for the irreducible case will lead to one for the class 
of all bipartite tournaments. 

For recent surveys on bipartite tournaments and many of their properties, we refer 
the reader to [2], [3]. In the case of ordinary tournaments, Avery [1] proved that 
there are just four irreducible uniquely realizable score lists. We also note that our 
work on the uniqueness question was done independently of the work of Koren [5], 
who studied the uniqueness question in the context of bipartite graphs. Also, an 
incomplete form of this result was stated in [3]. 

2. CRITERIA FOR REALIZABILITY 

There are several known criteria for determining whether or not a given pair of 
lists belongs to a bipartite tournament. The first that we give is a generalization of 
Gale's constructive criterion [4]. 

Theorem 2.1. Let A = [01 ,^2 , . . . , «m] ^f^d В = [Ь^, 62 , . . . , Ь„] be lists of integers, 
with 0 S üi ^ n and 0 -^ bj ^ m. Suppose that A' is obtained from A by deleting 
one entry ai, and B' is obtained from В by reducing the largest n — ai entries 
by 1 each. Then (A, B) is realizable if and only if {A\ B') is realizable. 

The crucial idea in the proof of the necessary part of this result is to show that 
in a bipartite tournament any vertex in one set can dominate vertices of minimum 
scores in the other set (up to its score). 

The generality of this result indicates that there is considerable choice in con
structing a bipartite tournament from a realizable pair [A, B). If, however, we begin 
with the lists A and В in nonincreasing order and then delete the first entry in A 
and preserve the order in В when reducing the appropriate number of its greatest 
entries by 1 each, then the result is prescribed and we call the bipartite tournament 
so obtained canonical, with fists A and B. 

We now turn to an existence criterion for realizability. It was found by Moon [6], 
who in fact established a more general result for multipartite tournaments. 

Theorem 2.2. A pair of lists A — [a^, a2,...? a^J and В = [Ь^, Ь2, . . . , Ь„] of 
nonnegative integers in nondecreasing order are the score lists of an m X n 
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bipartite tournament if and only if, for к = 1, 2, ..., m and I = 1, 2 , . . . , n, 

(1) ia. + ibj^kl, 

with equality when к = m and I = n. 
Furthermore, the realizations are irreducible if and only if a^ > 0, bi > 0 and 

the inequalities (l) are all strict (except when к = m and I = n). 

Another existence criterion is due to Ryser [7], and it was originally given in the 
context of row and column sums in matrices of zeros and ones. We state it here for 
the sake of completeness, although we shall not have occasion to use it. 

Theorem 2.3. Suppose that A = [ÖJ, «2'•••? ^m] ^^^ ^ = [^i? b2, ..., b„] are 
lists of nonnegative integers, with A in nonincreasing order. Then [A, B) is real
izable if and only if, for к = 1,2, ...,m, 

к ri 

(2) Y.^i è Z ^^^ (^' '^ - ^j) ' 

with equality when к = m. 

Furthermore, the realizations are irreducible if and only if 0 < bj< m for each], 
and the inequalities (2) are strict for 1 ^ к < m. 

It has been observed by Beineke and Eggleton (independently, unpublished), 
that in criteria such as Moon's and Ryser's, one need only check the inequalities 
when there are jumps. A precise statement of this result and its proof will now be 
given. We first introduce some notation. For a list L = [Z ,̂ / 2 , . . . , /p], let L^ = 

= Yh^^OT 1 й q й P, and let LQ = 0. 

Theorem 2.4. Suppose that A = [ai,a2,..., «m] ^^^ ^ = [^i, ^2, ..., b„] are 
nondecreasing integer lists, with 0 S ^i й n and 0 ^ by ^ m, and such that 

(a) Ajn + B„ = mn; and, 
(b) A^ + J3̂  ^ rs, whenever a^ < a^+i and b^ < b^+i. 

Then (A, B) is realizable. 

