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C Z E C H O S L O V A K M A T H E M A T I C A L J O U R N A L 

MathematicalInstitute ofthe Czechoslovak Academy ofSciences 

V. 38 (113), PRAHA 31. 3. 1988, No. 1 

IDENTITIES AND DELETING MAPS ON QUASIGROUPS 

JÁN DUPLÁK, PreŠOV 

(Received March 22, 1985) 

V. D. Belousov in [2] and M. A. Taylor in [6] have proved a theorem that is 
a generalization of a theorem of Belousov (see Theorem 2.1.1 in [3]). In this paper 
we give a generalization of these results and its applications. 

1. PRELIMINARIES 

An algebra (Q,fu.. .,/„) = (Q, F) is called an algebra of quasigroups if (o>/i) ÌS a 

quasigroup for all i e {1, 2 , . . . , n}. An algebra (Q,fuf2>f3) i s called a primitive 
quasigroup if there exists a permutation (ijk) of the set {1,2,3} such that (Q,fj) and 
(S>/jk) a r e respectively the left and the right division groupoids of a quasigroup(Q,/,); 
if/i is denoted by •, then we put f$ = / , fk = \ , thus (Ô, * ? / , \ ) means a primitive 
quasigroup. An algebra(g,F) is called an algebra ofprimitive quasigroups iffor each 
feF there exist g, h e F such that (Q, / , #, й) is a primitive quasigroup. For every 
quasigroup (Q,f) there exists a primitive quasigroup (Q,f,g,ti) and for every 
algebra ofquasigroups (Q, F) there exists an algebra of primitive quasigroups (Q, G) 
with F c G. 

Let (0,^4) be a quasigroup; we define 4[x,j>] = z iff ^ _ 1 [ x , z ] == y iff 
" ^ [ z , j>] = x iff " 1 ^ ' 1 ) [y, z] = x iff ( " M ) " 1 [z, x] = j ; iff A*[y, x] = z. The 
set {A9~

1A,A~1
9~

1(A~1)9(~
1À)~i

9A*} =IA is called the system of division 
operations of A. An algebra (Q, F) is said to be an algebra of parastrophic quasi
groups if If c F for e a c h / e F . For every algebra of quasigroups (g , F) there exists 
exactly one algebra of parastrophic quasigroups (Q,ZF), where IF = ^{lf;feF]. 

Throughout the paper, for a quasigroup (g , •) we put Lax = a . x, Kax = x . a, 
Гах = x \ a , L~lx = a\x, R~lx = x/a, T~lx — a/x, 

To = {L,R,T,L-KR-KT'1}. 

If а quasigroup operation is denoted by another symbol, say о, then we put a 0 x = 
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= Üax, x о а = R°ax, ..., T°0 = {L°, R°, . . . } . If (ß , F) is an algebra of quasigroups 
we denote T0

F = U{^o°; о є F}. 
A word on algebra ( ß , / i , / 2 , •••>/«) is a formal expression consisting ofvariables, 

brackets and operations fu . . . , /„ . The length /(w) of a word w is the number of 
occurences of variables in w. In the following, the set of all variables that occur in 
a word w will be denoted by V(w). 

Let x , y , . . . , z , xl9...,xn9... be variables and let ах,...9ап9... be elements of 
a set ß . A retraction map with invariant variables x, y, ..., z (or a retraction map, 
if there is no danger of confusion) is a map w н^ wl5 where F(w) cz {x, y, ..., z, 
x l 9 . . . , xn9...} and WjL is a formal expression obtained from a word w on an algebra 
(ß , F) by replacing each variable xt in w by ai? for all xt e V(w); ifa set ofinvariant 
variables of a retraction map is empty then the image of a word w is an element of ß . 

