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Czechoslovak Mathematical Journal, 39 (114) 1989, Praha 

REPRESENTATION OF MULTILINEAR OPERATORS ON XC0(Ti) 

IvAN DoBRAKov, Bratislava 

(Received May 5, 1987) 

INTRODUCTION 

Let Th i — 1,..., d, be locally compact HausdorrT spaces, and let ХС0(Т() denote 
the Cartesian product С0(Гі) x ... x C0(Td), where С0(Г*), i = l , . . . ,d, is the 
Banach space of all scalar = K-valued continuous functions on Tt tending to zero 
at infinity with the sup norm. In this paper we prove the Riesz (also the Bartle-
Dunford-Schwartz) Representation Theorem type results for bounded d-linear 
operators U: XC$(Ti) ^> Y — a Banach space. 

In the papers [12], [13] and [14] we already started developing an extension of 
the Lebesgue type integration to integration with respect to set functions of several 
variables — polymeasures. The bounded d-linear operators are represented, via this 
integration, either by separately countably additive Y-valued Baire d-polymeasures, 
see Theorems 2, 9 and 11, or by weak*-separately countably additive Y= Z*, or 
F**-valued Baire d-polymeasures, see Theorems 4 and 5, respectively. 

The representation theorems are easily derived from a deep result of A. Pelczyňski 
from [32]. Not so easy was it to prove the Lebesgue bounded convergence result 
ofTheorem 3, and the double limit characterization ofY-valuedness ofthe represen
ting d-polymeasure given by Theorem 9. 

The special case d — 2 was investigated in the papers [25]-[29], [35], [36] and 
[22]. The case ofthe Banach spaces ofvector valued continuous functions C0(Th Xt) 
will be treated in [18]. We will freely use the notation from [12], [13] and [14], 
particularly the abbreviated notation. 

1. OPERATOR VALUED BAIRE AND BOREL POLYMEASURES 

Let T be a locally compact Hausdorff topological space. In accordance with our 
notation in [3], by &0 = <5(̂ 0) we denote the č-ring of all relatively compact Baire 
subsets of T. Similarly Ш = o(%) will denote the č-ring of all relatively compact 
Borel subsets if T. The symbols a(^0) and a($ß) stand for the ď-rings of Baire and 
Borel subsets of T, respectively. 

We denote by K(T) the linear space of all scalar valued continuous functions on T 
with compact support. Q will denote the set of all X valued continuous functions 
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on T which are of the form / = £ ÇjXj, where q>j є Х(Г) and Xj є Z , j = 1, ..., r. 
i = i 

According to Proposition 1 in § 19 in [2] Q is dense in C0(T, X). 
Let ra: $t0 ~> L(X, 7) be an operator valued Baire measure countably additive 

in the strong operator topology. By Theorem 1 in [3], m(E) = s u p { | J £ / d m | , 
fe Q, ||/||jE ^ 1} for each set £ e a ( l 0 ) . Nonetheless, the proof given there needs 
a correction, since it may happen that | | / | |E > 1 for the function/ in that proof. 
We have Ci c Et cz C/i5 i = 1 , . . . , r at the top of page 16 in [3]. Since C}, i = 
— 1 , . . . , r are pairwise disjoint compacts,there are pairwise disjoint open sets i 7 - e ^ 0 , 
i = 1, . . . , r such that Cf c r7- c: U- for each i. By virtue of Theorem B in § 51 in 
[20] there are functions (p[eK(T), 0 ^ q>\ ^ 1, i - 1 , . . . , r such that ^;(r) = 1 for 

Г 

í є Ch and ^;(r) = 0 for t є T - U\. Now / ' = £ <Pi*i e 6 is such that | | / ' | |£ g 1 
г i = l 

and | £ т (£;) x£| ^ IJc/7 dm| + e. This inequality implies that the proved equality 
i = l 

holds also if m(E) = + oo. 
Further let us note that if m': o{$o) ^> L,(X, 7) is countably additive in the strong 

operator topology and m = m': ú§0 -> L(X, 7), then fh'{E) = m(E) for each 
E є o"(^o) by Theorem 14 in [4]. It is easy to verify that the above mentioned facts 
remain valid if m: CM -^ L(X, Y) and m': o($) ^ L(X, 7) are additive Borel measures 
regular in the strong operator topology, hence also countably additive in this 
topology. 

Now let Tj, i = 1 , . . . , d be locally compact HausdorfT spaces with Baire (Borel) 
č-ring J*o,(J^), i = 1 , . . . , d. Let further Xu ..., Xd and 7be Banaçh spaces over the 
same scalar field. By Dd\Xt\ Y) = L(d\X1, . . . ,X d ; 7) we denote the Banach space 
of all bounded d-linear operators V:X1 x ... x Xd -^ Y. There is a natural iso
metric isomorphism between the spaces L(ťi)(Xž; 7) and L(Xt ®A ... ® A Xd, 7), 
where X1 ®A . . . ® A Xd is the completed projective tensor product, given by the 
equality V(xu ..., xd) = V(x1 ®A . . . ®A xd). We say that Ve L(d) (Xt; 7) is weakly 
compact, unconditionally converging, compact, etc., if V has the corresponding 
property, see [31]. 

Let Qh i = 1 , . . . , d be the analog of Q for Tt and Xh and let Г: X# 0 f i -• L(d)(Xž; 7) 
be an operator valued d-polymeasure separately countably additive in the strong 
operator topology, see [12]. From Theorem 8 in [5] and Theorem 2 in[l3] we 
immediately obtain that (fi)eIi(r) if (/ř) є Xg ř . We now prove a generalization 
of Theorem 1 from [3], and Theorem 6 from [6]. 

