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ON REPRESENTATION OF CYCLICALLY ORDERED SETS 

VÍTĚzsLAV NovÁK and MiROSLAV NovoTNÝ, Brno 

(Received February 13, 1987) 

In [5] we have constructed, for any cardinal m, an m-universal cyclically ordered 
set. The m-universality is meant there in the following sense: For any cyclically 
ordered set G with cardinality ^ m there exists a subset G' of the universal set con
structed such that G is a strong homomorphic image of G'. Here we present a con
struction of a set with an asymmetric and cyclic ternary relation such that any 
cyclically ordered set of cardinality % m is isomorphic with its suitable subset. 

1. POWER OF TERNARY STRUCTURES 

Let G be a set and C a ternary relation on G. The pair G = (G, C) will be called 
a ternary structure. Sometimes we denote by %>(G) the carrier of this structure, 
i.e.'#(G) = G, and by at(G) the relation ofthis structure, i.e. 0t{G) = C. 

A ternary structure G = (G, C) is called 
reflexive, iff x, y, z e G, card {x, y, z] ^ 2 => (x, y, z) e C; 
irreflexive, iff x, y, z e G, card {x, y, z} ^ 2 => (x, y, z) є C; 
symmetric, iff x, j , z e G, (x, j , z) є C => (z, y, x) є С; 
asymmetric, iff x, j , z є G, (x, y, z) є C => (z, y, x) є C; 
cyclic, iff x, y, z є G, (x, y, z) є C => ( j , z, x) є C; 
transitive, iff x, y, z, и є G, (x, y, z) є C, (x, z, w) є C => (x, y, w) є C. 

A cyclically ordered set is a ternary structure which is asymmetric, cyclic and 
transitive. A cycle is a cyclically ordered set G = (G, C) which is 
complete, i.e. x3 y, z є G, x ф у ф z Ф x => (x, y, z) є C or (z, y, x) e C. 

Let G = (G, C) be a ternary structure and H Я G. We call the subset H discrete, 
iff Я 3 n С = 0. An element x є G will be called isolated, iff {x, y, z] is a discrete 
subset of G for any y e G, z e G. 

A direct sum, direct product and a homomorphism of ternary structures are 
defined in the obvious way. By the symbol Hom (G, H) we denote the set of all 
homomorphisms of G into H. An isomorphism of G onto H is a bijective homo
morphism / of G onto H such t h a t / - 1 is a homomorphism of H onto G. An injective 
homomorphism / of G into # such that f~l is a homomorphism off(G) onto G1 

will be called an embedding. 
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1.1. Definition. Let G = (G, C), H = (H, D) be ternary structures. A power GH 

is a ternary structure (K, E) where K = Hom (Я, G) and for / , g, h є K we have 
(/, g, h) e E iff (/(x), g(x), h(x)) e C for any x e Я . 

1.2. Lemma. Let G, H be ternary structures. Let p be any of the properties: 
reflexivity, irreflexivity, symmetry, asymmetry, cyclicity, transitivity. If the 
structure G has a property p, then the structure GH has the property p. 

P r o o f is straightforward. 

1.3. Corollary. Let G be a cyclically ordered set and H a ternary structure. 
Then GH is a cyclically ordered set. 

For further purposes we now define a new operation of a powerof ternary struc
tures G, H. Its carrier is the same as for GH; its relation is, however, an extension 
of 9t(G*). 

1.4. Definition. Let G = (G, C), H = ( # , D) be ternary structures. A strong 
power HG is a ternary structure (K, E) where K = Hom (H, G), and for / , g, h є K 
we have (/, g, h) e E iff 
(1) there exists x e H such that {f(x), g{x), h{x)] is a nondiscrete subset of G; 
(2) for any x є H with the property (l) we have (f(x), g(x), h^x)) e C. 

1.5. Lemma. Let G = (G, C), H = (Я, D) be ternary structures. Let p be any of 
the properties: reflexivity, irreflexivity, symmetry, asymmetry, cyclicity. If the 
structure G has a property p, then the structure HG has the property p. 

Proo f is easy in all cases. Let us show, for instance, that cyclicity of G implies 
cyclicity of HG. Thus, let HG = (K, É) and / , g, h e K, (f, g, h) e E. Then there 
exists x є H such that {f(x), g(x), h(x)} is nondiscrete in G and (f(x), g(x), h(x)) e C 
for any such x. Then (g(x), h(x),f(x)) e C which shows (g, h,f) eE. 

