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A STRONG CONVERGENCE IN I AND UPPER
g-CONTINUOUS OPERATORS

ALEXANDER HASCAK, Bratislava

(Received February 26, 1986)

In [1] S. Banach and S. Saks proved a theorem which can be formulated as follows
(see also Banach-Saks’ Theorem in [5]):

Theorem 1. Let w-lim x, = x,, (i.e., {x,} weakly converges to x,) in a space I?

n—++ o
(pe(l, +)). Then there exists a subsequence {x,} of the sequence {x,} such
that

1
E(xm + Xpy + oo+ Xp)

converges to X, in the norm of L.

In the same paper S. Banach and S. Saks gave an example which shows that
Theorem 1 cannot be extended to L!.

The aim of this note is to present a sufficient condition under which the hypothesis
of Banach-Saks’ Theorem in fulfilled in the case p = 1. This is used to generalize
Theorem 7 of [2] which is useful for example in the theory of differential inclusions.

Now we shall introduce the notation which will be needed in the note.

Let E" be the space of Euclidean n-vectors. Let us denote by cf(E") the set of all
nonempty closed convex subsets of E". If A = E" then |A| = sup {|a|: a € 4}. C(I)
denotes the space of all continuous functions mapping the interval I < E into
E". By B(I) we shall denote the Banach space of all continuous and bounded real
functions on I with the maximum norm, and 28® will stand for the family of all
nonempty subsets of B(I).

Definition 1. The sequence f, e B(I) quasi-converges (g-converges) to f e B(I)
iff lim f,(t) = f(t) for every t € I. This will be denoted by f; —*.
k= +

Definition 2. The operator T: B(I) » 25" is upper g-continuous iff the assumptions
fio'fs fufeBU), yeT(f)

imply that there exists a subsequence of the sequence {y;} convergent to some y & T(f)
(in the norm).

Corollary 1. If T is an upper g-continuous operator, then T is upper semicompact.
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Definition 3. Let X and Y be normed linear spaces. A mapping F: X — 2¥ is
weakly upper g-continuous at a point x € X iff the assumptions

X X€X, X -ix, y.eF(x)

imply that there is a subsequence of the sequence {y,} which weakly converges to
some y € F(x).

Now we shall formulate and prove a theorem which is an extension of Banach-
Saks’ Theorem in some subset of L!.

Theorem 2. Let w-lim x, = x,, in L1(<a +0)), and let there exist a function

n—++ o
g € I({a, + o)) such that
|x/1)] < 9(t) ae. on <a,+0), n=12,....

Then there exists a subsequence {x,,} of the sequence {x,} such that
1
E(x"‘ + Xy + oo+ xp,)

converges to x,, in the norm of I'({a, + )).
Proof. Let us define the sequence {y,}, y, € *(<a, + o)) by

2 ) _
yn(t)—\/(Hg(t)), teda,+0) and n=12, ...

[yalz = 'rw—ﬁ(i d éJjw o) gty dt < ¢ =J+wg(t) de,

« 1490 1+ g(t) .

there is a subsequence { yl,,} of the sequence { y,,} which weakly converges to some
¥o € I*(<a, +)). We shall show that

Since

Xe(1)
yolt) = =L
T+ g()
Since the set I (<a, + o)) of bounded functions of I*(<a, + o)) is strongly dense
in I*(<a, + o)), it suffices to show that

(1) J’+°° V1a(t) 2(2) dt ——’J:w\/(%j-(t;(t—)) z(t)dt as n— +oo

for each z € L3(<a, + o0)).

We have that {x,} weakly converges to X, z(t) is bounded, i.e., z(t)[/(1 + g(t))
is bounded, thus

+mx z(t) - +‘wx ——Lt)—~* as n- +o
L ‘"()J(1+ (t)) J 0\)\/(1+9(t))d’ i

i.e., (1) holds.
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Further, by Banach-Saks’ Theorem there is a subsequence {y,,} of the sequence
{y1a} such that

1
Wk=;(Y21 + Vot o+ Y)Yy as k- 4o

in the norm of I2.

Now, by Riesz’ Theorem, there is a subsequence {wy,} of the sequence {w,} such
that
wit) > yo(t) ae. on <a, +o) as k- 4o,

- 1 x40 (1) X20,(1) Xaal) \
p («/(1 vo@) Y +aw) U+ g(t)))
g M on a o0 as —> o0 .
A+ ) (@ +oo) as kot
Thus

1
;(xzﬁ(t) + X35,(f) + ... + X,,(1)) > Xo(t) ae. on <a, +o0) as k- 4o,
ie.,

l;—c (%20,(1) + X205(1) + ... + X20,(1)) — x0(t)] =0 ae. on {a,+) as k— +o0.

By virtue of

i(xla,(t) - xao(1) + o+ x20(1) = xolt)| £ 29(f) € X(<a, +o0))

and the Lebesgue Dominated Theorem, this yields

J+w !xzal(t) o Xaw(t) xo(t)

p dt—>0 as k— +o0.

