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0. INTRODUCTION

During the last twenty years many papers devoted to the problem of boundedness
of superposition operators have been published. We give a short but of course not
complete history. In 1965 S. Mizohata [11] (cf. also J. Rauch [14]) proved the
nowadays well-known fact: H5(R,), s > n/2 is invariant under nonlinear mappings
of the type Tg: f — G(f), Ge C*(R,). Here H5(R,) denotes the Bessel-potential
space. The same was obtained for Slobodeckij spaces Wy(R,), 1 < p = o, s > n[p
by J. Peetre [12] (actually he proved the invariance of the more general Besov
spaces but we do not deal here with this type of spaces in general). Later on D. R.
Adams [1] proved the counterpart also for the spaces Hy(R,), 1 < p < o, s > n/p.

In the eighties a new development was started by Y. Meyer [10]. Using the
elegant method of paradifferential operators he gave a new proof of Adams’ result.
Triebel-Lizorkin spaces F} (R,) generalize simultaneously Bessel-potential spaces
and Sobolev spaces. Th. Runst [15] has shown that the method of paradifferential
operators works also for the spaces F5 (R,),0 < p,q < oo, s > max (n/p,(n/q) — n).
Further extensions, obtained by this method, are due to M. Yamazaki [24] in con-
nection with anisotropic Triebel-Lizorkin spaces and to J. Marshall [9] in the case
of weigthed Triebel-Lizorkin spaces. In all results mentioned above the inside part
of the superposition is supposed to be bounded.

In the case of unbounded functions (in the language of the function spaces con-
sidered here this means s < n/p) the following is known: G. Stampacchia [19]
showed that the superposition operator T maps a Sobolev space W,(R,),1 £ p < o
into itself if G’ e L,(R,). M. Marcus, V. J. Mizel [8] gave characterizations of all
those functions G: Ry —» R, which map via superposition a Sobolev space W,(R,),
1 £ p < oo into itself. Finally, using characterizations of the underlying function
spaces in terms of first order differences the boundedness of T;, G’ € Lw(Rl) was
also obtained for Triebel-Lizorkin spaces F}, (R,), 0 < p, g <, 0,,<s<1
(here

c,,=nh —————1— -1
i min (1, p, ) '
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cf. G. Bourdaud [2], H. Triebel [22], D. E. Edmunds, H. Triebel [4], Th. Runst
[16]).

It is obvious there is a gap between 1 and n/ p- Concerning this gap B. E. J. Dahlberg
[3] has proved the following: A C*®-function G: R, - R, which maps a Sobolev
space W, (R,), 1 £ p < 0,1+ 1/p <m < n[p, into itself is necessarily a linear
function. Using the same construction for the counterexample as B. E. J. Dahlberg,
G. Bourdaud [2] and Th. Runst [16] have extended this to more general classes
of functions. In the case of Triebel-Lizorkin spaces we have (cf. Th. Runst [16]):
Let 0 <p <o and 0 <q < co. Let n.max(0,(1/p)— 1) +1+ 1/p < s < nfp.
Then every function G: R, - Ry, G e C*(R,), which maps F; (R,) into iiself is
necessarily of the type G(f) = c . t, ce Ry. In view of this result a natural question
is to find the minimal defect of smoothness in the cese of a superposition G(f),
where the inside part f belongs to a space F;,q(Rn), 1 < s < n/p and the outside
part G is a C®-function. It is the aim of the paper to answer this question correctly.
This means we have both affirmative and negative results to show the correctness

of the number
(s=1)((n/p) - s)

(n/p) —s+1
which represents this defect.

This paper is organized as follows. In Section 1 we collect some information about
Triebel-Lizorkin spaces. Section 2 contains our main results concerning the super-
position operators Ty, G € C*(R,), without proofs. Finally, in Section 3 the proofs
are given. As an important substep of the proof we study there the mapping properties
of operators of the type T with G(t) = t*, G(t) = lt\“, u > 1. The results are partially
announced in [18].

1. SOME INFORMATION ABOUT TRIEBEL-LIZORKIN SPACES

If not otherwise stated all functions are defined on the Euclidean n-space R, and
s0 we omit R, in our notation.

Let S be the Schwartz space of all complex-valued rapidly decreasing infinitely
differentiable functions on R,. By S” we denote its topological dual. If ¢ € S then

F o(x) = 2n)™"2 [g, e”F o(E)dE, xeR,

denotes the Fourier transform & ¢ of ¢. As usual, % ~ !¢ means the inverse Fourier
transform of ¢. Let Y € S be a function with the following properties
(L) Y(ix)=1 if |x| <1,

' W(x) =0 if |x| = 3/2.
By
(12) {%<x> =), alx) = W(x[2) — U(x),

ofx) == 9,277 x), xeR,, j=12,...
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we define a smooth partition, of unity, i.e.
% ¢ x)=1 forall xeR,.
Further, observe that = )
(1.3) supp ¢; < {x|xeR,, 277 < |x| £3.277'}, j=1,2,....

Let 0 <p=<o and 0<gq =< 0. If {f;}72, is a sequence of complex-valued
Lebesgue-measurable functions on R, then we put

U7 E0] = 10370 | DI = (i (5 10
(with the usual modifications if max (p, g) = ).

Definition 1. Let —00 < s < 0,0 < p < o0 and 0 < g = oo0. Then we put

Fro={/17e8, |71l = 12977 [0f8) 7 SO ()| L] < oo} -

Remark 1. The spaces F}, , are quasi-Banach spaces (Banach spaces if min (p, ) =
> 1), independent of the special choice of ¥ (equivalent quasi-norms). As mentioned
in Introduction these spaces generalize the Bessel-potential and Sobolev spaces.
More precisely, we have

(@) Fp,=1L, 1 <p<c,

(ii) Fp,=Wy,1<p<o,m=1,2,..., where W denote the Sobolev spaces,

(iii) F , = Hj,1 < p < 0, —c0 < s < oo, where Hj, denote the Bessel-potential
spaces,

(iv) F5, = W;,1 £ p < 0, s > 0, s + integer, where W, denote the Slobodeckij
spaces.