1.6. Corollary. Let G be a cyclically ordered set and H a ternary structure. 
Then the ternary structure HG is asymmetric and cyclic. 

2. EMBEDDING OF A CYCLICALLY ORDERED SET INTO 
A STRONG POWER 

Let us denote by the symbol 3 a 3-element cycle, i.e. 3 = ({0, 1,2}, {(0, 1,2), 
( l , 2, 0), (2, 0,1)}). Further, let 3 + 1 be the direct sum of a 3-element cycle and 
a one-element set {co}, i.e. 3 + 1 - ({0, 1, 2, œ}, {(0, 1, 2), (1, 2, 0), (2, 0, 1)}). 

If M is any (abstract) set, then M will be considered as a discrete ternary structure, 
i.e. M = (M, 0). 

2.1. Theorem. Let G = (G, C) be a cyclically ordered set. Then there exists 

a set M and an isomorphic embedding of G into M(3 + 1). 

Proof. First note that by 1.5, M(3 + 1) is an asymmetric and cyclic ternary 
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structure. The carrier of this structure consists of all mappings / : M ~> 3 + 1. 
Denote E = M(M(3> + 1)). 

Let Gx be the set of all nonisolated elements in G, G2 the set of all isolated elements 
in G. Then Gx u G2 = G, Gt n G2 = 0. Choose any linear ordering < on the 
set Gx and call a triple (x, y, z) є C notable, ifx < y, x < z. Note that if(x, y, z) є C, 
then exactly one of the triples (x, y, z), (y, z, x), (z, x, y) is notable. Let Mx be the 
set of all notable triples in C and put M = M1 u G2. Finally, for any x є G let us 
define a mapping/^: M ^ 3 + 1 in the following manner: 
(1) Let x є Gx and m є M. If m є M l 5 m = (x0, x l 5 x2), we put 

j0 , if x = x0 

[ш, if x ф x0, x Ф x l 5 x Ф x2 . 

If m є G2, we put fx(m) = œ. 
(2) Let x є G2. Then we put 

fx(x) = 0 ? Л ( т ) = & for any m є M — {x} . 
Clearly, fx є ^ ( м (3 + 1)) for any x є G. We show that the mapping x ^fx is in-
jective. Let x, y e G, x Ф y. If x є G l5 у є G2, then there exists m є M l 5 such that 
x є m; then/,(m) є {0, 1, 2},/y(m) = ш and thus/,, Ф / r Ifx, у є G2, then/Дх) = 0, 
fy(x) = œ and /ж ф fy. Suppose finally that x, у є Gx and choose any m є Af\ with 
x є m. Ify є га, t h e n / Д т ) є {0, 1, 2},fy(m) = co, thus/^ Ф / y . Ifj; e m = (x0, x l 5 x 2 ) , 
then x == xh y = Xj where i,j є {0, 1, 2}, і Ф ; . By definition of the mapping fx 

we then have fx(m) Ф fy(m) so that / x Ф fy. 
Further we show that the mapping x ^ fx is a homomorphism of G1 into M(3 + 1). 

Let x, y9 z e G, (x, y, z) є C. Then x, y, z є Gx and there exists m є Mx such that m 
is a cyclic permutation of (x, y, z), say, m = (_y, z, x). Then fy(m) = 0, /z(m) = 1, 
fx(m) = 2 and the subset {Л(^ ) , / у ( т ) , / 2 ( т )} is nondiscrete in 3 + 1. If meM 
is any element suchthat {fx(m),fy(m),fz(m)) is a nondiscrete subset of 3 + 1, then 
necessarily meMi and x , y , z e r a ; otherwise some of the elements/x(ra),/y(ra), 
fz(m) would be co. As (x, y, z) є C, m is a cyclic permutation of (x, y, z); say, 
m = (z, x, y). Then / , (m) = 1, / ,(m) = 2, / ,(m) = 0 and (A-(m),/,(m),/z(m))e 
є ^ ( 3 + 1 ) . Т п ш ( Л , / у , Л ) є £ . 