Proof. We wish to show that the inequality 

(1) Л + 5^ ^ kl 

holds for all 1 ^ fe ^ m and 1 ^ / ^ n. If this is not the case for some /c and /, 
let q and s be the smallest and let г and t the largest indices such that a^+i = â r, = a^ 
and b^+i = bi ^ bt {q,s ^ 0). Now Aj, + Bi < /c/. We claim that at least one of 
Aj, + B^ < ks and ^fe + B^ < kt must hold. For, otherwise (/ -- s) bi < k[l — s) 
and [t — l)bi> k{t — I), which is impossible. Hence, suppose that 

(i) Л + B^ < ks, 
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Now, by hypothesis, 
(ii) Aq -h B^^ qs, and 

(iii) A, + B^'^ rs 
(observe that if r = m, then Л,„ + Д, = mn and 0 S bj й '^ together imply (iii)). 
Then (i) and (ii) give {k — q) a^ < (k - q) s, while (i) and (iii) give (r — k) aj, > 
> (r — k) s. These again lead to a contradiction. The case Aj, + B^ < kt can similarly 
be treated. This completes the proof. 

We now mention some known results about irreducible components. A com
ponent is called dominating if it has no incoming arcs. While an ordinary tournament 
has precisely one dominating component, the situation in the bipartite case is slightly 
different. It is described in the following result [2], and is a direct consequence of 
Moon's Theorem 2.2. 

Theorem 2.5. Let A = [a^, a2, ..., ^,„] and В = [й^, ^ 2 , . . . , й„] be score lists 
(in nondecreasing order) of a reducible m x n bipartite tournament. 

(i) If a^n = n or b„ = m, then there is a corresponding trivial dominating 
component (consisting of one vertex which dominates all the vertices in the other 
partite set); 

(ii) otherwise, if к and I are the largest indices with к < m and I < n such that 
к I 

J^a, + Y.bj = kl, 

then the nontrivial dominating component consists of all the vertices in the two 
partite sets with scores exceeding a^ and bi, respectively. 

3. SOME SPECIAL SCORE LISTS 

In this section we prove two results which will be used later. These concern the 
existence of bipartite tournaments and their properties under special conditions. 
The first involves pairs of lists in which one list is constant or near-constant. 

Theorem 3.1. Let A = [a j , a2,..., Ö,„] and В = [bj , b2 , . . . , b j be a realizable 
.pair of score lists, with 0 < a,- < n and 0 < bj < m. If \ai — а^| ^ 1 for any 
i, к = 1, 2 , . . . , m, then any bipartite tournament with score lists A and В is ir
reducible. 

Proof. Suppose that Tis a reducible bipartite tournament on partite sets X and 7, 
with score lists A and B, respectively. Since 0 < ai < n and 0 < fo^ < m, Г has at 
least two nontrivial components, say С and C, with С being the dominating com
ponent. If XiE С n X and Х},е C' n X, then Xi dominates all the vertices (in Y) 
dominated by x^. Also, there exist yj e С n Y and yiE C^ n Y such that X; -^ yj -^ 
-^ Xj, and Xi -^ y I -^ Xi^. Thus â  = score (x^) ^ score (x^) + 2 = a^ + 2. This 
contradicts the hypothesis, and hence the theorem is proved. 
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Theorem 3.2. Let A = [a^, «2 , . . . , a^] (in nondecreasing order) and В = [Ь"] 
be lists such that [A, B) is realizable. Suppose that a^, ai are two entries in A with 
üj, > 0 and ai < n. Define a new list A' = [a i , a'l^.-., a'^ as follows: 

^k = ^k - '^ 

a'l = ai + I 

a'l = ai for i + k,l. 

Then {A\ B) is realizable. 

Proof. This follows at once from Theorem 2.4. 
There are other results like the one in the above theorem. We state one more, 

although we shall not need it. 

Theorem 3.3. Suppose [A, B) is irreducible {that is, (A, B) is realizable and all 
its realizations are irreducible). If A' is obtained from A by adding 1 to some 
entry and B' is obtained from В by subtracting 1 from some entry, then {A', B') 
is realizable. 