In each case equality means the existence of an equivalent quasinorm. Moreover,
as it is well-known for the Slobodeckij spaces, any space F}, ,can be characterized via
differences and derivatives, at least if s is large enough. We do not go into detail,
referring the reader to H. Triebel [21, 2.5].

Remark 2. The following continuous embeddings are of some interest for us:

) F, G1 LL L, if s> nmax(0,(1/p) - 1).
=rfw
(ii) F;T; Qo<ﬂ F;,qQ W;Go qU Ff,,q = F;’w , 1<p<ow
g= <g= o

for any ¢ > 0.
Since the last number will often appear in what follows we introduce the notation

(1.4) o,=nmax(0,(1/p) = 1), 0<p= .

Remark 3. More information and proofs of the facts listed in Remarks 1 and 2
may be found in H. Triebel [21]. For Bessel-potential and Slobodeckij spaces we
refer also to E. M. Stein [20].
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Since we will consider in general real-valued functions we have to introduce the
real-valved part of F; ,.

Definition 2. Let 0 < p < 0,0 < g < o, and s > ¢,. Then F} , is the subspace

of F, consisting of all real-valued functions and equipped with the same quasi-norm
as F; .
P,q

2. BOUNDEDNESS OF SUPERPOSITION OPERATORS IN SPACES
OF TRIEBEL-LIZORKIN TYPE. THE CRITICAL CASE 1< s< n/p

As usual, C"(R,), m = 1,2, ... is the set of all functions f satisfying

(i) £, f©,...,f™ are uniformly continuous functions on R;,
(i) 17| Co@)] = max sup 00 < co.
O0=I<m teRy

Moreover, we put ®

: C*(R,) = N C™(R,).
m=1
For brevity we use the notation
np
21 e=os,nlp)=—"—- .
@y ‘ (s, n[p) (]p)=s+1

Now we are in position to formulate the first result.

Theorem 1. Let 0 < p < 0,0 < g £ o and

(22) o,+1<s<nfp.
Furthermore, let

23) - 0>a,.

Let G: Ry, - R, be a function with the properties
(2.4) G(0) =0,

(2.5) GeC*(R,).

Then Tg: f — G(f) is a bounded mapping of

U F, into N F,.

0<g= 0<r=w
Moreover, for any r > 0 there exists a constant ¢ such that
(26) 6D E5ll = el [ Frwoll + 1] Foco])

forall feF; .
‘We shall discuss the conditions of Theorem 1.

Remark 4. The assumption (2.2) implies
(.7 | 1<g<s. y
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<to see this use the equality

(n/p)nlp?JI =s—(e~—1) (g - s))

So, in view of (2.3), Remark 2 and the properties of G, (2.4) and (2.5), we have
G( fle U L,forany fe U F .- Hence G( f) can be again interpreted as a regular

1spsw 0<g=oo

and tempered distribution. Consequently, we can deal with T; as with a mapping
from a certain subspace of S’ into S’ and this makes the theorem meaningful.

Remark 5. Why we restrict ourselves to the values 1 < s < n[p is pointed out
in Introduction. Some further remarks to the range 1 < s < ¢, + 1 are given in
Section 3, Lemma 3. The restriction of ¢ to values larger than n max (0,(1/p) — 1)
has, may be, merely technical reasons. Nevertheless, taking into consideration
formulae (1.4) and (2.7) we can see that (2.3) is a restriction only in the case p <
< nf(n + 1) < 1. So, it does not occur in the case of the classical spaces of Sobolev
and Slobodeckij types.

Remark 6. Let us discuss the conditions on G. G(0) = 0 is necessary, since we
measure G(f) in spaces which depend on integrability properties. G € C*(R,) is not
necessary, one needs a finite number of derivatives only. More exactly, if ¢ = N, + 1,
where N, is a positive natural number and 0 < 7, < 1 then G € CVe*'(R,) is always
sufficient. The dependence of the constant ¢ which appears in (2.6) on G can be also
calculated more precisely. We can choose

(28) c=c|G[ (R,
¢’ being independent of G.

Remark7.Ofcourse, | F;, = F; .. We have prefered the above formulation
0<g=sw

to make the independence on ¢ more obvious. Such a behaviour (independence on
the parameter ¢) is also known for superposition operators of the type T,,: f = f™,
m = 2,3, ... (cf. [17] and Section 3).

To see the reasons which create such a difficult behaviour of the defect of
smoothness we add an example. To avoid technical difficulties we restrict ourselves
to p = 1. We put

(2.9) Jolx) = [x[7*9(x)
where y has the meaning from (1.1). Assume 0 < a < n/p. If 0 < s < n[p then we
have

(2.10) f.€F,,<s < IEJ —-a

(cf. E. M. Stein [20, Chapt. V., 6.9] or [17]). Let G € C*(R,). Let s be fixed, 0 <
< s < n[p. Let m be a natural number with s — m = 0. This ensures the equality
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(in %) ,

I7]
) GCUNW = T L) P e #

=1p+... =y
for |y] < m(B*, ..., B’ denote also multi-indices of length n, and |y| = y; + ... + 7,).
Let us further assume that we can avoid the influence of the factors GV(f,(x)) in
(2.11). Choose y = (1, ..., 1,0, ..., 0). In this case the asymptotic behaviour is given
by mtimes

(2.12) (G(f,)) (x) ~ |x|~@*"™ near zero .
The assumption G(f,) e Fy, implies 0%(G(f,)) € L, for any y, |y| < m and hence,
from the asymptotic behaviour in the case y = (1, ., 1,0,..., 0), we conclude
m-times
m(o + 1) < n
p -

If « tends to ((n/p) — s), this is equivalent to

< np

T (nfp)—s+1 .