An identity on an algebra (ß , F) is a pair (w, w') ofwords on (ß , F) that is written 
w =2= w'. We say that an identity w = w' is valid on (g , F) (or (Q, F) satisfies w =a= w') 
and write w = w' iffor every retraction map ^ with no invariant variables gw = ^w', 
i.e. £W, ^w' are equal elements in Q. Words w, w' on (ß , F) are said to be equivalent 
i f (g , F) saitsfies the identiy w =̂= w'. A word WjL is said to be a subword of an identity 
w =2= w' ifwx is a subword ofw or w'. Identities w = w', Wi = wi are called equivalent 
ifthevalidityofoneofthemimpliesthevalidityofthe other. Let g be a retraction map 
and let w, w' be words on an algebra (Q, F). We say that gw9 Qw' are equivalent and 
write gw =2= £w' or Qw = gw' if for each retraction map cr with no invariant variables 
aw = Gw'. 

An identity w =̂= w' on an algebra (g , F) is called balanced if each variable occurs 
exactly twice in w ~ w', once on each side. The length /(w =̂= w') of an identity 
w =£ь w' is the sum ofthe lengths ofw and w'. 

Let w, Wi be non-empty words on an algebra of quasigroups (g , F), and let wt 

be a subword of w. We define Z(w, wx) as the set of non-negative integers as follows: 
(i) Z(w9 w) = {0} for any word w, 

(ii) n e Z(w, wt) for w Ф wi iff there exists a word w2 of length n + 1 such that 
either Wj . w2 or w2 . Wi is a subword of w. 

L e t / b e an n-ary operation on a set Q and let a l sa2,.--9ccn+1be permutations of ß . 
Thenthe n-aryoperationa,,+ !/(a!X!,. . . ,a^^)iscalledanisotopeof/; the isotope will 
be denoted b y / ( a b , " ' a n + l ) . An algebra (Q>F) is called an isotope of an algebra 
(Q, F') if e v e r y / e F is an isotope of some / ' є F' and conversely. It is known that 
every isotope of a quasigroup is a quasigroup. An isotope of a group is called a transi
tive quasigroup. 

A property P ofaquasigroup (ß , •) is said to be universal ifevery isotope of(Q, •) 
has propertyP. It is known that the transitivity of quasigroups is a universal property 
of quasigroups. 

Let (g , F) be an algebra of quasigroups, W the set of all words on the algebra 
(<2, F) and let (W, F) be the algebra of words on (ß , F). Let x, y, ..., z be variables. 
A map ô: W~^ W, w ь^ ôw, where ôw is the word that we get from w by deleting all 
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variables except x, y, ..., z, all superfluous operations and all superfluous brackets 
(inthisorder)is said to be a deleting map with invariant variables x, y,..., z (briefly 
a deleting map). Obviously, each deleting map is an endomorphism. 

Let (W, F), (W', F') be the algebras of words on algebras of quasigroups. A map 
co: W^> W', w ь^ a>w, where cow is the word that we get from w if each operation 
symbol in w is replaced by an operation symbol in F' (equal operation symbols in w 
are not necessarily replaced by the samesymbol)iscalled a change operation map; 
if each operation in F' is an isotope of an operation in F, we say that co is a change 
isotopy operation map. 

Let w =2= w' be an identity on an algebra of quasigroups (g , F) and let P be 
a property of a quasigroup (Q, •), where the operation (•) occurs in w — w'; we say 
that P is an invariant (isotopy invariant) of w =̂= w' if for every change operation 
(resp. change isotopy operation) map o> there exists an operation о occuring in 
cow — ojw' such that (Q, o) has the property P. 

1.1. Lemma. Let w^=w' be a balanced identity of length ^ 6 on an algebra 
of quasigroups (Q, F). Then w =̂= w' is equivalent to at least one of thefollowing 
identities 
( l) X . (y D z) = X o (y V z) 

(II) X . (y D z) = (x o y) V Z 
дшеи on the algebra (Q, 2F). 

Proof. Let V(w) = V(w') = {x, y, z). First, let Z(w, x) = Z(w', x) = 1; then 
w = x . (y • z) and w' = x o (y v z) for convenient operations •, n, °, v in IF 
(if, for example, w = (z в y) ® x we put (•) to be the dual of ®, n the dual of • ) . 
Now, let Z(w, x) = Z(w', z) = 1 i.e. there exists no t є V(w) such that Z(w, t) = 
= Z(vv', ř) = 1; then obviously w = x . (^ a z), w' = (x o y) v z for convenient 
operations in ZF. This completes the proof. 