Theorem 1. Let Г: Xá? 0 i ^ L(d)(X;; 7) foe an operator valued Baire d-polymeasure 
separately countably additive in the strong operator topology. Then 

t(A,) = s u p { | J ^ C A ) d r | ; ( / , ) e X o , , | | / , |U á 1, і = l , . . . , d} 

/ o r each (Ai)e Xff(^o ř), and 

f [ ( i , ) , ( i l , ) ] = s u p { | f u , , ( / O d r | ; ( / ; )eXß, . , «nd | / , | g |ff í |, і = l , . . . , d } 
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for each é$0i-measurable дь: Тг ~+ Xt (or g{: Tt ~+ [0, + oo]), i = 1, . . . , J , and 
each (Ai)e Xcr(J*oj). By Theorem 4 in [13] the same equalities hold if X3$0i is 
replaced by Xcr(J*oi). These assertions remain valid if ї$0гі is replaced by @th 

i = l , . . . , d , and Г is separately additive and regular in the strong operator 
topology. 

Proof. Let (Ai)eXo(^Qj) and iet e > 0. By Definition 3 in [12] f (4 , ) -
= s u p { | J ^ ) ( ^ ) d r | ; ( ^ ) e X S ( ^ o , i ^ i ) , W A i ^ U = l , . . . , d ) , w h e r e 5 ( ^ o , n ^ ) 
denotes the linear space of all ^0 > rsimple Xf valued functions on Tf. Take (g^e 
є XS(@o,i,Xt) with ||flfj||^, g 1 for each i - 1 , . . . , d. 

For ЕхєЯол and л ^ є ^ put m^f i^Xj - \{EltÁ2 ^ ) ( * i - f t ^ 0 2 , - - - , 0 d ) d r . 
Then mf: J*0>1 ~> L(X l5 Y) is countably additive in the strong operator topology, and 
${Ai) (di) dT = \Al gx dmx. According to the proof of Theorem 1 in [3], see also the 
beginning of our proof above, there is an J\ є Qí with | / i | | ^ i s u c ^ that 

\ілі 9i d w i | = І Ь і / i d w i | + £ld- li i s e a s y t o v e r i f y í h a t bi/i dmi = 

= Jo4,)(/i>02,-"-.>0d)dr. 

F o r £ 2 e J > 0 5 2 a n d x 2 e I 2 p u t m 2 ( £ 2 ) x 2 = b , , M 3 , . . ^ ) ( / i ^ 2 - f e b - ^ d ) 
.dJT. Then there is again an / 2

Є 62 with ||/2|U2 á i such that | í^2o í2d m2J á 
= |J^2/2 dm2 | + e/d. Continuing in this way we obtain a d-tuple (/,-)e Xß ; such 
that | | / , j ^ g 1 for each і = 1, ..., d, and 

líwo (»і) dT| ^ |Jw.> (/i) d r | + г . 

From this inequality the equation with the semivariation f(Ai) is evident for both 
cases t(Ai) < +cQ and t(A^ = 00. Since ^ ) е Х а ( ^ 0 ) 1 . ) was arbitrary, the first 
assertion of the theorem is proved. The other assertions may be proved similarly. 
As we mentioned above, Theorem 1 from [3] is valid if &0 is replaced by J*, hence 
the last assertion of the theorem is evident. The theorem is proved. 

2. REPRESENTATION THEOREMS 

In accordance with [32] let Б(Й)(Г;), i = 1 , . . . , à denote the Banach space of all 
bounded scalar valued Baire measurable functions on Tt with the sup-norm. As this 
notation suggests, B(Q)(Ti) is the smallest class of bounded functions on Tx which 
contains K(Ti) and is closed with respect to the pointwise convergence of bounded 
sequences offunctions, see § 51 in [20] and Theorem 15 in [17]. In accordance with 
Definition on page 381 in [32] a s e q u e n c e / ^ e f ^ ( T f ) , n = 1,2,.. . , ie{l,...,d} 
fixed, is said to be a>*-convergent to afunctionf,e Bm(Tt) provided sup | |Дп | |г, < 
< + oo and limfitn(ti) = / ^ ) for any tt e Tř. 

n^>ao 

Our representation theorems are derived from the following basic result of A. 
Pelczynski, see Theorem 2 in [32], which obviously holds also for locally compact 
HausdorfT spaces Th i = 1 , . . . , d. 
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TheoremofA.Pelczyňski. Let U: XCçf^T^^Ybe а bounded dAinear operator and 
let us suppose that one of thefollowing conditions is satisfied: 

(A) no subspace ofYis isomorphic to the space c0; 
(B) U is weakly compact. 

Then there is a unique dAinear hounded operator U**: ХВ(Л)(Т;) -+ Ysuch that 

1) U** is an extension of U, i.e., U**(f>) = U{f^for (fi)eXCo(T,), and 
2) ifQi^ n — 1, 2, ..., d, i = 1,. ..,d, are a>*-convergent to gt sequences ofelements 

ofB{n\T^then 
lim U**(gitn) = U**{gt) . 
n^-oo 

Moreover, in the case (B) the operator L7** is weakly compact. 

As a consequence we easily obtain 

Theorem 2. Leř U: XC0(Ti) ~> У Ье a bounded dAinear operator and suppose 
either c0 ф У, or U is weakly compact. For {Ai)e Ха(&ол) put y(At) = U**(xA^j-
Then y: Xcr(J*o^) ~> У is а separately countably additive vector Baire d-poly-
measure. Further (g^eIfy) = i(y), and 

U**(0iW(T,)( f l i )d? 