By virtue of (2.10) this corresponds to the results stated in our Theorem 1. A com-
parison of the asymptotic behaviour

AL ~ 7, bl =m0

with (2.12) shows that, roughly speaking, differentiation of the composite function
G( f) creates stronger singularities than differentiation of the original function.

Since the above calculations give only a feeling of the correctness of ¢ we add the
following theorem.

Theorem 2. Let T > 0. Let 0 < p < o and 1 < s < n|p. If there exists a natural
number m such that

(2.13) 1sm=£g = ~——E/—p—~ <m+1
) (n/p)—s+1

an

(2.14) o, <0—-m<1

then for any non-vanishing (m + 1)-times continuously differentiable and T-
periodic function G: Ry — Ry and for any ¢ > 0 there exists a function fe F} ,
with compact support and G(f) ¢ Fe*:.

P,0
Remark 8. The main consequence of Theorem 2 is the fact that Theorem 1 cannot
be improved in the framework of Triebel-Lizorkin spaces if p is fixed, that is if we
measure f and G(f) in the scale {F} ; 1 <s < n[p, 0 < q < w}. Consequently,
it is also impossible to improve the number g in the case of Sobolev spaces. For
instance, by the embeddings (ii) from Remark 2 we obtain under the same assumptions

328



as in Theorem 1 that Tg is a bounded mapping from W} into W™ and:mo is the
integer part of
n/p
(n|p)—s+1"
Moreover, Theorem 2 again with the embeddings from Remark 2 (ii) tells us that
in general m, is the best possible choice.

Remark 9. The proof of Theorem 2 is based on Dahlberg’s counterexample and
on the characterization of the underlying Triebel-Lizorkin spaces in terms of first
order differences. It is possible that the assumption ¢ — m = o, (instead of the
more natural condition ¢ > ¢,) is only technical. The method of Th. Runst [16]
of proving the negative result mentioned in Introduction is not applicable. He
reduces the problem via appropriate embeddings to the above stivation, but the use
of embeddings leads to changes of our number g.

Remark 10. The fact that we can choose the function f with a compact support
indicates there is no further progress if one replaces the function spaces defined
on R, by the corresponding spaces on domains.

Remark 11. The assumption on G to be periodic is not necessary. It can be
weakened. One needs the existence of a sequence of disjoint intervals {I;}2, with

(2.15) infA(I)= B >0
and
(2.16) I = {t|teR,, |G"*1(1)| = 4}

for some positive numbers 4 and B (4 denotes the Lebesgue measure on R, ). Note
that the disjointness of the intervls I; implies

M{t|te Ry, |Gm* (1) 2 4}) = .

Remark 12. Also the following consequence of Theorem 1 is of some interest.
let 0<p<ow,0<g=owand 1<s=1+ l/p. There exist C®-functions G
which do not map via superposition Fj, ; into itself. Thus Theorem 2 is also a sup-
plement to the negative results of B.E.J. Dahlberg [3], G. Bourdaud [2] and Th.
Runst [16].

Remark 13. We add a trivial observation about the defect of smoothness. Let n
and p be fixed and such that n/p > 1. Put d(s) = s — ¢(s, n/p). One easily checks

that lim d(s) = lim d(s) = 0. Since ¢ < s (cf. Remark 4), the function d(s) has
sl1 stn/

a ma)iimum in %I,I]n/p) It will be assumed at the point s = (n/p) — +/(n/p) + 1.

In this sense we have a little bit surprising effect that there exist the worst spaces

with respect to the superposition mappings, namely F}, ,, s = (n/p)—+/(n/p) + 1 with the

absolutely largest defect on smoothness (v/(n/p) — 1)*. Since a function with compact

support or rapidly decreasing smooth function like ¢ ~* cannot satisfy the assumptions

(2.15), (2.16), the next theorem is also of some interest.
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Theorem 3. Let 0 < p < o0 and 1 + 1/p < s < n[p. If there exists a natural
number m such that

< gremlt@D)=9p _
(2.17) m < g*: ) s 1 1 ‘1
and
(2.18) =gt -m<t

then for every G:Ry — R, (m + 1)-times continuous differentiable, G™**)(t)
non-vanishing, and for any & > 0 there exists a function fe F; . with compact
support and G(f) ¢ F2 %°.

Remark 14. Since 0 < s < n/p we have ¢* < n/p. Moreover
¥ <sel+1/p<s.
This is the reason for restricting s to the values larger than 1 + 1 / p.

Remark 15. Affirmative results related to Theorem 3 are not known to the
author. Nevertheless, a result of G. Bourdaud [2] is of some interest in this direction:

A twice differentiable function G with G e C'(R,) and G”e L,(R,) maps via
superposition the spaces W7 and W5, 0 < s < 2, s + 1 into itself.

So, there is some hope that one can improve the number g in the case s <1+ 1 / 14
with the help of additional integrability properties.

Remark 16. Everybody who is familiar with the modern theory of function spaces
(cf. E. M. Stein [20], H. Triebel [21]) would ask also for similar results in the case
of Besov spaces B; ;. All methods applied here work also in this case. Under the
same conditions as in Theorem 1 one obtains boundedness of T; as a mapping from
B; ,, into B? ,, (again ~ is used as a symbol of restriction to the real-valued part).
At the moment it is not clear whether it is natural to restrict the second lower index g
to the values less than or equal to pe in order to ensure G(f) € BS . Also the question
whether ““c0”” can be replaced by a smaller value, may be under additional as-
sumptions on the second upper index g of the original, is still open. Only partial

answers can be obtained via embeddings in connection with Theorem 1.

3. BOUNDEDNESS OF SUPERPOSITION OPERATORS OF TYPE
Ty f—>f*, np>1

The results of this section are of independent interest but they are also strongly
related to Section 2. As we shall see Theorem 1 appears mainly as a consequence of
some boundedness results for the above type of superposition operators.