Finally we show that the inverse mapping / x h^ x is a homomorphism from 
M(3 + 1) onto G?. Let x, y, z e G, (fx,fy,fz) e E. Then there exists m є M such that 
{fx{m)Jy{rn)JJjn)} is a nondiscrete subset of 3 + 1, i.e. (fx{m)Jy(m)Jz(m))e 
e {(0,1, 2), (1, 2, 0), (2, 0,1)}. Suppose, for instance, that / , (m) = 1, / ,(m) = 2, 
/2(ra) = 0. This implies, by definition of the functions fx,fy,fz, that meMl and 
m = (z, x, y). Thus (z, x, y) e C, i.e. (x, y, z) є C and we have shown that (fx,fy,f2) є 

є E implies (x, y, z) e С. 

2.2. Let G = (G, C) be a cyclically ordered set. By 2.1 there exists a set M and 
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a subset G(M) of a strong power M(3 + 1) isomorphic with G. Let us call this set 
G(M) a representation of G in the set M and denote 

rep G = min {card M; there exists a representation of G in M} 

From the proof of 2.1 we immediately see 

2.3. Theorem. Leř G = (G, C) be a cyclically ordered set and let G2 be the set 
ofall isolated elements in G. Then 

rep G ^ ^ card C + card G2 . 

2.4. Let m > 0 be a cardinal. We call a ternary structure H m-universal for 
cyclically ordered sets ifffor any cyclically ordered set G = (G, C) with card G g m 
there exists an isomorphic embedding of G into H. 

From 2.1 and its proof we obtain 

2.5. Theorem. Let m > 0 be a cardinal and n = (™) + m. Then a ternary 
structure of type "(3 + 1) is m-universalfor cyclically ordered sets; this structure 
is asymmetric and cyclic. 

3. CHARACTERIZATION OF NUMBER REP G 

In the preceding section we have proved that any cyclically ordered set can be 
embedded into a strong power with base 3 4- 1 and discrete exponent. Here we show 
that to any cyclically ordered setG4t is possible to assign a certain ternary structure — 
we call it a dominant of G — with the properties: 

(1) knowing a dominant of G we know also G, 
(2) dominant of G can be embedded into a power ofstructures in the usual sense. 

3.1. Definition. Let G = (G, C) b e a cyclically ordered set, let G' = (G, D) be 
a ternary structure with #(G') = %(G). We call G' a dominant of G iff for any 
elements x, y, z є G the following equivalence holds: 

(x, y, z) є C o (x, y, z) є D , (z, y, x) є D 

Let us denote by 3 © 1 the following ternary structure: 
<r(3 0 1 ) = {0, l ,2 ,co}, 
# ( 3 0 1) = {(0, 1,2), (1,2, 0), (2, 0, 1)} u {(x, y, z); x, y, z e { 0 , l , 2 , w} and either 

x = co or j ; = co or z = co or card {x, y, z} ^ 2}. 

3.2. Theorem. Let G = (G, C) be a cyclically ordered set, let G(M) = (Я, £) 
be ite representation in a set M. Then H = ( # , # 3 n J>((3 © l)M) is a dominant 
of this representation. 

Proof. Denote H3n@((3®l)M)=D. Let f,g,heH, (f,g,h)eE. Then 
there exists m0 є M such that {/(^o)> #(™o)> 4 m o ) } is a nondiscrete subset of 3 4- 1 
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and for any m e M with this property we have (/(m), g(m), h(m)) e щЗ + 4 
= {(0, 1, 2), (1, 2, 0), (2, 0, 1)}. Now, let m e M be any element. If either/(m) = co 
or #(ra) = ш or ft(m) = co or card {/(m), #(m), ft(m)} g 2, then ( / ( ^ ) , # ( m ) ' 4 m ) ) є 

є M(3 © 1). In all the other cases (f(m), g(m), h(m)) e {(0, 1,2), (1, 2, 0), (2, 0, 1)} s 
ç ^ ( 3 Є 1). Hence we have (/, #, ft) є ZX Suppose (ft, gJ) e D. Then (ft(m), flf(m), 