/ o r each (^i)e ХВ(Л)(Т^), in particular 

U(fo = UrAfi)ay 
for each (fi) e XC^(Ti). At the same time 

\U\ = \U**\ = ||y|| (r f) - sup fly*y|| (T1). 
!.v*|^i 

Moreover, the range of y is relatively weakly compact if and only if U is weakly 
compact. 

Proof. The separate countably additivity of y is an easy consequence of assertion 
2) of Theorem of A. Pelczynski. 

Now let (gi)eXB^(Ti) = XS(o(ši0ti),K), and for each i = 1, . . . , d take a se
quence ді}Пе8(а(^0Л),К), n = l,2,... such that | | ^ - f l f | | r , ^ 0 . According 
to the Nikodym uniform boundedness theorem for polymeasures, see [12], we have 
||y|| (Tt) < +oo. Hence by Theorem 1 and Definition 1 in [13], and assertion 2) of 
Theorem of A. Pelczyňski we obtain 

i(T,) (9i) dy = lim f(T|) (дігП) dy = lim Ѵ**{ді§п) - U**(gi). 
n^oo n^cc 

By Corollary of Theorem 5 in [14] we conclude that l(y) = Ii(y). 
The equality with norms follows from Theorem 1. 
If U is weakly compact, then U**: XB(Q\Ti) -+ Yi$ weakly compact by Theorem 
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of A. Pelczyňski, hence the range of y is relatively weakly compact. Conversely, if 
the range of y is relatively weakly compact, then using Krein-Šmuljan Theorem, 
see Theorem П.2.11 in [ l ] , similarly as in the proof of Theorem VI.1.1 in [1] we 
obtain that ^**: XB(n)(Tř) ^ Y is weakly compact. The theorem is proved. 

From Theorem 2 and from the elementary properties of the integral witfi respect 
to a polymeasure, see [13] and [14], we immediately obtain 

Corollary. There is an isometric isomorphism between the Banach space of all 
bounded d-linearfunctionals L^(Co(T^); K) and the Banach space of all separately 
countably additive d-polymeasures p m ( X a ( ^ 0 i ) , & ) with the norm y ~> ||y|| (T j , 
given by the equalities 

V{fi) = J<r,> {fi) ày , Ш e XCo(T,.), and \V\ = ||y|| (T,) . 

If U: XC0(Ti) ~> 7is a bounded a4inear operator and either c0 ф 7o r U is weakly 
compact, then assertion 2) of Theorem of A. Pelczyňski implies via Theorem 2 
a Lebesgue Bounded Convergence Theorem type result for the integral with respect 
to the representing d-polymeasure y of U. We prove in Theorem 3 below that for 
the integral of d-tuples of scalar valued functions with respect to arbitrary separately 
countably additive vector d-polymeasure this Lebesgue Bounded Convergence 
Theorem holds. Hence for any bounded d-linear operator U: XC0(Tt) ^> Y which 
can be represented by a separately countably additive у: Xff(á?0>i) -+ Y, the assertions 
of Theorem of A. Pelcynski hold. 

First we introduce a useful notion. 

Definition 1. Let Tt Ф 0, i = 1, ..., d be arbitrary sets, let £f{ c 2Ti be a-rings, 
and let y: X£řt ~> 7be separately additive. Let further gh gitîi: Tt ~> K, n = 1, 2, . . . 
be <9Ymeasurable for each i = 1 , . . . , d. We say that the d-tuples (git„), n = 1, 2, ... , 
Xa>*-converge to the d-tuple (#;) y-almost everywhere if there are sets NteSřb 

i = 1 , . . . , d such that y(..., Tt^uNh Г і + 1 , . . . ) = 0 and the sequence gUn. Хті-Ni 
n = 1, 2, ... u>*-converges to the function gt. Хп-Ni ^o r e a c n * = *> ••> ^-

Theorem 3. Leř Tž ф 0, ř = 1, ..., d fre arbitrary sets, let Sř{ с 2Т і , і = 1, ..., d 
be a-rings and let y: X<9̂ - ~> У Ье a separately countably additive vector d-poly-
measure. Letfurther ghgin:Tt^K, n = l , -2, . . . be bounded 6řrmeasurable 
functionsfor each і = 1, ..., J, and let the sequence ofd-tuples (git„), n = 1, 2, . . . , 
Xa>*-converge to the d-tuple (#<) y-almost everywhere. Then (gt), ( д ^ є / ^ у ) = 
— J(y), and 

( 0 l i m iui) (#*,«,) d7 = fu,) (ffi) d7 
ni,...,n<i^>oo 

foreach(Ai)eX^^Ifineachof[d-l)coordinates either y is uniformly countably 
additive or the sequence gi>n, n == 1,2, . . . converges uniformly to thefunction gt, 
then the limit in (l) is uniform with respect to (At) e X£fr 
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Proof. First note that ||y|| (Tř) < +oo by the Nikodým uniform boundedness 
theorem for polymeasures, see (N) in [12]. Since (#ř), (ді>п)є XS(5^,K), we have 
(#i)> (ві,п)еІі(у) by Theorem 2 in [13]. Further, lJj)^l(y) by Corollary of 
Theorem 5 in [14]. According to Theorems 2 and 3 in [12], 

(2) lim \\у\\(Аі)Пі)= lim y K J = 0 
ni,...,rid^oo пі,...,па~*сс 

whenever Aif„e Sfb n = 1, 2 , . . . and Ai>n ~> 0 for each i = 1 , . . . , d. Without loss 
ofgenerality we may suppose that (#ř>n), и = 1 , . . . is Xco*-convergent to (gt) every
where. However, then by the definition of co*-convergence there is a constant C > 0 
such that |o(j,n(ii)| й C for each i = 1, ..., d, each n = 1, 2 , . . . , and each tt e T{. 