3.1. Mappings of type T,:f — f", m =2,3,.... We introduce the following
notation: Let ¢ > 0. Then we put

(3.1) s,i=s—(u—1)((n/p) — s). b
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Theorem 4. Let m = 2,3,.... Let 0 <p< o0, 0 < q £ o0 and 0<S<"/P-
Moreover, let

3.2) s > nmax (0, (1/p) — (1/m)).
Then for any r, 0 < r < o0, there exists a constant ¢ such that
(33) ™ Fonll < el f| F5al™

for all fe F, ,.

Remark 17. Theorem 4 in the case m = 2 is contained in M. Yamazaki [23]
and also in [17]. An extension to the values m > 2 may be found in [17, Theorem
12] but with a more restrictive condition on s. To obtain (3.3) in the remaining
cases one can apply the method of proof presented in [17] in the case m = 2,
including the following modification. Instead of an iteration of Theorem 4 in the
case m = 2 one has to use an iteration of the paramultiplication principle (cf. [17,
formula (3.3)—(3.6)]). That means, one has to decompose the product ™ in a finite

number of infinite sums of the type Y ( [] # ~![¢,,#f]), where Q is an appropriate
keQ i=1

subset of {k| ke R,, k; non-negative integer, i = 1, ..., m} (recall that ¢, has the

meaning from (1.2)). As in the case m = 2 this decomposition has to be done in

such a way that the support of the Fourier image of each sum is controllable.
Because no other new idea is needed we omit the proof of Theorem 4 and refer

to [17]. Observe that a restriction to the spaces F; , is not necessary here. The

meaning of f™ in S’ is always clear since we have f, f"e U L, (this follows from
1spsw

nmax (0, (1/p) — (1/m)) = n max (0, (1/p) — 1) and from the embedding

F,QL, pst< —

" (np)—s

cf. H. Triebel [21, 2.7], which implies
fm"eL,, where t= s 1).

m((n/p)—s)

Remark 18. The restriction of s to the values larger than n max (0,(1/p)~(1/m))
turns out to be optimal. To see this one can again apply the example of the function f,
(cf. (2.9)). Inequality (3.2) is equivalent to m((n/p) — s) < n and s > 0. It follows
that (3.2) ensures that (f,)" is a distribution. If in (3.2) equality holds and s > 0
then (f,)™ is no longer a tempered distribution and hence by definition it is not
contained in any F, ;,, —0 <5< 00,0<p<,0<g= .

Moreover, as is pointed out in [17], the smoothness s,, is optimal if p is fixed.

3.2. Mappings of type T,: f — f*, n > 1.

Theorem 5. Let > 1. Let 0 < p < o0 and 0 < s < n/p.
(i) Let
(3_4) 0, <5, <
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(cf. (3.1)). Then T,: f - f* is a bounded mapping from
U F, into N F¥,.

0<g= 0<r=ow
Moreover, for any r, 0 < r £ o0 there exists a constant ¢ such that
(3.5) I Fell < elf | Frwl”
forall feF; .
(ii) Let max (1,0,) < p < n[p and

-1
s=1+5222"1,
L p
Then T,: f — f* is a bounded mapping from Ff,,q into F}, ,,. Moreover, there
0<g=®

exists a constant ¢ such that
(36) 1| Froll £ | f| ol
forall fe F} . -

Remark 19. An easy calculation shows that (ii) represents the limit case of (i),

that is
-1
) (1+”___._ﬁ) =
nop/y

{cf. (3.1)). Let u be not an integer. For the function g(x) = W(x) x;, x = (X1, ..., X,) €
€ R, one derives by explicit calculations

g €F,,, —0<s<w, 0<p<w, 0<g= o,
g"eF,,, 0<p<ow, g,<s<p+(lp),

and
g ¢ F " 0<p<oo, o, <pu+(1/p)

by using the characterizations of F; , in terms of differences, cf. H. Triebel [21,
2.5.12, 2.5.13]. The upper bound u + (1/p) reflects the smoothness of the outside
function G(f) = 1* in the framework of the F-spaces. The reason why p appears
in (3.4) instead of the more natural number p + (1/p) is to be found in what follows.
We are not able to make use of G(t)e Fi*(/P=el9(R ) ¢ > 0. We only apply here
the fact that G(t) e C*"'°(R,). Note in this connection that C*'"**(R,) ¢ F4*2"*(R,)
for any p,e > 0.

Remark 20. Let us look at the condition ¢, < s,. In the case 0 < p £ 1 it is
equivalent to u((n/p) — s) < n. In view of our example treated in Remark 18 this is
necessary. By virtue of the smoothness of f one can easily derive that s, =
= s — (u—1)((n/p)— s) is the best possible value. To see this we apply embedding
theorems for the F-spaces (cf. H. Triebel [21, 2.7]). From fe F} ,, s > o, we obtain
(3.7) feL,, p=t=nf((nfp) -s)

%
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and consequently

p n
(3.8) freL, P<t<
Von (n/p)—s)n
Since n
F:‘:;BQL“ t=n/|:u(——s) —8] for ¢>0,
p

the optimality of s, follows from the fact that (3.7) and so (3.8) cannot be improved.
To prove (3.5), (3.6) we need some preliminaries. As usual,
1
M f(x) = P folF)] dy,
where the supremum is taken over all balls Q with center x, denotes the Hardy-
Littlewood maximal function. Furthermore, we put
4, f(x) = f(x + h) — f(x), x,heR,.

Now we can introduce the following notation. Let u > 0. Let f e L':,ix(l,,‘). Then we
define
(39)  If(x):= fiea-x | f(x)|Fdz, xeR,, k=0,%1, %2, ...

The crucial step in the proof of Theorem 5 is the following lemma.