Identity (II) is called the general associative law (see [3, p. 76]). 

1.2. Lemma. A balanced identityw =̂= w' of length fg6 on an algebraofquasU 
groups (<2, F) is equivalent to the general associative law iff there exists 
t e V{w =2= w') swcu tfcai Z(w, ř) + Z(w', t) = 1. 

Proof. Evident. 

1.3. Theorem (about four quasigroups, see [1], [3]). An algebra ofquasigroups 
(o> '> °> n> v ) ^ ř satisfies the identity (II) is an algebra of transitive quasi
groups all isotopie to the same group. 

Proof. From (II) it follows that 

b o y = a o xoLbtf = LJ%oL'% = L^)'1 , 
d o y = c o xoL^L^ = LcL^oUc

xLd = L ^ ) " 1 , 
therefore 

b o y — a o x and c o x = J 0 y <=> FTa
xhb = L~ * L d . 
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The simultaneous equations b о y = a 0 x, с о x = J o y have a solution for arbitrary 
three elements of the set {a, b, c, d}, so according to Theorem 2.1 in [5], (6> •) is 
a transitive quasigroup. For the rest of the proof see [3, p. 77]. 

1.4. Corollary. The transitivity of a quasigroup is an invariant of the general 
associative law. 

2. GENERALIZATIONS OF A THEOREM OF BELOUSOV 

2.1. Lemma. Let w be a non-empty word on an algebra of quasigroups (Q, F), 
let ô be a deleting and g a retraction map, both with invariant variables x, y, . . . z. 
Then there exists a change isotopy operation map co such that gw = coöw. 

Proof. We shall proceed by induction on the length of w. Let l(w) = 1; if ôw is 
empty then gw = a є Q and we put coôw = a (an isotope of a O-ary operation is 
a O-ary operation); if ôw is non-empty, say w = .x, then ôw = x and we put co = 1. 
Further, assume that the theorem is valid for all words of length <n and let 
1 < l(w) = n. Then w = wt . w2, where l(wt) < n, l(w2) < n, therefore there exists 
a change isotopy operation map co such that gwt = co5w1 and gw2 = coôw2. Let 
ôwu ôw2 be non-empty words; since g(w1 . w2) — gwt . Qw2 we define co(ôw1 . 5w2) = 
= œôw1 . œôw2 (i.e. the operation (•) is not changed). Since <5 is an endomorphism, 
qw = gwt . QW2 = coôwx . o)ôw2 = o>(aW]L . ôw2) = coc(wi . w2) = cočw. Now sup
pose that ôwt is empty and ôw2 is non-empty word. Then there exists a permutation a 
of Q such that @w = agw2. Since Z(w2) < n, there exists a change isotopy operation 
map co such that gw2 = œt)w2, where V(coôw2) c {x, y, ..., z} (therefore ffG*5w2 = 
= œôw2 for every retraction map a with invariant variables x, y,..., z). If arôw2 = 
= w3 o w4 for some non-empty words w3, w4 then we put a(w3 о w4) = w3 V w4, 
thus £W = a#w2 = acoôw2 = a(w3 o w4) = w3 v w4 and that is the above case. 
If ôw2 = x, then by the induction hypothesis gw2 = co'čw2 = ßx, where co' is 
a change isotopy operation map and ß is a permutation of g; now we put co(s) = aßs, 
where £ is the identity map on Q. We have gw = ocgw2 = aßx = aßsx = co(ex) = 
= a*Sw2 = cočw. 

2.2. Theorem. Leř ön algebra of quasigroups (g , i7) satisfy an identity w =̂= w' 
and let ô be a deleting map. Let a universal property P ofa quasigroup be an isotopy 
invariant ofôw =^= ôw'. Then there exists (•) in F such that (Q, •) has the property P. 