4. SOME LEMMAS 

We are now ready to obtain necessary conditions on A and В so that {A, B) is 
uniquely realizable. As observed earlier, it is enough to consider the irreducible case. 

We find it convenient to introduce some notation. If {A, B) is reahzable, we shall 
let T denote a realization on partite sets X and У If Z^ and Y^ are nonempty subsets 
0Ï X and y, respectively, then T(Xi, Y^ is the subtournament of Tinduced by the 
vertex sets X^ and Y^. 

Lemma 4.1. Suppose {A, B) is uniquely realizable. For any entry â  in A and bj 
in B, letXi and Yj be the subsets ofX and Y consisting of vertices of scores â  and bj, 
respectively. Then any cycle in T contains the same number of arcs from Xi to Yj 
as from Yj to X^. 

Proof. If this were not the case for some cycle Z, then reversal of the arcs of Z 
would produce an {A, B) realization nonisomorphic to T. 

Lemma 4.2. Suppose that [A, B) is irreducible and uniquely realizable. Then A 
or В is constant. 

Proof. If neither A nor В is constant, let X^ be the set of vertices of minimum 
score in X and let Xi — X — X^, and similarly define Y^ and У2. Since Tis irreducible, 
every arc is contained in a cycle. Hence, by Lemma 4.1, none of the four subtourna-
ments TyXi, У,) {i,j = 1, 2) is unanimous (that is, has all its arcs directed from one 
partite set to the other). 

Choose a vertex x^ in X^ of minimum score in T[Xi, Y^. Then x^ must dominate 
some ^2 ^ ^2- We consider two cases depending on whether or not у2 dominates 
some vertex in X2-
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Case (i). Every vertex in X2 dominates y2- Let WÜ be an arc from Y^ to Z2. Since 
score (уа) > score (м) in T, there exists an xeXi such that У2-^ x -^ u. (See 
Figure 2). 

Figure 2 

But then л: -^ u -> ü -^ 3/2 -> X is a cycle which violates Lemma 4.L 

Case (ii). Some vertex X2 e X2 is dominated by у2-
By our choice of x^, there exists a Ji e 7̂  such that j ^ -> x^. If X2 -^ Ji , we again 

get a 4-cycle which has one arc from Y^ to X^, but no arcs in the other direction. So, 
assume Ух -> Хз- (See Figure 3). Since score (^2) > score (3;̂ ) in T, there exists an 
XEX with ĵ 2 -^ ^ -^ Ji- If ^ ^-^2? we again get a forbidden cycle Xj -> J2 ~̂  ^ "^ 
^ У1-^ Xi- Hence x еХ^. Likewise, there exists a у e Yi with X2 -> j -^ x. But 
then Xi -> >'2 "̂  ^2 "̂  3̂  "^ ^ "^ JVi "•* ̂ 1 is a 6-cycle which violates Lemma 4.L 

Since all the possibiUties have been exhausted, the lemma follows. 

Figure 3 

We noted in Section 1 that a reaHzable pair [A, B) is uniquely realizable if one of 
the lists is constantly 1. We now assume, for the remainder of this section, that none 
of the hsts A, B, Ä and В is constantly L 

Lemma 4.3. With the above assumptions on A and B, if [A, B) is irreducible and 
uniquely realizable, then A or В is nonconstant. 
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Proof. Suppose, on the contrary, that A = [a"'] and В = [fe"], with 1 < a < n — 1 
and 1 < b < m — 1. We may also assume, without loss of generahty, that 
b ^ im. 

Consider the largest г for which there is a unanimous r x a subtournament of an 
(У4, В) realization Г, with all its arcs directed from X to Y. It is easy to see that 
l ^ r ^ b ^ m — r. We claim that r = m — b. First suppose that r = b. Then 
imSb^m~r = m — b^^m imphes that r = m — b. Next, suppose that 
r < b. Now ([a '"" ' ] , [Ь^ (b - r)"-"]) is realizable. Hence, by Moon's Theorem 2.2, 
we get 
(i) (m — r) of + (и — a) (b — r) ^ (m — r) {n — a) . 