Lemma 1. Let 0 < p < 0,0 < g £ o0. Let
{(3.10) 0,4 =nmax(0,(1/p) — 1, (1/q) = 1) <s < p.

Then there exists a constant ¢ such that

(3.11) IC X 20BN Ll < el | Pl
for all fe U,‘,’,:x(l’u) with

(3.12) f=YF o;#f] in L

i=o
({@;}; is defined in (1.2)).

Proof. Step 1. We start with some basic inequalities. Let k be a natural number
and m an integer. Let o be a multiindex of length n. Let {¢,};, denote the system
defined in (1.2). Put ¢(x) = 0if k = —1, —2,.... Then for all x, he R,, |h| < 27*
and all m < 0 we have
(1) A w3 527 s 5 [ 000nT) )] £

x-y|S2-k |a|=
ey w00

: , a>0,
la]=1 yeRn ll + |2Jyla

In view of this formula we introduce the maximal function

A () = sup JZ L0711 )]
(314) (@i (x): eI FYNT
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for any fe S’, where a is a real positive number which will be fixed later on. Using

well-known properties of the Fourier transform and a homogeneity argument, we
obtain from the estimate (3.13)

(3.15) 1407~ [oanFf]) (3)] £ €272 (@ mf) (%) -
Here ¢’ is independent of f, x, k and m.
If m > 0 and |h| < 27* we obtain

(3-16) |A2(§—1[¢k+m3¢—f]) (x)‘ = 2]x_§}1£2_kl37_1[¢k+myf] (y)l =

< gma+1| o |¢~1[¢k+m~/'f]()’)l< ma+1(, % ).
=2 [)’ERI: L+ [2"""(x — y)|° = 2N (0iend) (x)

Step 2. Let 0 < g < co. By assumption (3.12) we have

(3.17) I Z 2R 1 L] =

= |( Z 2ksq(§lZ]él 'ldi"‘z(m;_wﬁ—l[‘l’k«‘m?f]) (x| dz2))" 9| L,| =

Sl 3 2 p 4w 3 7 TonsnTD QN1+
+ H(k=2_w2ksq(5|z1§; |43 - mi;o'q]_l[Q’ng"f]) (x)|*dz))a| L,|| = ¢[T; + T2] -

Substep 2.1. Estimate of Ty. Let d = min (1, pu, gu). We shall apply (3.15)
in connection with the maximal inequality
(3.18) loir 1 el = e[ 7 [0,771 () | Ll

for any fe S', any a > n/min(p, 7) (cf. H. Triebel [21, 2.3.6], in the case p = pp
g = qu). This leads to

(19) T [( 3 2 spaal 3 # Torenf) (I Ll S

= > 2| Z 2 ) (<) | L) =

m=-—oo

S o 3 20| L) < ¢17| Fital

m= — o0

since s < p, and again ¢’ does not depend on f.
Substep 2.2. Estimate of T,. Let d = min (1, p, q). Since
s>am=n<f~{—~———1)>——~
min (1, p, q) min (p, q)
we can choose three numbers A, a and ¢ such that

(3.20) 0 <2 < min(l, p,9),

(1 — min(1, p, q))
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"
pmin (p,q)

u(sfp —a(l — 2)) =226 > 0.
We start our estimate of T, by using (3.16):

Jiss 1o 3 7 [onruf D (W 82 2

= Z 2me I[z]<1 IAz ~kg —1[¢k+m'g7f] (x)l“dz =

a >

251 |43 [0S (1 2.

. Sup lAz-kz 1[(Pk+m9'-f] (x)‘u(1~i-)) =

lz]=1
< ¢ 2 27(M | Z 7 [ousnZ S 11) (x) 2707 DK i * )1 0(x) -
m=0

Repeated use of Holder’s inequality with
1 A 1-2 1 A 1-2

qr - qu qu pr pPH pu

S IA
u[\/]s |

yields w
TS ¢ 3 2R | 240 o)1) ().
m=0
@ Prm * 1) (Vi - | L] =
< ¢ 3 aremrehme@={(M | 277 " [ nZ S 11M) (N o | Lopallara)|* -
m=0

' Il{zksm‘/’k *f}k=—°0 l ‘PH qu)“(l Pud

Since min (p[4, g/4) > 1 and a > n/min (ppy, qp) (cf. (3.19)) we can apply the vector-
valued Hardy-Littlewood maximal inequality (cf. Ch. Fefferman, E. M. Stein [5])
to L,/;(1,;) and the maximal inequality (3.18) with p = py and § = gu. This com-
bined with (3.19) leads to

621) T3¢l 01| Lt 1255~ 0:57] | Lpllg)| - <
< U Bl I | Pt 5 1 il

pup,qp pp,qn pp,qp
Putting (3.21) and (3.19) into (3.17) proves the lemma in the case 0 < g < co. The
case g = oo follows by obvious modifications.

The limiting case s = p is also of some interest. Looking for the proof we easily
see that s < p is needed only in Substep 2.1 to derive formula (3.19). The counterpart
of (3.19) is now given by

| sup 2"" sup |43 -x( Z F  oesmZ ) (2) |Ly|| £

k=0,%1,.. |z]=1 m=— o

o wp F EPGNW LI

k=0,x1,... m=—o0

< 2207 | L(1)l1* < e | Fpal* -
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Hence, we have proved another lemma:
Lemma 2. Let 0 < p < o and 6, < p. Then there exists a constant ¢ such that

(322) I _sue 2B TGO L] < el | Fp i

for all feLo% 1 ) with f =_ZO.9‘7'1[(pj.?f] in L°.
f=

Remark 21. The use of maximal functions of the type (3.14) is standard in the
modern theory of function spaces provided p < 1. They were introduced by Ch.
Fefferman, E. M. Stein [6], J. Peetre [13], and afterwards extensively used by H.
Triebel, cf. [21]. Furthermore, in our proof we have sometimes used the ideas
of H. Triebel [21, 2.5.10 and 2.5.12]. So, the basic fermulas (3.15) and (3.16) may
be found in his paper.