If now in each of (d — 1) coordinates either y is uniformly countably additive 
of the sequence gin, n = 1, 2, ... converges uniformly to the function gi9 then from 
the proof of Theorem 7 in [13] it is easy to see that the limit in (1) is uniform with 
respect to (Ai)e X<9*V 

For a general y we prove (l) by induction with respect to the dimension d. For 
d = 1 the theorem is already proved, since then y is a uniform polymeasure. Suppose 
the theorem is proved for dimensions 1, ..., (d — 1). 

Let (At) e X y , . For each i = 1 , . . . , J take a countably generated cr-ring Sf\ c <?. 
such that XAi> 9i,m n = 1?2, ... are ^--measurable. Let y' be the restriction y' = 

00 

= y: X(G, n ^;.) ^ У, where G; = U {t, є Г„ 9іМ * °} є П Since (g,), (gtJ є 
rt = 1 

є XS((Gi n <9̂ )> K) c /i(y') n l(y) for any пІ5 ..., nd = 1, 2, ... , obviously 
J<*,)(0*,n,)d/ = J(B,)(^i,n,)dy and í(Eí)(ofř)dy' = ta,)(flf|)dy f o r e a c h "i> •••>"<* = 
= 1,2, ... and each (JE/)e X<9 ,̂ in particular for (£ ř) = (Л;). Hence it is enough 
to prove (l) when y is replaced by y'. 

According to Theorem 11 in [12] there is a control d-polymeasure, say Xx x . . . 
. . . x Ad: X(G; n <9 )̂ ^ [0, +oo), for the vector J-polymeasure y'. Obviously 

i(At)(9i,m ~ Gi + 9i)dy' - i(Au{9i)dy' = J u o ( # w ~ 9i)dy' + 
+ $(Au(9i>(02,m - 92),--,(9d,na- 9d))dy' + 
••• + S(Ao((9i.ni - 9i)A9i,m - 9i)>->(9*-i*J^ - 9d-i)>9d)ay' + 
+ Ìuò(9u92>Ì93,n3 - 9з)>~->(вл,па - 9d))ay' + . . . 

••• + ііЛі)(9і>-»,9а-і>(9л,пл - 9d))ay' + ... + $(Ao((9i,m ~ 9i),9i> -->9d) d / 

for any ni9..., nd = 1, 2, ... . Clearly the set functions: 

(E2,..., Ed) ~> $(Al,E2,...,Ed) (9u XE2, ••-, XEd) dy'> (E2, • . . , Ed)e 

eSř'2 X . . . X ^ , . . . , ( E i , . . . , ^ - i ) ^ i ( ^ , . . . , E , _ , , ^ ) ( Z E ^ . . . , X E , - , ^ d ) d / , 

(Eu...,Ed_t)eSř'd x ... x Sř'á_u(ES9...,Ed)^ 
^\ииА2,Еъ,...,Еа){9і,92,ІЕъ^",ІЕа)ау\(Еъ,...9Еа)е^'ъ X . . . X &"d9...,Ed^ 

^ í(Aí^A^uEd)(9i,^^9d-uXEd)dyf
9Ede^d,...9Eí ^ 

^ 5(EitA2,...,Ad) (*E,, 92* —» 0d) d?'> ^ 1 Є ^ i 
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are (d — 1)- , . . . , (d — 1)-, (d — 2)-, ..., 1-, ..., 1-polymeasures, respectively. It is 
easy to see that the integrals of {(g2,n2 ~ 9i), ---,(9d,na ~ 9d))> --->((0i,m ~ 9i)> ••• 
. . .>(0d-l ,*d-i ~ 0d-l))> ((fl'3,B3 - 9ъ), --;(0d,na ~ 9d))> --;(9d,n* ~ #d), ••• 
•••»(о'і.лі ~ 9i) W l t n respect to them are equal to the corresponding integrals with 
respect to y' written above. Now, let e > 0. Then by the induction hypothesisthere 
is a positive integer n0 such that 

(3) |Ju,) (9t,no dy' - i u o (ff,) dy'| â | b , ) (Зі>п, - во d / | + e/2 

whenever я ь ..., nd ^ и0. 
According to the EgorofT-Lusin theorem, see Section 1.4 in [5], for each i = 

= l , . . . , d there are sets N l5 G / > f cGG£n^;. , & = l , 2 , . . . such that Ar(JVf) = 0, 
î,fc ^ Gj — N|, and on each Gifc, fc = 1, 2, ... the sequence git0 n = 1,2, . . . 

converges uniformly to the function gt. Evidently 

( 4 ) i(Ai)(9i,m - 9i)dy' = $(At-Ni)(9i,m - 9i)ay' = 

i((A,-Ni-G,.fc)uG,,fc)(^i,n, " # / ) < ¥ = i{Ai-Nt-Gi,k)(9i,m ~ 9і)аУ' + 
+ i(Gi,u,(A2-N2-G2,k),,..,(Ad-Nd-Gd,h)){9i,m ~ 9і)&У' + ••• 

••• + W ) ( 0 i , 4 - 9i)ay. 

By (2) there is an integer k0 such that 

IU-*,-G,.*o)(0M, - i i ) d / | á ( 2 C / ||y'| (4 , - JV, - GiM) < г/4 . 