Furthermore, if the Usts [ Ö ' " " ' ' " ^ ] and [b^, {b — r — l)"""*] form a realizable pair, 
we can get an (Л, B) realization with an (r + 1) x a unanimous subtournament. 
This contradicts the unique reahzability of (Л, B). Hence, we have 

(ii) (m — r — 1) a + (« — a) (b — r — 1) < (m ~ r — 1) (и — a ) . 

We note that the following also holds: 

(iii) ma Л- nb = mn . 

From (i), (ii), and (iii), it follows readily that r = m — b. Hence, our claim is proven. 
We thus have the situation as shown in Figure 4, where U is our unanimous 

r X a = [m — b) X a subtournament. 

/77-6 b 

n - о 
Figure 4 

Choose an arc Xiy^ in U and another arc Х2У2 in Г — U. Then we have a 4-cycle 
x^~^y^-^X2-^y2-^Xi. On reversing the arcs of this 4rcycle, we get a realization 
T' of (У4, В) in which U is no longer unanimous. Also, neither x^ nor X2 can lie on 
an (m — b) X a unanimous subtournament of T'. Hence V has a different number 
of such subtournament s than T, and is consequently nonisomorphic to Г, a contra
diction. This completes the proof. 

We may now assume that we have a pair (Л, B) which is uniquely reahzable and 
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irreducible; and moreover, without loss of generality, A = [̂ '̂ J» 1 < a < n —I, 
and Б = [bj g Ьз ^ . . . ^ b, < b,+ i й . . . й К], where 1 ^ г < п. 

Lemma 4.4. Ж/Й Л fln<i В as above, the list В has precisely two distinct values. 

Proof. Suppose that В =- [b\ c\ d^ . . . , J j with b < с < d^ й •-- й d^, and 
r, s, f > 0. Let Yi, У2 and 7з be the subsets of Y consisting of those vertices with 
scores in the sublists [Ь**], [c^] and [J^, ..., d^, respectively. 

We first show that in the subtournament T{X, Y^) of Г, the scores of the vertices 
in X take on precisely two distinct consecutive values. Since {A, B) is uniquely 
reahzable, the canonical realization of T(Z, F^) (as described in Section 2) shows 
that the scores, in T{X, F^), of the vertices in X assume at most two distinct con
secutive values. Suppose that the score lists of Г(Х, F^) are [a'"] and [b*"]. Since Tis 
irreducible, we clearly have 0 < a < a. Choose y^ e Fi, x^eX and y2eY — Y^ 
such that y^ -^ x^ -> у2- Since score (^2) > score {y^ in T, there exists an X2 e X 
with У2 -^ ^2~^ yv On reversing the arcs of the 4-cycle x^ -^ У2 ~^ ̂ 2 ~^ У1 -^^*i, 
we get a realization of (Л, B) which is not isomorphic to T, 

We have thus proved that the score lists of Г(Х, F^) are [a'', (a + 1)^] and [b^'\ 
for some p, ^ > 0, p -{- q = m. Now let ß = a — a. Then the score lists of 
T{X, Y- Y,) =^ T{X,Y2^ F3) are [(ß - 1У, ß^] and [c^ d^,..., J j . Since T is 
unique, so is TyX, Y - Fj). Hence, by Lemma 4.2, Г(Х, F - F j is reducible. But 
one of its score lists is near-constant. Hence, Theorem 3.1 appHes, and it follows 
that one of the following must hold: 

j 5 _ l = 0 , c = 0 , ß = s + t, df == p + q = m , 

Clearly, с = 0 and d^ = m are impossible. Suppose that ß = 1. Then the score 
hsts of T(X, Fj u F2) are [(a - If', a^'] and [b', c'], where p^ + ^^ = m. More
over, a consideration of the score lists of T(X, F^) gives a ф r + s and ^1 > 0. 
Hence, the score lists of T(X, Y^ u F2) are irreducible and uniquely realizable. An 
application of Lemma 4.2 shows that we must have p^ = 0. But then the score lists 
of T(X, Fl u F2) are [a'"] and [b**, c''], a contradiction to the irreducibility of Г. 

