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1. INTRODUCTION

In this paper we present some results concerning the extension to a residual subset
of a continuous function defined on a dense subset of a topological space. It is
well-known that if the range space is completely metrizable, any such function has
a continuous extension to a G, subspace of the domain.

We will consider the non-metrizable case. Zden&k Frolik showed in [1] that if
the range space is a m-space for m = N, the extension problem has a solution.

We give a generalization of this result. For example, if the range space is a Cech-
complete space with a G; diagonal the extension problem has a solution also. There
exists a Cech-complete space with a G; diagonal which is not a m-space for m = N,
([3D- .

Further Zden&k Frolik proved in [1] the following theorem: Let Y be a m-space.
Let A be a dense subset of a space X. Let f be a continuous mapping from A4 to Y.
Then there exist a G(m)-subset S of X containing 4 and a continuous mapping F
from S to Ysuch that f is a restriction of F.

We give a generalization of this result for m*-spaces and also an extension theorem
for upper semicontinuous set-valued mappings.

The terminology and notation of J. Kelley will be used throughout. Moreover we
shall use following notions and notations. A system is a synonym for indexed family.
If m is a cardinal number, then an m-system is a system whose index set is of car-
dinal m. A family % of sets has the finite intersection property if the intersection of
every finite subfamily is not empty. A centered family is a family of sets having the
finite intersection property.

The closure of a subset M of aspace X will be denoted by cIM. If % is a family of
subsets of X then the family of closures of all sets of % will be denoted by %. An
open (closed) family of a space X is a family consisting of open (closed) subsets of X.
Analoguous conventions will be used for systems.

The intersection of a family % of sets will be denoted by "%, the union by U%.

If Yis a set, 2¥ denotes the collection of subsets of Y and F: X — 2" a set-valued
mapping from X to Y.
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In what follows X and Y are topological spaces. All (topological) spaces will be
supposed to be Hausdorff.

A set-valued mapping F: X — 2% is upper semicontinuous at x € X if for every
open set Vin Y such that F(x) < V there exists an open set U in X such that xe U
and F(z) < Vfor every z e U.

F: X — 2¥ is lower semicontinuous at x € X if for every open set ¥ in Y such that
F(x) N V % 0 there exists an open set U in X such that x e U and F(z) n V = 0 for
every ze U.

F is upper semicontinuous (lower semicontinuous) if F is upper semicontinuous
(lower semicontinuous) at every x € X.

Let A4 be a subset of X and F: 4 — 2" be a mapping (set-valued or single-valued).
A set-valued mapping F*: 4 — 27 is an extension of F if F*(x) = F(x) for every x
in A.

N denotes the natural numbers.

2. AN EXTENSION THEOREM FOR UPPER SEMICONTINUOUS
SET-VALUED MAPPINGS

Definition 1. (See [1]) A subset G of a space X is said to be a G(m)-subset of X,
if it is the intersection of some open m-system in X.

Definition 2. (See [1]) A system {4,: i €I} of open coverings of a space X is said
to be complete if the following condition is satisfied: If % is an open centered family
in X such that % n #; + 0 for each i € I then N% =+ 0.

We shall need this proposition

Proposition 1. (See [1]) Let {#;: i €1} be a complete system of open coverings of
a regular space X. Suppose that M is a centered family of subsets of X such that
for each iinl there exists a M € M and a finite subfamily U; of #; which covers M.
Then NA + 0.

Remark 1. It follows from Theorem 2.8 in [1] that if Yis a Cech-complete space
then Y possesses a complete countable system of open coverings of Y.

Theorem 1. Let X, Y be topological spaces, A be a dense subset of X, Y regular.
Suppose that Y possesses a complete m-system of open coverings. Let F: A — 2Y
be an upper semicontinuous compact-valued mapping. There exist a G{m)-subset S
of X containing A and an upper semicontinuous compact-valued extension F*
of F defined on S.

Proof. Let {#;: iel} be a complete m-system of open coverings of the space Y.
For cach iin I denote by .#; the family of all open subsets W of X such that there
exists a finite subfamily 7", = %; with property cl F(Wn A) = UV,. For each i in I
denote by A; the union of the family .#;. Consider the space S = N{4;:iel}.
It is obvious that S is a G{m)-subsct of X. We show 4 = S. Let xe 4 and iel.
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Consider the family ¥; of all open sets Vin Y such that V = V < U for some U € %,.
Since F(x) is compact, there exists a finite subfamily #; = ¢, such that F(x) = U#;.
Then there exists a finite subfamily #’; < #; suchthat Y#; = Us#;. The upper
semicontinuity of F at x implies there exists an open neighbourhood G of x such that
F(Gn A) = UA#;. Then ¢l F(G n A) = U}, that means x € 4,.

We shall now construct the set-valued mapping F*. Let x € S and let @(x) denote
an open neighbourhood base at the point x.