In the second, third, . . . , (2 d — l)-summand = the last summand on the right hand 
of (4) we have uniform convergence in at least one coordinate. Hence there is an 
nó > n0 such that 

li(At)(9i,m - 9i)ày'\ й е/4 + e/4 for nl9 ..., nd ^ n'0 . 
Thus 

| U ) ( ^ , ) d y ' - J u o ( ^ ) d y ' | a 6 

for n l 5 . . . , nd ^ n'0. Since г > 0 was arbitrary, (!) is proved for the d-tuple (Лг). 
Since (Ai) e X<9% was arbitrary, the theorem is proved. 

Let us note that Theorem 1 in [8], i.e., the Diagonal Convergence Theorem, is 
a generalization ofProposition 1 in [32]. 

Theorem 4. Let Z be a Banach space. Then there is an isometric isomorphism 
between the Banach space Ь(а)(С0(Т^); Z*) of all bounded d-linear operators 
U: XC$(Ti) ~» Z* and the Banach space of all separately weah*-countably ad
ditive vector d-polymeasures y: Xa(é$OJ) ~> Z*, equipped with the norm y -> 
~* IMI №)• This isometric isomorphism is given by the equations 

t'(/.-) = icro(/<)dy, 
and 

M = M(r,) = suplyO)*ltt)-
Wái 
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Proof. Let y: Xo"(^0ř) ~> Z* be a separately weak*-countably additive vector 
d-polymeasure. Then ||y|| (Tf) = sup | |y(')z| | (Tf) < +oo by Nikodym's uniform 

Mši 
boundedness theorem for polymeasures, see (iV) in [12], and by the uniform 
boundedness principle. Since XC0(Ti) cz XS(ó&0thK)9 we have XC0(Tř) c / i(y( ') z) 
for each z є Z by Theorem 2 in [13]. Since y(At) (•): Z ~> X is a linear mapping for 
each (Ai) є X a ( ^ 0 i ) , the mapping U(fi) (•): Z ~> K defined by the equality 

u(f,)*-UrM<Ky(-)z) 
is also linear by the elementary properties of the integral, for each (/f) є XC0(jTř). 
Clearly U(-)z: ХС0(Г^ ~> K is d-linear for each zeZ. By elementary properties 
ofthe integral, see assertion 6) of Theorem 3 in [13], we obtain the inequalities 

| f / ( / O z | g n i | / . - | | r J | r ( - ) ^ l l ( ^ ) z n l W l r , W ( T O , | z | < + c o 
d 

П 
i = l 

for each z є Z, hence í/(/ ř) e Z* for each (/,-) є XC0(Tf). Now using Theorem 1 we 
obtain the equalities 

|L/| = sup |L/(-) z| - sup !|y(-) z|| (T,) = ||y|| (Tt) . 
I*|gi M ^ 1 

Conversely, let Û : ХС0(Х£) ~> Z* be a bounded d-linear operator. By Corollary 
of Theorem 2 for each z є Z there is a unique separately countably additive scalar 
d-polymeasure yz: Xa(^OJ) >̂ K such that 

U(/ , )z = J ( r , , t f i )dy . . ( / , > X C o ( T , ) , 
and 

||y,l(T,) = | t / | . | z | g | U | . | z | < + c o . 

Since BiQ)(Ti) for each i = 1, ..., d is the smallest class of functions #r: Tf ^ K 
which is closed under the co*-convergence of sequences and which contains C0(Ti), 
by transfinite induction, using assertion 2) of Theorem of A. Pelczyňski and the 
uniform boundedness principle, we obtain a Xco*-weak*-continuous extension 
U**: XB(Q\Ti) ~> Z*. By Coroliary of Theorem 2 this extension is ofthe form 

U**(g,) z = J (T | ) (g,) àyz, (fif,) є XB*iT,) 

for each zeZ. Taking (#,.) = (хл^ (^де Хег(а?0,«)> we obtain that r7**(^.)z = 
= y,(^i) f o r e a c h z e Z - H e n c e 7 ( ^ i ) = y * * 0 k « ) e Z * f o r e a c h (Ai)6Xff(«0 | i). 
The equality with the norms of U" and y was established in the first part ofthe proof. 
Hence the theorem is proved. 

We immediately obtain 

Corollary. Let Z be a Banach space. Then every bounded d-linear operator 
U: XC0(Ti) -^ Z* has a unique d-linear Xco*-weak*-continuous extension U**: 
XB(a)(Tt) ~> Z* given by the equality 

u**(ffi) = f(To(e*)db (gt)eXB^(T,), 
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where y: Xa(J*o ř) ^ Z* is its representing ^-polymeasure. Moreover, |^**| = -ww-rt 
Identifying 7 with its canonical image in 7**, from the preceding theorem we 

easily obtain 
Theorem 5. There is an isometric isomorphism between the Banach space ofall 

bounded d-linear operators £((І)(С0(Т;); 7) and the Banach space of all separately 
weak*-countably additive d-polymeasures y: Xa(J*0 l) -^ 7**, with the norm 
y -^ ||y|| (Tř). Tft/s isometric isomorphism is given by the equations 

иШ~!ітМ*У> (/i)eXCo(r,), 
^ ^ ( / 0 = i (To( / i )dW0^)^ (/i)eXCo(Ti), / e F * , and 

H = H(r,) = sup||y(.)^||(TO. 
b*Ui 

From Corollary of Theorem 4 we obtain another 

Corollary. Every bounded d-linear operator U: ХС0(Т^) ~* 7ftas a unique Xco*-
weak*-continuous extension U**: XBiQ)(Ti) -^ Y** giren by й е equality 

и**(9і) = $ѵА0і)аУ> (gt)eXBV\Tt), 
where y: Xa(^o .) ^ 7** fs ř/te representing d-polymeasure of U. Moreover, 
\и**\ = \\у\\(тд'=\и\. 