Proof. Let g be а retraction map with the same invariant variables as ô. By Lemma 
2.1, there exists a change isotopy operation map co such that gw = coôw and gw' = 
= coow'. Since w = w', gw = gw' and hence co8w = coôw'. Therefore by the as
sumption of the theorem there exists an operation o in œôw =£= coôw' such that (Q, 0) 
has the universal property P. Because any operation occuring in ôw =s= ôw' is an 
isotope of an operation in coÔw =̂= coow' and any operation occuring in ôw === čw' 
is in F, there exists (•) in F that is an isotope of o. Since P is a universal property, 
(Q, •) has the property P. 
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2.3. Corollary. Let an algebra of quasigroups (Q9 F) satisfy an identity w =̂= w' 
and let ô be a deleting map. If Sw =̂= <5w' is equivalent to the general associative 
law on (ß , IF) then there exists o in F such that ( g , o) is a transitive quasigroup. 

Proof. Follows from the statement that the transitivity of a quasigroup is a uni
versal property, from Corollary 1.4 and Theorem 2.2. 

The identities w =̂= w' that satisfy the conditions of Corollary 2.3 include, for 
example, the general medial law (see [3, p. 76]). 

2.4. Theorem (of Belousov). Let w =̂= w' be a balanced identity on a quasigroup 
( ß , •), let x . y be a subword ofw' and let neither x . y nor y . x be a subword ofw. 
Then (<2, •) is a transitive quasigroup. 

Proof. Since x . y, y . x are not subwords of w, there exist at least three variables, 
say x, y, z, in w. Let ô be the deleting map with invariant variables x, y, z. Then 
obviously Z(ow, z) = 0 and Z(ow', z) = 1 so that Z(ow, z) + Z(ow', z) = 1. Evident
ly Sw =£= 6w' is a balanced identity, therefore by Lemma 1.2, the identity is equivalent 
to the general associative law. 

3. SOME CLASSES OF TRANSITIVE QUASIGROUPS 

3.1. Theorem. Let w = w' be an identity on an algebra of quasigroups (Q, F) 
such that 

(1) V(w — w') = {x, y, z) and each variable occurs exactly twice in w = w', 
(2) w =̂= w' is not of type x o Wi = x or wi o x — x, 
(3) if a word w1 of length 2 is a subword of w =a= w' then V(w^ consists of two 

distinct variables, 
(4) if a word wt of length 3 is a subword of w =̂= w' then V(wt) = {x, y, z}, 
(5) for each t є {x, y, z}, {Z(w, t), Z(w\ t)) n {{1, 2}, {2, 3}} = 0, 
(6) ifwords wu w2 of length 2 occur in w =s= w' as subwords then F(wx) ф V(w2). 

Then 
(i) for every change operation map co the identity cow — cow' satisfies all con

ditions (l)-(6), 
(ii) there exists a balanced identity of length 6 on (Q, ZF) equivalent to the general 

associative law, 
(iii) there exists a group (Q, o) such that (Q, •) is an isotope of ( ß , o) for every 

operation (•) in w =̂= w'. 

Proof, (i) is easy, (ii) Without loss of generalityassume l(w) S 3. Obviously 
there exists a variable, say x, that occurs exactly once on each side of w =̂= w'. 
Therefore, there exist A, Б, C, D є TF and subwords r, 5, t, v of w with variables y, z 
such that if w == w' is rewritten with translations of (Q, F) we get 

(a) ArBsx = x or (b) v4rBsCřx = x or (с) Л Д С ^ х = x 
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(Arx = x contradicts (2)). In the case (a), we have l(r) = /(5) = 2, hence r = y . z, 
s = y 0 z, but this contradicts (6). If (b) holds then {r, 5, i} = {y, z, j ; . z}; first we 
put r = y, s = z, ř = y . z then Cy.zx = B'^A^x is equivalent to (ii). If r = 3; . z, 
5 = z, t = y then 5zCyx = ^jT.z* is equivalent to (ii). Finally, if r = y, s = y . z, 
í = z then put y . z = u i.e. y = w/z so that BuCzx = Л ^ х is equivalent to (ii). 
(iii) follows from Theorem 1.3. 