First we show that N{cl F(H n A): H € (x)} # 0. The system {cl F(H n A):
H € %(x)} is centered and satisfies the conditions of Proposition 1. By this proposi-
tion N{cl F(H n A): H € #(x)} + 0. Denote this intersection by F*(x).

For every x e A we have F*(x) = F(x). The inclusion F(x) = F*(x) is obvious.
Suppose there exists y € F *(x) N F(x). Regularity of Y implies there exist open sets
G,, G, such that F(x) < Gy, ye G, and G, n G, = 0. Let G; be an open subset
of Gy such that F(x) = G| = clGj = G,. The upper semicontinuity of F at x implies
there exists H € %(x) such that F(H n A) = G}. Then ¢l F(H n A) = G,. That is
a contradiction since y € cl F(H n A) but y ¢ G,.

F*(x) is compact for every x € S. Let xe S\ A. Let " be a centered family of
subsets of F*(x) such that for every Fe " F is a closed set in F*(x). Since F*(x)
is closed in Y, A" is centered family of closed sets in Y, which satisfies the conditi-
ons of Proposition 1. Then " = 0. That means F*(x) is compact.

F* is upper semicontinuous. Let x € A. Let U be an open s¢t in Y such that F*(x) c
< U. F*(x) = F(x) is a compact set and so there exists an open set G in Y such that
F(x) = G = clG = U. The upper semicontinuity of F at x implies there exists an
open neighbourhood W of x such that F(Wn A) = G. Let ze W (S\ A). Since W
is an open neighbourhood of z F¥(z) = cl F((Wn A4) and cl F(Wn A4) = clG < U.
Upper semicontinuity of F at x € 4 is proved.

Now let xe S\ A. Let U be an open set in Y such that F*(x) < U. There exists
Ve #(x) such that ¢l F(Vn A) = U. Suppose contrary. Then (cl F(H n A)) 0
A (Y\NU) % 0 for every He %(x). The system {(cl(H n 4)) n (Y\U): H € #(x)}
is centered and satisfies the conditions of Proposition 1. By this proposition
N{(cl F(H n 4)) n (Y\U): H e #(x)} + 0. That is a contradiction since
N{(cl F(H n 4)) n (Y\U): H e #(x)} = F*(x) = U.

Corollary 1. Let X, Y be topological spaces, A be a dense subset of X. Let Y be
a Cech-complete space. Let F: A — 2¥ be an upper semicontinuous compact-
valued mapping. There exist a G5 subset S of X containing A and an upper semi-
continuous compact-valued extension F* of F defined on S.

Proof. By Remark 1 Y possesses a complete m-system of open coverings for
m = ¥,. .
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3. AN EXTENSION THEOREM FOR CONTINUOUS FUNCTIONS

Definition 3. (See [1]) A space Y is said to be a m-space if there exists a complete
m-system {%’i: iel} of open coverings of Y such that for each y in Y the family
{St(y, #;): iel} is a local base at y. (If % is a family of subsets, then St(y, %) =
=U{d:Aeu, ye A4}

Definition 4. A space Y is said to be a m*-space if there exists a complete m-system
{B;: i eI} of open coverings of Y such that for each y e YN{St(y, %,): iel} = {y}.

Remark 2. It is obvious that a m-space is a m*-space. (Let Y be a m-space.
Let y € Y. We show that N{St(y, %;): i eI} = {y}. Suppose there exist v % y such
that ve N{St(y, #;): i e1}. There exist open sets U;, U, in Y such that ve Uy,
yeU, and U; n U, = 0. There exists i €I such that St(y, %;) = U,. That means
v ¢ St(y, #;) and thus v ¢ N{St(y, B,): iel}.)

Remark 3. If Y is a Cech-complete space with a G, diagonal or Y is a Cech-
complete Moore space [2] then Y is a m*-space for m = N,. It is obvious that for
m = X, Yis a m*-space if and only if Y possesses a complete countable system of
open coverings and Y has a G, diagonal. (By result of Ceder [4]Y has a G; diagonal
if and only if Y has a sequence of open covers {#;} such that for every yeY

NSt(y, %) = {»}.)

Theorem 2. Let X, Y be topological spaces, A be a dense subset of X. Let Y be
a regular m*-space. Let f be a continuous mapping from A to Y. Then there exist
a G(m)-subset S of X containing A and a continuous mapping F from S to Y such
that f is a restriction of F.