Keeping the identification of 7 with its canonical image in 7**, we now prove 

Theorem 6. Let U: XC0(Ti) ~> 7 be « bounded d-linear operator with the repre
senting d-polymeasure y: Xa(^0i) ~> 7** arcd extension U**: XB(ß)(Tj) >̂ Y**. 
T7xen thefollowing conditions are equivalent: 

a) y řs Y-valued, 
b) y is Y-valued and is separately countably additive in the norm topology of 7, 
c) y is separately countably additive in the norm topology of 7**, 
d) 1/**- XB(ß)(Tt) ~» 7** is Xco*-norm-continuous, and 
e) ^**: XB(ß)(T{) ^ 7, arcd íř ís Xa>*-norm-continuous. 
Proof, a) => b) by Theorem 5 and the Orlicz-Pettis theorem, since on 7 c 7** 

the weak* and the weak topology coincide. 
Evidently b) => c). 
c) => d) by Theorem 3. 
Trivially d) => e). 
e) => a) since у(Л^) = ^**(&4f)- The theorem is proved. 

Another generalization of the l-dimensional case is given in 

Theorem 7. For a bounded d-linear operator U: XC0(Ti) ^ Ywith the representing 
d-polymeasure y : X a ( # 0 f i ) ^ Y * * and the extension U**:XB^(T^Y** the 
following conditions are equivalent: 
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a) U is (weakly) compact, 
b) U** is Yvalued and (weakly) compact, and 
c) y is Yvalued and its range is (weakly) compact. 

Proof, a) => b) by Theorem of A. Pelczyiiski, using assertion e) ofTheorem 6 and 
the fact that the Xco*-sequential closure of XC0(7i) is ХБ (0)(Т^. 

Evidently b) => c). 
The implication c) => a) in the case of a weakly compact range was already proved 

in Theorem 2. In the case of a compact range it can be proved similarly as Theorem 
VI.7.7 in [19]. 

Let y: Xa(^0i) ^> 7 b e separately countably additive. We say that y is uniformly 
countably additive in the coordinate i ifthe vector measures y(..., ^4;-i, •, Ai + U . . . ) : 
0"(^o,i)"* Y,...,Ai_1ea(^o>i_1),Ai + 1ea(^0}i + i),... are uniformly countably 
additive. 

Theorem 8. Let y: Xa(&0 ř) ~> Ybe separately countably additive and let U(ft) = 
= i(r,)(/,-)dy, ^ , ) e X C o ( r , ) . Put S, = {/,eCo.,(T,), | / , | | r , s l } , i = l , . . . , d . 
77?en thefollowing conditions are equivalent: 

a) lim sup | i7 ( . . . , / i - i , / i ,n , / i+ i , . . . ) | = ° whenever fUneSi9 n = l , 2 , . . . anJ 
И ~+ 00 fjCSj 

j*i 

fi,m -fi,m = ° / ° r n i * 2̂> wl5 n2 = 1,2, ... ; 
b) y is uniformly countably additive in the coordinate i; and 
c) for each s > 0 there is a positive integer NifB such that \JJ(...,fi^1,fin, 

/f + i, . . . ) | < є / o r oř least one n e {l, ...,NijS} whenever fifîlE Si9 n = 1, ...,JVif„ 
fi,n, Ji,r,2 = Ofor nx Ф n2, n l 5w 2 = 1, . . . , N M , andfj-eSjforj Ф ř. 

Proof, a)/=> b) by Lemma 1 in [30], which coincides with Lemma 8.3 on p. 267 
in [33]. 

b) => c), since a uniformly countably additive family of vector measures is uni
formly absolutely continuous with respect to a finite non negative countably additive 
measure, see Theorem 1.2.4 in [ l ] and Theorem 1 in [4]. 

Evidently c) =̂> a). 
We now characterize those bounded d-linear operators U: ХС0(Т^ ~> У whose 

representing d-polymeasure is Yvalued in terms of U itself. For d = 1 the condition 
seems to be also new. 

Theorem 9. Let U: XC0(Tt) ^ Y be a bounded dAinear operator and let 
y: Xo(^0i) -• Y** be its representing d-polymeasure. Then y: Xa(<M0i) ~> Y if 
and only if lim U(Çi,n,k)e Y exists for any double sequence <Рі,л,*є ^^o(^i) sucn 

n^co 
that 0 ^ cpi,„fk á 1 for eacn ř = I» ••> d and eac/i k, n = 1,2,. . . , çit1ttk ? 
/ ( \ ) # i n as k ^ oo for each i = 1 , . . . , d and each n — 1, 2, ... , and gin \ ( / ) 

as n ^> oo /o r each i — 1, . . . , d. 
Proof. The necessity is а consequence of Theorem 3. First we show the suf-
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fìciency for the case d = 1. According to Theorem VI.7.3 in [19], y: tf(J*o) ~> Y 
(T= Tl9 J'o = &o,u e t c 0 if a n d оп іУ i f t n e family of scalar measures {y(*)y*: 
a(&o) ~» iC, >7* є Y*, | j ; * | й 1} is uniformly countably additive. By Grothendieck's 
result, see Lemma VI.2.13 in [ l ] , this occurs if and only if y(Oj) ~> 0 whenever 
OjG cr(^0), j — 1,2, . . . is a sequence of pairwise disjoint open sets. Let Oj, j = 

oo 

= 1,2,... be such a sequence. Since Vn = U 0 ; , n = 1,2,... are open JPff sets, 
y = n 

by Theorem B in § 50, [20], for each n = 1, 2, ... there is a sequence ç>„>fc є С0(Г), 
0 <; <pBffc <; 1, к = 1, 2, ... such that српЛ 7і Xvn- ВУ assumption lim y(Vn) = 