Remark 22. The importance of I} f in connection with the mapping properties
of the superposition operators was pointed out by Th. Runst [16]. There he gave
estimates of I;f in the case of bounded functions.

Proof of Theorem 5. Step 1. We collect some preliminaries. Let p have the
decomposition g = N + t, where N is a positive integer and 0 < v < 1. Then
G(t) = t* has the Taylor expansion

z Pp(p - 1) '(ﬂ -j+1 whI(e — w)! +
Jj!

fo@—=w" g —1)...(0 =N+ 1)vdo

-y 1)!

for any pair (t, w)e R, x R;.

For a function f e F ».a» S > 0, there exists a set E of Lebesgue-measure zero such
that |f(x)| < oo for all x € R,\ E. Since we can change our function f on a set of
measure zero without changing the distribution f we suppose |f(x)| < o for any
x € R,. Hence, for any pair (x, y)e R, x R, we have

s =3, 3, () o M D oy 0 +

n

1 X - T
+ = O up—1)...(p = N + 1)v°do.
(N = 1)
Recall that {¢,}5% is the system defined in (1.2). The following identity is the starting
point of our calculations.

(3.23) F ' [oFf10) =

_ (zn)—nIZ .fR'- (g-lq,k) (y — ) {y_l i <j>(_ 1)1—; u(p— 1)-.l.fu—l+ l)f(y)n—jf(x)l +

1=0j=0
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1
+ —

(N —1)!

N-1 I‘
= (2m)~"* () sz1 wni(¥) +F Tou(y), yeR,.

1=0 j=

Step 2. Estimate of T ; ;. Let r > 0. Let s, < u. Then we choose a number §

with s, < § < min (u, sy) and define

76 0 = JODY (e = 1) oo (= N + 1)0° dv} dx =

n

pzé—sﬂ—n/p

This ensures the continuous embeddings

(3.24) PG N F
and )
- n
(325) F¥.Q N F,, with p,=—— : , j=1,...N
P oz 2 (fp) = (n—=4)((n]p) ~s)

(cf. H. Triebel [21, 2.7]).
Let0 < j £ N.Obviously s, < s and hence o, < s. By (3.8) we can apply Hélder’s

inequality with
2e) L_=)(@p=9)  @p)=(e=i)(p)=s) 1 1
P n n

P1 P2

This yields
(3.27) N{ZI‘ETI’,‘,,J}EZO | Li(lw)“ s

< o /47| Ly -2 [(F o) (v = 2) f(x) dx}io | Ly(1)] -
Observe that the embedding F;, ,, G Lyj(n/p)-s) 1S continuous and hence
(3.28) 1“7 Ly, || = el f | Fof 7
On the other hand, by Theorem 4 and the continuous embedding (3.25) we have
(329 [{25F o 1o | Lu(lo)| = || Fooel| S |7 F )
Now, (3.28) and (3.29) together with (3.27) yield
(3.30) 25Ty b0 | Li(lo)| < el f| Frul* if 0<j<N.
In the case j = 0 we have to use some properties of our system {(pk} i~ in connection
with the well-known formula ¢# 1 = 6 (Dirac distribution). We obtajn

[(F'o)(y —x)dx =0 if k=1,2,...
and
[(F700) (y = x) dx = ¢4, -
Moreover, observe that p < up for an appropriate choice of 5 in a small neigh-
bourhood of s,. This together with s,>o,and F, ,QL, p <t < n/((n/p) - s)
(cf. H. Triebel [21, 2.7]) ensures the continuous embedding F5 , Q) L,,. Applying
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this one obtains
(331) {Tw0dizo [ Lallo)| = ol * | Ly =
= /| Lol = €| f| Fr.e

Step 3. Estimate of T ;. We follow Th. Runst [16]. Forany 1,0 < 7 < 1 we have

(3.32)

i oo — 700" a0 = 0y LTV pro — s = 1007 .

Note that

(3.33) [vr = w| < 2w — w|*

holds for arbitrary v, w € R;. Applying both (3.32) and (3.33), we obtain

(38) [T = lliF o) (0 = 005 (i) - F6) ax] +

0 0 = 91 = SO ax)

The first summand can be handled as in Step 2. For the estimate of the second we
apply the formula ¢(*) = ¢,(27***+), k =1,2,..., cf. (1.2). Since ¢, €S this
yields

(7 0 1) (2)] = 2|(F 1) (2°2)] £ cp(1 + [252])M 2%,

where M is an arbitrary positive number and ¢, an appropriate constant independent
of k=0,1,... and z € R,. By means of this inequality we find

(3.35) S ) (2] 1f(v) = f(z + y)|*dz =
. < o[z 22 29/ (y) = f(z + p)|F dz +
+ 3 arvvszirgamness 20 M) — e 4 0P d) 8

s 22“’ M- f) () -

Let d = min (1, p). With the help of Lemma 1 the following estimate is derived
from (3.35):

(3:36) [R5 NF e I B) = Sy + 2)|* dzlizo| Ll)|* =

27| RO e | (1) <

A
o
s

1
S 022 MO 2L - | L) = €] Pt

0

]

since M can be chosen arbitrarily large. It remains to check whether the assumptions
of Lemma 1 can be satisfied. Since s, > o, we have u(n/p — s) < n[min (1, p).
By the continuous embedding mentioned at the end of Step 2 we know that fe
eL, /(I =) and hence by the above inequality also f € L'°° Moreover, p > 1 implies
Fp:¥° = L° and the identity (3.12) appears now as the so-called Nikol’skij repre-

u2

sentation of fin FJ , (cf. H. Triebel [21, 2.5.2]). Finally, consider (3.10). We have
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to guarantee
05,0 = nmax (0,(1/p) — 1) < 5,
but this is equivalent to s, > o,
To complete the calculations in this step observe the continuous embedding
(3.37) F5 o QF

pr,o

n 1 ( n> 5 n
s——=—(s,——)==——.
P n p/ u b
As a consequence of (3.34), (3.36) and (3.37) one obtains
12T e | Lol = €[S ] F oo
This combined with (3.30)—(3.31) implies
(338) I Pl = el L F "

whenever s is chosen in a sufficiently small neighbourhood of s,. But F , &
Q N F3*, and so (3.35) follows from (3.38).