Proof. Let {#;:iel} be a complete m-system of open coverings of Y such that
for each y in Y N{St(y, %,): ieI} = {y}. For each i in I denote by .#; the family
of all open subsets W of X such that there exists a set U; € %; with property
clf(Wm A) < U,. For each i in I denote by 4; the union of the family .#;. Consider
the space S = {4;:iel}. It is obvious that S is a G(m)-subset of X. We show
A< S. Let xe A and iel. There exists a set U; € %; such that f(x)e U,. Since Y
is regular there exists an open set V; in Y such that f(x) eV,cclV, c U,

The continuity of f at x implies therc exists an open neighbourhood G of x such
that f(Gn A) = V;. Then clf(Gn A) = U,, that means x€ A;. Now we shall
construct the set-valued mapping F: S — 2¥ analogical as in the proof of Theorem 1.
Also F(x) = N{(cl f(Vn A)): Ve #(x)}, where %(x) denotes an open neighbourhood
base at the point x.

Then F is upper semicontinuous and F(x) = {f(x)} for every x € A. (The proof
of this fact is analogical as in the proof of Theorem 1.) F is single-valued at every
x e S. Let xe S\ A. Suppose there exist z, v such that z % v, zeF(x), veF(x).
Then for every i in I there exists U; € %, such that ¢l f(4 n G) < U, forsome G € %(x),
that means ze U;, ve U,. But {z} = N{St(z, #;): iel} o N{U;: iel}>v and that
is a contradiction.
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Since F:X — 2Y is single-valued and upper semicontinuous, F is continuous
function.

Corollary 2. (See [1]) Let Y be a m-space. Let A be a dense subset of a space X.
Let f be a continuous mapping from A to Y. Then there exist a G(m)-subset S of X

containing A and a continuous mapping F from S to Y such that f is a restriction
of F.

Corollary 3. (See [2]) Let Y be a Cech-complete Moore space and let f: A — Y
be a continuous mapping, with A dense in X. Then there exist a G subset S of X

containing A and a continuous mapping F from S to Y such that f is a restriction
of F.

Corollary 4. Let Y be a Cech-complete space with a Gy diagonal and let f: A > Y
be a continuous mapping, with A dense in X. Then there exist a Gz subset S of X
containing A and a continuous mapping F from S to Y such that f is a restriction
of F. '

Suppose A is dense subset of X and a function f: A — Y is continuous. If there
exists a set-valued mapping F: X — 2¥ such that F is an extension of f (that means
F(x) = {f(x)} for every x in A) and F is lower semicontinuous, then F is single-
valued.

Let x € X \ A. Suppose there exist y, v such that y & v and y e F(x), ve F(x).
There exist open sets U, U, in Ysuch that ye U, ve U, and U; n U, = 0. Lower
semicontinuity of F at x implies there exist open sets V;, ¥, in X such that x € V,
xeV, and F(z) n U, + 0 for every ze V; and F(z) n U, % 0 for every ze V,.
Put V=V,nV, A is dense in X, that means Vn A4 £ 0. Let te Vn A. Then
f(t)e Uy, f(t) e U, and that is a contradiction.

Under some conditions, every upper semicontinuous set-valued mapping is lower
semicontinuous at points of a residual set. For example: Let F: X — 2% be an upper
semicontinuous set-valued mapping with compact values. Then

[7] Fort: If Yis a metrizable space, F is lower semicontinuous at points of a residual
set.

[5] Miskin: If Yis a o-space, F is lower semicontinuous at points of a residual set.
[8] Kenderov: If there exists a metrizable topology ¢ on Y such that ¢ is weaker

than 7, where 7 is an origin topology on Y, then F is t-lower semicontinuous at
points of a residual set.

Theorem 3. Let X and Y be topological spaces (Y regular). Let Y be such that
each upper semicontinuous set-valued mapping defined on any topological space Z
with compact values in Y is lower semicontinuous at points of a residual subset of Z.
And suppose Y possesses a complete countable system of open coverings. Let
f: A — Y be a continuous mapping with A dense in X. Then f has a continuous
extension to a residual subset of X containing A.
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Proof. Let {¢;: i e N} be a complete sequence of open coverings of Y. For each
i € N denote by .#; the family of all open subsets W of X such that there exists
a set G; € ¢, with property cl f(Wn A) = G,. For each i € N denote by A, the union
of the family .#;. Consider the space S = N{A4;: i€ N}. Then S is a G; subset of X
and A = S. We construct the set-valued mapping F: S — 2¥ analogical as in the
proof of Theorem 1. F is upper semicontinuous with compact values and F(x) =
= {f(x)} for every x € 4.

By assumption F: S — 2¥ is lower semicontinuous at points of a residual subset
L < S. Then 4 < L, since F(x) = {f(x)} for x € A. By above argument F is single-
valued at every x € L, that means F is continuous function from Lto Y.

Lis residual set in X. (XN L= (X\S)U (S\L)and X\ S is the set of the first
category in X, S\ Lis the set of the first category in S. Then S\ L = U{E,: ne N},
where E, is nowhere dense in S for every n e N. Suppose there exists n e N such
that E, is not nowhere dense in X. There exists a non-empty open set Vin X such that
V < clE, (clE, is the closure of E, in X). Then ¥ n S # @ and that is a contra-
diction.)
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