Finally, if ß = s + t, then every vertex of X must dominate all or all but one of 
the vertices in Y2 u F3. From the canonical construction for (A, B), it follows that 
fl ^ и — 1, again a contradiction. 

This completes the proof of the lemma. 
Let us now recapitulate the results proved thus far. If (A, B) is an irreducible, 

uniquely realizable pair, then we have proved that one of the following must hold: 
(i) one of Л, B, Ä or В is constantly 1; 

(ii) (without loss of generality) A = [a'"], 2 ^ a й n - 2, and В = [b', c'], 
with 1 ^ Ь < с ^ m - 1, r, 5 > 0 and r -\- s = n. 

Lemma 4.5. Suppose that {A, B) is irreducible, uniquely realizable, and (ii) 
above holds. Then r — \ or s = \. 
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Proof. Suppose, to the contrary, that r ^ 2 and s ^ 2 . If Y^ is the subset of Y 
consisting of those vertices with score b, then as in the proof of Lemma 4.4, the score 
Hsts of r ( Z , 7i) are [a^ (a + 1)^] and [b'], while those of T{X,Y~ Y,) are 
Kß - If, ßP] and [c'], with p, q > 0, and a + ß = a. Since {A, B) is irreducible 
and В is nonconstant, we get 3 ^ m = p + q. Thus, p ^ 2 or ^ ^ 2. 

We first consider the case when 0 < a < г — 1 and 1 < ß < s.lf p ^ 2, then the 
score Hsts of T(X, Y^) and T(X, Y2) imply the reaUzabihty of the pairs of Hsts 
([a - 1, (xP~\ (a + 1)^+^], Ib'-J) and ([(ß - If-', ß^-\ ß + 1], \c% respectively, 
by Theorem 3.2. If T^ and T2 are realizations of these two pairs on partite sets Z , Y^ 
and X, F2, respectively, then T^ u Г2 is another realization of {A, Б), nonisomorphic 
to T, a contradiction. If, on the other hand, q ^ 2, then the hst pairs 
( [a^+\ (a + iy-\ a + 2], [¥']) and ([̂ 5 -2,{ß - If'^ ß'"-'], [с']) again lead to 
a contradiction. 

We are now left to consider the case when one o f a = 0, a = ?̂ — I,j5 = l and 
ß = s holds. Suppose a = 0. Then the score hsts of T(X, Yj) are [0^, 1̂ ] and [b'], 
while those of T(Z, 72) are [{a — 1)^, a^] and [c^]. Hence, q -\- rb = rm, and since 
г > 1 and m > fe, ^ > 1. It follows, again from Theorem 3.2, that the Ust pairs 
|̂-QP+i -1̂ -̂2 2], [5'-]j and ([a - 2 , a - l ) ^ - ^ a^+^], И ) are realizable. This 

contradicts the unique realizabiUty of {A, Б), as before. For the other possibihties, 
namely oc = r — 1, ß = 1 or ß = s, an analogous modification of the original pairs 
of hsts can be made. This completes the proof. 

5. THE MAIN THEOREM 

We start by summarizing the results proved in Section 4. It has been shown that 
if (Л, B) is irreducible and uniquely reahzable, then one of the Hsts (or its dual) 
consists entirely of I's or one of the Hsts is constant and the other has exactly two 
distinct values, one of which appears precisely once. We are now ready to state and 
prove our main theorem, which gives necessary and sufficient conditions for unique 
reaHzabihty in the irreducible case. 

Theorem 5.1. An irreducible pair [A, B) of score lists is uniquely realizable if 
and only if one of the following holds: 

(I) {without loss of generality ) A = [I'"] and В is arbitrary; 
(I) the dual of {I), that is, Л = [(n - 1)""] and В is arbitrary; 

(II) [without loss of generality) A = [ Г * " \ a ] and В = [b"]; 
(II) the dual of (U); 

(III) {without loss of generality) A = [1, a'""^] and В = [2"]; 
(III) the dual of {III). 