/ ( m ) ) e * ( 3 0 1 ) for any ш є М , in particular ( й Ц ) , ^ 0 ) , / Ц ) ) е * ( З Ѳ І ) 
and this is a contradiction. Thus, (f,g,h)eE implies ( / ,# , f t )eJ9 , (h,g,f)eD. 
On the other hand, letf,g,heH, (f,g,h)eD, (h,g,f)eD. Then (/(w),flf(m), 
ft(m)) є M(3 © 1) for any m є M. If / (m) = co or g(m) = co or ft(m) = co or 
ca rd{ / (m) ,# (m) , f t (m))g2 for any meM, then {h{m),g(m)J{m))eM{3@l) 
for any meM, i.e. (h,g,f)eD, a contradiction. Thus there exists m0eM with 
{/(mo),#(mo),ft(mo)} = {0 , l ,2} so that {/(mo),0(mo),fc(mo)} is a nondiscrete 
subset of 3 + 1; further, for any meM with this property we have (/(m),#(m), 
ft(m)) є {(0, 1, 2), (1, 2, 0), (2, 0, 1)} = Л(3 + 1). Thus (/, #, ft) є E. 

3.3. Theorem. Lei G = (G, C) fte a cyclically ordered set. Then rep G = 
= min {c є Card; structure of type (3 ф l ) c contains a subset isomorphic with 
a suitable dominant of Gj. 

Proof. Denote r e p G = r , min{ceCard ; structure of type ( 3 © l ) c contains 
a subset isomorphic with a suitable dominant of G} = s. By definition of the 
number r, there exists a representation ( # , E) of G in a set M with card M = r. 
By 3.2, (Я, Я 3 n &(3 © l)M) is a dominant of this representation, which is a sub
structure of the structure (3 © l ) M of type (3 © l) r . This dominant is isomorphic 
with a certain dominant of G and this implies s ^ r. Conversely, let M be a set with 
card M = s; by definition there exists a dominant (G, D) of the structure G and an 
embedding of (G, D) into (3 © l ) M . Suppose that this embedding assigns to an 
element x e G an element fx e <&((3 © l)M) . Put H = {fx; x e G}, £ - Я 3 n 
n J>(M(3 + 1)) and G(M) = (Я, E). We show that G(M) is a representation of G 
in the set M where the corresponding isomorphism is the mapping x ь+/ х . The 
definition implies that this mapping is a bijection of G onto Я . Let x, y, z e G, 
(x, y, z) є C. Then (x, y, z) є D, (z, y, x) є D. Hence (/x(m),/,(m),/z(m)) є # ( 3 © 1) 
for any meM but there exists m0eM with (/z(w0)5/y(w0),/x(m0)) ë ^ ( 3 ф 1). 
Thus neither/,(mo) = co nor / y (m 0 ) = co nor / z (m 0 ) = co nor card {/*(m0),/,(m0), 
/ r(m0)} á 2, i.e. {/x(m0), /y(m0) , /z(w0)} = {0, 1, 2} and for any m є M with this 
property we have, of course, ( / , (m) , / , (m) , / , (m))e{(0 , l ,2 ) , (1,2,0) , (2 ,0,1)}. 
This means ( / „ / „ / , ) є Щм(3 + 1)). Thus (x, y9 z) e C implies ( / x , / , , / z ) є £. 

Let x j , z e G , (fx,fyìfz)eE. Then there exists т 0 є М with {/x(m0),/y(m0), 
/z(mo)} — {0jl»2} and for any meM with this property we have (fx(m),fy(m), 
fz(m)) e {(0,1, 2), (1, 2, 0), (2, 0,1)}. Let m є M be any element. If either/,(w) = co 
or /y(m) = co or / z(w) - co or card {/,(m),/,(m),/,(m)} ^ 2, then (fx(m)Jy(m), 
fz(m)) e m(3 © 1). In all the other cases we have, by the above, also (/x(m),/y(m), 
/ , ( w ) ) e * ( 3 © 1). Thus ( Д , / , , / , ) є Л ( 3 © l)M) and, as a mapping х и / л is an 
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isomorphism of (G, D) into (3 © l ) M , we have (x, y, z) є D. Suppose (z, j , x) e D. 
Then ( / „ / „ / , ) є <*((3 ф l)M), i.e. (/ ,(m),/ ,(m),/ ,(m)) є Л(3 Ѳ 1) for any m є M. 
But this contradicts the fact that (fx(m0),fy(m0)9fz(m0)) e {(0, 1, 2), ( l ,2,0), (2,0,1)}. 
Thus (x, y, z) є D, (z, y, x) є D and, as (G, D) is a dominant of G, we have (x, y, z) є 
є C. We have proved that G(M) is a representation of G in the set M which implies 
r = rep G <̂  card M = s. Altogether we have r = 5. 
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