П^ 00 

- l imU**(zO є y e x i s t s> h e n c e l i m K 0 ; ) = l i m y(vJ - vj+i) = l i m y(vj) " 
л -»• oo j ^ oo j -»• co J ^ oo 

-y(vJ+1) = o. 
In the case ^ , \ given in the bracket, let Cj9 j — 1, 2 , . . . be a sequence of pairwise 

n 

disjoint compact Gö sets. For n = 1, 2, ... put D„ = lJ C}. By Theorem B in § 50, 
j = i 

[20], for each í)„, и = 1,2,. . . take a sequence çn,ke C0(T), 0 ^ q)„tk S 1> fc = 
== 1, 2 , . . . such that q>nk \ /Dn. By assumption lim y(Dn) = lim U**fe>„)e ^exists, 

n ^ oo n -+ oo 

hence lim y(Cj) = 0. Consequently, since CJ5 j = 1, 2 , . . . was an arbitrary sequence 
J-*CO 

ofpairwise disjoint compact Gô sets, using the regularity ofthe scalar Baire measures 
y(') y*: o"(̂ o) ~* K> У* e ^* w e immediately obtain that lim y(Oj) = 0 whenever 

j ^ 0 0 

Oj є a (^o) , j = 1, 2, ... is a sequence ofpairwise disjoint open sets. Hence by Lemma 
VI.2.13 in [ l ] y is 7valued. Hence for d = 1 the sufficiency is also proved. 

Let d > l a n d l e t (At)eXa(âi0fi). Then ( x ^ ) e X f i ^ ( ^ ) . Since £(ß)(T;) = 
= U В(л\Ті)9 і = 1, •-., d, where В(а)(7Ѵ) stands for the а-th Baire class, using trans-

a<Q 

finite induction we immediately see that for each i = 1,..., J there is a countable 
family of functions/i>n є Co(T/), n = 1, 2 , . . . such that %Ai e В({ДП}) = the smallest 
class of functions f{. Tr ~> K which contains the family {fit„} and which is closed 
under the formation of pointwise limits of sequences. Using the sequences {fit„}, 
i = 1,..., d, similarly as in the proof of Theorem VI.7.6 in [19], concerning B({fin}) 
we may and will suppose that each Ti? i = 1, ...,d is a cr-compact metric space. 
In particular, Th i = 1,..., d are separable metric spaces now. According to Lemma 
VI.8.4 in [19] each Co(Ti), i = 1,..., d is a separable Banach space. Let hit„, n = 
= 1,- 2 , . . . be a countable dense set in Ca(Ti), i = 1,..., d. 

By the case d = 1 proved above, for each (f2,---Jd)eCo{Ti) x ••• x C0(Td) 
there is a unique countably additive vector measure 7(/2,...,/dy <K^o,i) ~> У which 
represents the bounded linear operator Uif2t_tfd): C0(Ti) -> Y, U(/2,...,/d)(/i) = 
= U(fuf2,...,fd), fx e Co(Ti). Let A^ c(Ao-,i) ^ [°? !] b e a common countably 
additive (0 ^ 0) control measure for the countable family of countably additive 
vector measures 7(ň2>na,...,^,nd): <*(*o,i) "̂  Y> ni> •••' ná = 1? 2 ' ••• ' s e e L e m m a 

IV.10.5 in [19], or Corollary 1.2.6 in [ l ] . Let N^ea{^o,i)^ and let X^Nj - 0. 
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We assert that y(Nl9E29...9Ed) ~ 0 for each E,6*(*o. i ) , * = 2 , . . . , a . First We 
show that y(f2,...,fd)(Ni) = 0 for each ( / 2 , . . . , /d) є C0(T2) x ... x C0(Tä). 

Let ( / 2 ? . . . , / і є С 0 ( Т 2 ) x ... x Co(rd), and take subsequences {nitk} <= « 
i = 2, ..., J such that | |/. ~ fc. я. к | |Г | ~> 0 for each і = 2 , . . . , J. Evidently Щи S 
Z s u p | | f c ^ J r , = b ! < + o o ' ' f o r each i = 2 , . . . , d . Put b=^maxi>,. Clearly 

7 ( /a l , / , ) (^ l ) - ^(/2,..,/d)(^l) - y(fc2Aifc, — > W ) ( ^ l ) > a n d 

{fl,...J<0 - (ft2,*2.*>--->V"d.fc) = 

= ((/2 - ^ 2 > П 2 Д / з , - , / а ) + ••• + ( * 2 Л | к > . . . , Ѵ і л . и » ( Л - fca,w.J) 

for each n2,fe,..., nd>fc = í, 2 , . . . . Since 

|7((/2 - КтЛїг, . . . , / a ) ( ^ i ) | á lb(...)|| (ГО - (by Theorem 1) -

= SUp | ^ ( / b ( / 2 - ^ , « J ^ 3 5 - . . J d ) | ž | ^ í - l / 2 - ^ , 2 j T 2 ^ 2 , 
I I / l l l^š l 

Wi,n2tk..--^d~und^^{fä - hd,nd*))(Ni)\ й 

а|Ьиі(гОаИь--а||Л-*-ліг. 
for each H2ffc,..., nJfJfc = 1, 2 , . . . , we have y(/2,...,/d)(Ni) = 0 

Let (£ 2 , . . . ,E d ) G ( T (^o ,2) x .. . x o(@o,d)- According to Theorem 5 and its 
Corollary we have y(NuE2i...,Ed) = и**(Хъ>ХЕ2>--->ХЕа)- Since V**{x^f2^" 
.--J<) = U * / W ^ f o r e a c h ( Л , . . . , Л ) е С 0 ( Г 2 ) х . . . 
. . . x C0(Td), we have y(NuE2,...,Ed)y* = 0 for each y*eY* by Corollary of 
Theorem 5. Hence y(Ni9 E2,..., Ed) = 0, which we wanted to show. 