0=2r<w

which follows from

Step 4. The proof of (ii) is principally the same as that of part (i). We only have
to apply Lemma 2 instead of Lemma 1 since s, = pu. The proof is complete.

Remark 23. We have proved more than is stated in Theorem 5 (i). We have
shown in (3.38) that f is contained in a proper subspace of () Fj, since U F} ,
where § > s, and Osrae p<p

p =15 = s, + (n/p))
is a proper subspace of () F}*,. One can ask for the best possible choice of 3.

0<r£ow
Ommitting details we observe that it can be s = § under stronger assumptions on s
and p. Results in this direction in the case u = m, m = 2,3, ... may be found in
[17]. We return to this problem in Remark 28.

Let us look again at the proof of Theorem 5 and let us collect the properties of
G(t) = t*, p > 1 applied there.

First, we have used the fact that G admits a Taylor expansion of order N where N
is an integer with 0 < p — N £ 1, or equivalently G: R, - R, is an N-times con-
tinuously differentiable function. Secondly, certain growth behaviour of G and of its
derivatives, namely

3.39 GO(t)| Z cfti*~", teRy, 1=0,1,..,N,
(3.39) |GO(0)] < et

¢, appropriate constants, was applied in (3.28) and (3.31). Finally, the Hélder
continuity of order 7 = p — N of the N-th derivative of G,

(3.40) sup 1071s) = G|

ty,t0€R Ito - tllt

fc< w0,
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was used in (3.33). If
(3.41) GH0)=0, 1=0,1,...,N,

then (3.39) is a consequence of (3.40). Hence, we come to the following result.

Theorem 6. Let N be a natural number. Let G: R, —» R, be an N-times con-
tinuously differentiable function satisfying (3.40) and (3.41) with some 7,0 < 7 < 1.
Put p = N + t. Then Theorem 5 remains valid with Tg: f — G(f) instead of T,.

Remark 24. The smoothness of G and of its derivatives ensures the Lebesgue
measurability of G(f). Moreover, since F}, ,, Q Lyjm/p-s) and s, > o,, we have
G(f)e U L,Q S'.Sowecaninterpret T; as a mapping of a subspace of S’ into S’.

1£psoo
Remark 25. The restriction to real-valued functions appears in connection with
(3.33). This inequality holds no longer true if one replaces v, w e Ry by z,, z, € C.
However, in the case of the function G(z) = lzl“, z € C all the above considerations
are meaningful, the counterpart of (3.33) holds true also in the complex case, and so
Theorem 6 is valid for the whole space F;}, , instead of its real-valued part.

Remark 26. Of course, Theorem 5 or 6 can be extended also to the values s > n/p.
Results in this direction may be found for instance in Th. Runst [16] and the refer-
ences given there. Mappings of the type f — | f l“, u > 0 are studied also in M.
Marcus, V. J. Mizel [8], (u = 1), H. Triebel [22], D.E. Edmunds, H. Triebel [4] and
Th. Runst [16]. The very interesting case 4 = 1 has been considered only in spaces
of smoothness s < 1. Nonetheless, in view of G. Bourdaud’s result stated in Remark
15 it is at least meaningful to ask whether the mapping f — |f] is bounded in spaces
with smoothness s < 1 + 1/p.

3.3. Proof of Theorem 1. In order to make the proof more transparent we prove
at first a weaker assertion than that stated in Theorem 1. Recall that

o=t
(n/p)—s+1
Lemma 3. Let 0 < p < 00,0 < g < o0 and
(3.42) 1<s<nfp.
Furthermore, let
(3.43) ¢>0,.

Let G: R, — R, be a function with G(0) = 0 and G e C*(R,). Then Ts: f - G(f)
is a bounded mapping of F;  into F% . Moreover, there exists a constant ¢ such
that

(3.44) 6D Fpall = e(l7 [ Frall + 17| F3.dl9)
forallfeF;,. ”

340 -



Proof. Step 1. First we shall study the mapping properties of Ty, where

H(1) = 6(t) — GJ(O) (R,

and N is a positive integer which will be fixed later on. Let s be fixed. Then we choose

_,—__np
ﬂ_g_(n/p)—s+1'
This implies

u—ln
pop

Consequently, by the assumptions (3.42) and (3.43) we obtain

s=14—

(3.45) max (1,0,) < p <nfp.
Now we choose N such that 0 < g — N < 1.
Obviously, H fulfils the assumptions of Theorem 6 for u. Hence we obtain

(3.46) H) | Fpoll = elf | B
by applying the analogue of Theorem 5 (ii).

Step 2. Let us consider the remainder. It is a polynomial of order N. Therefore
we make use of Theorem 4. Assumption (3.43) implies (3.2) for any m, m < N,
because (3.2) is equivalent to m((n/p) — 5s) < n, s > 0, and
o,<e iff o((nfp) —s) < S

min (1, p)
(use ¢ = n/p — o((n/p) — s)). This implies

an e -1 1l = (5, S0 7

=

AL Er LA
= (1 Fll + 11 E5al") -

Now, (3.46) and (3.47) yield (3.44).

Remark 27. If one compares Lemma 3 and Theorem 1 then the fact that the
lower bound 1 for s in (3.42) is better than that in (2.2), at least if case p < 1, is of
certain interest.