Proof. The sufficiency of (I) has already been noted in Section 1, where Figure 1 
shows the unique reaHzation. Now suppose T is a reaHzation of A = [ l '"" ,̂ a] and 
В = [6"], on partite sets X = (xj , X2,..., x^} and Y = {y^, У2. • • -, У«}, respectively. 
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If (say) x^ has score a and it dominates (say) j ^ , у2,..., Уа, then T — x^ has score 
Hsts A^ = [l'"-^] and Bi = [{b - l)"-^ b^]. Hence, by (I), {A^, B^) is uniquely 
realizable. The unique realizability of (A, B) follows. This proves the sufficiency 
of (II). The proof for (III) is similar, and the dual cases follow by a remark made in 
Section 1. 

We now prove the necessity by induction on the total number m + n of entries 
in A and B. Since {A, B) is irreducible, we have m, n ^ 2. If (say) m = 2, then 
В = [1'*], and the theorem follows. Now assume that the result holds for all ir
reducible and uniquely reaUzable pairs of score lists with combined length less than 
m + n, and consider such a pair (A, B) with \A\ = m and |Б | = n (m, n ^ 3). 

Suppose that A and В are not of the type (I) or (I). Then, by the remarks at the 
beginning of this section, we have, without loss of generality, A = [a""] and В = 
= [b"~S c], with 1 < а < и - 1 , l ^ b , c ^ m - 1 and Ь Ф с 

If у is the vertex of score с in a realization Г of (A, Б), then T — у has score hsts 
A^ = [{a - 1)"*"^ a^] and B^ = [b"""^]. Now the the unique reaUzability of (A, B) 
implies that of (Л^, B^). Also, by Theorem 3.1, (A^, B^) is irreducible. Hence, by the 
induction hypothesis, A^ and B^ must belong to one of the six given types. We 
consider these cases one by one. 

(i) If Б1 = [ r~^ ] , then В = lV-\ c], so that A and В are of type (II). 
(ii) If Б1 = [(m - 1)'*"^], then A, В belong to (П). 
(iii) If Б1 = [b"""^] and A^ = [I '^'S a], then с = 1 and a = 2, so that A = [2 "̂] 

and В = [1, b"~ ^]. This is of type (III). 
(iv) If Б1 = [fo"-^] and A^ = [d, {n - 2)^"^], we get A and В to be of type (III). 
(v) If Б1 = [2"~^] and Ai = [1, a'""^], then Ь = 2, a = 2 and с = m ~ 1. 

Hence A = [2 "̂] and В = [2"" S m - l ] . Using Moon's Theorem, We get 
2m + 2(w -- 1) + (m — 1) = mn ; 

or 
2n - 3 

m = . 
n — 3 

It follows that n = 6 and m = 3. But then A and В are both constant, a contradic
tion. Thus, this case is not possible. 

(vi) The impossibihty of B^ = [(m - 2)""^ and A^ = [^'""S n - 2] follows 
by duality. 

This exhausts all the possibiUties, and hence, by induction, the theorem is complete
ly proved. 

The results proved above can now be summed up as follows: An irreducible pair 
of score Usts is uniquely realizable if and only if that pair or the dual pair is one of 
the following types (not mutually exclusive): 

(1) one hst is constantly 1 (and the other is arbitrary); 
(2) one hst is constantly 1 except for exactly one entry, and the other is constant; 
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(3) one list is constantly 2 and the other list is constant except for exactly one entry 
which is 1. 

Now suppose that {A, B) is a realizable pair and ß^, Ô2,..., 6p are the irreducible 
components of a reahzation T of (A, B). Also suppose that g^ has score lists Aj, 
and Bk, 1 й к й P- Then it is a simple observation that {A, B) is uniquely realizable 
if and only if (Aj,, Bj) is uniquely realizable for all fc. Hence Theorems 2.4 and 5.1 
together solve the uniqueness problem for the class of all bipartite tournaments. 
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