By symmetry in coordinates there are countably additive measures Ať: o(@o,i) ~* 
_> [o, 1], i = 2, . . . , d with analogous properties as Xx. Hence At x Я2 x ... x Xd 

is a control J-polymeasure for the d-polymeasure 7: Xcr(^0 i) ^ 7**. 

By regularity ofthe Baire measures Ař: o"(^o,i) "* [0, 1], i = 1, • ••, d, see Theorem 
G in § 52, [20], for each i there is a non decreasing sequence of compact G5 subsets 
Ci,n Œ Ti9 n = 1, 2, ... , and a non increasing sequence of open subsets Oin cz Ti9 

n = 1,2,. . . such that C M c ^ ; <= O i n and A;(Oř>n - Ci>B) < l/л for each w = 
00 00 

- 1, 2, ... . Hence Ař( ГІ OifB - U CiiB) = 0 for each i = 1, ..., d. Now by Urysohn's 
n = l » = 1 

Lemma for each i = 1, ..., d and each я = 1, 2 , . . . there is a non decreasing (non 
increasing) sequence Фіг„>кє Q(^;)> ^ = <Pi,n,fc è 1, & = 1» 2, ... such that <pí?řJ>fc ? 
? Xoi n(<Pi,n,k N Xcim)- % assumption and Theorem 5, 

lim lim U(q>it„tk) = lim lim J(Ti) (<?,-,„,*) dy - у є У 
n -+ 00 /c ~* 00 n ^ 00 fc ̂  00 

exists. Hence, using Corollary of Theorem 5 and the fact that Xt x ... x Xd is 
a control á-polymeasure for the d-polymeasure y: Xcr(if0i) ^> 7**, we immediately 
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obtain the equalities 
00 

y*y = lim lim J (T | ) (9і<пЛ) d(r(-) y*) = y( П Oi>n) y* = 
л ^ 00 k -*• 00 w — 1 

00 

= у(Лг)>'* (=KUQ,)y*) 
n=l 

for each j ; * є У*. Thus y(^4ř) = y e Yby the Hahn-Banach theorem, which we wanted 
to show. 

Since (At) є Xo"(J*o,) was arbitrary, the theorem is proved. 
Since our spaces Th i — 1, ..., d are locally compact, the following "localization" 

of our integtal representation is of importance. Its proof is obvious. 

Theorem 10. For a bounded d-linear operator U: XC0(Ti) ~» Y the following 
conditions are equivalent: 

a) the representing d-polymeasure y of U is Yvalued on X j * o i ; 
b) the representing d-polymeasure y of U is Yvalued on X&0i and separately 

countably additive on Xt$0i; 
c)for any relatively compact open sets DiE^0h i = l , . . . , d the restriction 

U(Di) = ^ : XCo(Di) ~» Y is representable by a unique Y valued d-polymeasure 
yiDiy. X(D, n á?0>ř) ^ У. 

Ifthese conditions arefulfilled, then 

.Wi)-foM*y> (fi)exco(T,), 
where y: Xa0ti ^ У, \U\ = \\y\\ (Tt), and y(Di) = y: X(Dt n <%OJ) ^ Y for any 
open Dt є ^o,i> * — I? • -•> d. 

The bilinear operator U: c0 x c0 -^ c0 of pointwise multiplication U"(x, z) = 
= (x(i), z(i)) є C0 is a simple example of a separately compact operator, obviously 
bounded. However, its representing bimeasure is not Y valued on 2N x 2N, non
etheless, it is У = c0 valued on J* 0 1 x ^ 0 > 2 , where ^ о д = &02 is the č-ring of 
all finite subsets ofiV. 

If Ycontains no copy of lœ and Tis a Stonean compact, then every bounded linear 
operator U: C(T) ~» У is weakly compact by the important theorem of H. P. 
Rosenthal, see [34] and Theorem VI.2.10 in [ l ] . Now it is easy to check that the 
proof of Theorem ofA. Pelczyňski in [32],hence also the theorem itself remain valid 
if Ycontains no isomorphic copy of lœ and each Th i = 1 , . . . , d is a Stonean compact. 
Hence, similarly as Theorem 2, we have our concluding. 

Theorem 11. Let Ycontain no copy of /al, in particular let Y be separable, and 
let Th i -- t j . . . , d be Stonean compacts. Then every bounded d-linear operator 
U: XC(Ti) -^ Yhas a unique representation in theform 

u(fo = hrAfi)ay> (/Oexc(r,), 
where the representing d-polymeasure y: Xcr(^0 i) -* Y is separately countably 
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additive. Moreover, U has a unique Xco*-norm-continuous extension ЇУ**: 
XB(Q\Ti) ~> Ygiven by the equality 

U**(ffO-f(ro(ffi)dy, (i,)6XB<^(r,). 
ylř řfee same řjme, 

' H = IHI(T0 = sup||y*KOll№) = l^*| . 
b * l ^ i 
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