3.2. Corollary. A balanced identity w^=w' of length ^ 6 on an algebra of 
quasigroups satisfies all conditions ( l ) - (6 ) of Theorem 3.1 iff there exists te 
e V(w =*= w') such that Z(w, t) + Z(w', t) = 1. 

Proof. Easy. 
The identities that satisfy the conditions ( l ) - (6 ) of Theorem 3.1 and that 

are not balanced include, for example, the following identities (see [3, p. 59]): 
yx . xz = yz, yx . zx = yz, xz . xy = yz, x . z(yx) = yz, x(yz . yx) = z, (y G x) . 
. (z 0 x) = у л z, (x D y) . (_y 0 z) = x v z. 

3.3. Theorem. Leř w — w' be an identity on an algebra of quasigroups (g , F) 
such that the conditions (1), (2) and (3) of Theorem 3.1 uoZá. Then there exists 
a balanced identity on (ß , IF) equivalent to w =̂= w'. 

Proof, (i) Let а word Wi of length 3 be а subword of w and let V(wi) = {x, j;}, 
i.e. (4) of Theorem 3.1 be not valid. Then wx = x 0 (x a y) for some convenient 
operations 0, D in F. If w1 is expressed from w =a= w' then we get Wi — w2, where 
w2 = z . (z v 3;) for some •, v e IF. Further Wi — w2 is rewritten with tranlations, 
soL°xL^y = LzL4

zy whence L^Lly = L^(L^)-^ is equivalent to (I). (ii) Let 
Z(w, x) є {{1, 2}, {2, 3}} i.e. (5) ofTheorem 3.1 is not valid. lfZ(w, x) = {1, 2} then 
w =z= w' is equivalent to x . (x 0 (y 0 z)) = y v z and x 0 (y a z) = x \ (у л z). 

IfZ(w, x) = {2, 3} then w — w' is equivalent to x . (x 0 (y • (y v z))) = z whence 
%(w> y) = {0, Í], that is (i). (iii) Let x 0 y, x 0 y be subwords of w =̂= w'. Then 
w =fis w' is equivalent to (z v (x 0 y)) . (x n y) = z as well as z v (x 0 3;) = z|(x u y). 
Finally, let ( i)-( i i i ) be not valid. Then the statements ( l ) - ( 6 ) ofTheorem 3.1 hold 
and therefore we can use the theorem. 

3.4. Theorem. Let W=^ W' be an identity on an algebra of quasigroups ( ß , F) 
and let there exist variables x, y, z є V(W^= W') such that if ö is the deleting map 
with invariant variables x, y, z and ôW = w, ÔW' = w' then w == w' is an identity 
which satisfies conditions ( l ) - ( 6 ) of Theorem 3.1. Then there exists a group (Q, 0) 
such thatfor every operation (•) in w = w' ( ß , •) is an isotope of(Q, 0). 

Proof. Follows from Corollary 2.3 and Theorem 3.1. 

3.5. Theorem. Let w be a word on an algebra of quasigroups ( ß , F), V(w) = 
= {x, y], A, B e TF and let 5 be the deleting map with invariant variables x, y9 z. 

If w= W' is an identity on (Q,F) such that oW^=5W' is at least one of the 
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identities 
(7) Az(Bzx . y) =*= w 

(8) Л2(х . Bzy) ^ w 

then there exists a group(Q, +)such thatfor everyoperation(*)in oW=z=SW',(Q,') 
is an isotope of(Q, + ) . 

Proof. Let us denote w = x o y9 z v x = Bzx, ^4~1ř = z a t for all x, y, t. Then 
from (7) we have 
(i) (z v x ) . y =s= z a (x o y) . 

Since (o) = ( .y 5 * ' 1 ' ^ , (Q5 0) is a quasigroup. Thus (i) is the general associative law. 
The rest of the proof is similar. 

Among identities of type (7) belongs the identity z(xz . y) = x . xy (see [4]). 
From theorem 3.5 directly follows that a quasigroup which satisfies this identity 
is a transitive quasigroup. 
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