The proof of Theorem 2 is complete.

a

The following lemma will be needed in the proof of Theorem 3.

Lemma 1 (Lemma 4, A. Ha3¢ék [3]). Let J = <0, + ) and let the mapping
F:J x E" — cf(E") satisfy the following conditions:
(co) F(t,x)is a non-empty, compact and convex subset of E" for each(t,x)e J x E",
(c1) for every fixed t € J the function F(t, x) is upper semicontinuous,
(cy) for each measurable function x: J — E", there exists a measurable function
fyx:J = E" such that
fAt) e F(t, x(t)) ae. on J.

Further, suppose that there exists g: J x J — J such that
i) g(t, u) is monotone nondecreasing in u for each fixed te J,
ii) Jo® g% (s, c)ds < + o for any constant ¢ > O and p’' = 1,
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iii) for each x e E",
|F(t, x)| < g(t,|x]) ae. on J.

Given a function x € C'(J), denote by M(x) the set of all measurable functions
y:J = E" such that
y(t) e F(t. x(t)) a.e. on J.

Then the correspondence x — M(x) defines a bounded weakly upper gq-con-
tinuous mapping of
By(J) = {xeC(J):|x(t)| <S¢}, >0
into
of(I(J), I =1 x..xI.

Theorem 3. Let the hypotheses of Lemma | be satisfied and let D be a Banach
space. Suppose that T: L‘:,'(J) — D is a compact linear operator.

Then the operator TM defined by
TM x={zeD:z =Ty and ye M x}
maps By into cf(D) and is upper g-continuous.

Proof. For p’ > 1, Theorem 3 is proved in [2]. Thus we have to prove this theorem
only for p’ = 1. The proof in this case proceeds analogously as in the case p’ > 1,
but instead of Banach-Saks’ Theorem we use Theorem 2.

First we shall prove that the operator TM is upper g-continuous. Let x, -7 x,
X,, X € By and z,e TM x,. We have to show that there is a subsequence of the se-
quence {z,} that converges (in the norm of D) to some ze TM x. Let z; = Ty,
y: € M x;. Since M is weakly upper g-continuous, there is a subsequence {y;} of the
sequence {y;} which weakly converges to some ye M x. Since {y;;} is bounded
and T is a compact linear operator there is a subsequence {y,;} of the sequence
{y1:} such that Ty,; > zeD as i - +oo. We shall show that z = Tye TM x.
Because {y,;} weakly converges to y we have that also {y,;} weakly converges to y.
By Theorem 2 there is a subsequence {y;;} of the sequence {y,;} such that

Yagr + Va2 + ...+ Y3
i

-y

as i —» 4 oo, in the norm of L% (J).
Since T is compact and linear (hence T is continuous),

@) T(J’sl + Va2 + o+ Vs
i

>—>Ty as i— 4.

On the other hand, since T y;; — z € D and T is linear we have

(3) z = lim Ty;; = lim Tys + TJ’32'+ co+ Tys

i+ i»+ow 1
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- lim T(.V:n + Y32+ ..o+ .V3i>'

i=+ o i

By (2) and (3) we get that z = T'y € TM x. Thus the operator is upper g-continuous.

From the upper g-continuity of the operator TM x we conclude that TM x is
closed. Further, Mx is a convex set and T is a linear operator. Thus TM x is also
a convex set.

Remark 1. In Theorem 3, Tis a compact linear operator. M. Svec has constructed
an example which shows that Theorem 3 is not valid if T'is merely a linear operator.

Remark 2. In [4] S. Mazur has proved a theorem which deals with the strong
convergence in normed linear spaces (see also [6], Theorem V.1.2).Banach-Saks’
Theorem as well as Theorem 2 of this note are stronger variants of Mazur’s Theorem.

References

[1]1 S. Banach, S. Saks: Sur la convergence forte dans les champs L?. Studia Math., 2 (1930),
51—57.

[2] A. Ha$édk: Fixed Point Theorems for Multivalued Mappings. Czech. Math. J., 35 (110)
1985, 533—542.

[3] A. Hascdk: Integral Equivalence of Multivalued Differential Systems II. Colloquia Math.
Soc. J. Bolyai 47, Differential Equations: Qualitative Theory, Szeged (Hungary), 1984.

[4] S. Mazur: Uber konvexe Mengen in linear normierten Riumen. Studia Math., 5 (1933),
70— 84.

[5] F. Riesz, B. Sz.-Nagy: Legons d’analyse fonctionnelle, Budapest 1972.

[6] K. Yosida: Functional Analysis, Springer-Verlag, Berlin— Heidelberg— New York, 1966.

Author’s address: 842 15 Bratislava, Mlynska dolina, Czechoslovakia (Katedra matematickej
analyzy Matematicko-fyzikélnej fakulty UK).

. 424



		webmaster@dml.cz
	2020-07-03T06:19:17+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