Proof of Theorem 1. Our assumptions ensure

(3.49) L 6(7(x) = 6(() 1T L0 s geh,
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since the right-hand side belongs to L{° and G € C*(R,) (cf. M. Marcus, V. J. Mizel

[7D).
Now, we use a lifting property of the underlying spaces. Since ¢ > 7, we have for
any g >0

G(f)eFe, iff G(f)eF, and a" G(f)eFs.t, j=1,..,n
Xj

(this is a small modification of Theorem 2.3.8 combined with formula (2.5.9/37) of
H. Triebel [21]), and also the appropriate quasi-norms are equivalent.

Applying Lemma 3 to G)(f(x)) we obtain G*)(f)e F® ,. Moreover, since
Ge C*(R,), we have G"(f)e F® , n L. Thus, the right-hand side of (3.48) can
be interpreted as a product of type h.g, where he F2 . nL,, 0 <o < n[p and
geF o, <s—1<nlp

Such products have been studied in [17]. Theorem 7 of this paper leads to
G(f) K

0x;

e

o—1
Fl’,q

= (|6 | Lo +

s—1
FI’.OO

FIG) [ j6tp) | F e |

for any ¢, 0 < g = 0.
In view of (3.44) and of the above stated equivalence this implies

Lo ER (OIS )s
S 1 Fale
+ 3 (1 Pl + 1 Pl 11 Pl 5

s (If 1 Frall + 171 7wl
since o(s — 1) (pfn)+1=¢ and 1 <1 + (s — 1) p/n < @. The proof is complete.

)
2 G(f)| Fet
a0l

Remark 28. Similarly as in Remark 23, even in the case of operators Tg: f — G(f),
Ge C°°(IRI) one can look for an improvement of Lemma 3 or Theorem 1. We know
that for fe F ® .« the best possible space with first lower index p containing the com-
position G(f)is () F%,. Now, it is meaningful to ask whether it is possible to find

0<r<w
G(f) in a space F} ,, where § > ¢ and § — (n/p) = ¢—(n/p) (cf. H. Triebel [21, 2.7]).
Consequently, a necessary condition for such an improvement is G(f) € L;. However,
this is not true in general. One needs further assumptions. The easest way is to assume
supp f to be compact. Then one can follow the method described in this section
respecting this new point of view. The crucial point is an improvement of Theorem 4.
For m = 2 this can be found in [17]. The result is as follows. Let 0 < p < oo,

0 <q <o and 1 <s < nfp. Let s((n/p) — s) <n. Let Ge C*(R,) and G(0) = 0.
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Let fe F§ ,, and let supp f be compact. Then G(f) € Ft,,, and
n
3.49 G F; Il £c¢ F ool + F ), t=————.
049) 100) | Frcl S el | Pl + WPl 1= o™
However, the constant ¢ depends on the volume of supp f.
3.4, Proof of Theorems 2 and 3. Proof of Theorem 2. As remarked above our
counterexample goes back to B.E.J. Dahlberg [3] and was later used also by G.

Bourdaud [2] and Th. Runst [16]. The proof of Theorems 2 and 3 is a refinement
of G. Bourdaud’s proof, added here more or less for completeness.

Step 1. Properties of the outside function G. There exist real numbers a, b, 4
with0 < a < b < Tand 4 > Osuch that |G™*'(1)| = Aif t € [a, b]. By the mean-
value theorem we have |G™(t,) — G™(t)| = A|t — t,| if t, to€[a, b]. Since G is
T-periodic we obtain
(3.50) |G™(ty) — G™(1)| = At — 1,
if there exists an integer j with 1,1, € [a + jT, b + jT].

Weputa; =a+ jTand b; = b +jT.

Step 2. Construction of the inside part of the superposition. Let u be a real-
valued, infinitely differentiable and compactly supported function with
(3.51) u(xy, .o x,) =u(x)=x, if |x| <1,

u(x) =0 if |x| =2.
Let o, B > 0. Let {z/} 72, be a sequence of points in R, with
1

(3.52) inf[zj—z"|=|zj—z"“|=:, j=1,2,....
k J
We put
(3.53) f(x) =Y jfu(j*(x — 2Y)), xeR,.
=1

Applying some known properties of the dilatation operator (cf. H. Triebel [21,
Proposition 3.4.1]), we obtain f e F}, , for a, f satisfying

(3.54) B + a(s — (n/p)) < —1/min(1, p)
at least if s > o,

Step 3. Construction of the cubes P, ;. As usual, we denote the components of

x € R, by x4, ..., x,. Let us define two sequences of cubes by
(3.55) P,;={x|xeR,, x,—z’,‘|<—1~——-, =2,..,n,
2(n) k*

ak™ P < x; - 24 < bjk"(“”’)} , kj=1,2,...
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and

1
3.56 P}, = eR, |x, — X < ———, r=2,..n,
Gs) b= {xlem m <o
a; + b;

J k- (a+ﬂ)} k,j=12,..
We list some properties of these cubes.

If 0 £ b; < k*/(2/n) then x € P, ; implies |x — z*| < 1/(2k*), and hence by (3:52)
(3.57) PP, =0

ifk+r, 0 (] + 1) T kp/(z\/n), and 0 < (I + 1) T< r"’/(2\/n)_ For brevity
we introduce the notation

ak P < x, — 24 <

)

, T2ymT
Using (3.57) we find

(3.58) fx) = k**(x, — 25) if xeP,;, j<C.

The advantage of the sequence {P; ;}, ; consists in the fact that for h = (hl, )|
with 0 < h; < ¥(b; — a;) k™ “*P we have the implication

(3-59) xeP;;=x+heP,;.

.

< o0

We put D, :-—-'(%(b — a) hy )C*P in view of the condition on h;.
Step 4. Estimate of (9/0x,)™ G(f). To this end we make some use of a lifting
property of the underlying function spaces. The assumption G(f) e Fe** necessarily
implies (0/0x,)™ G(f) e F5':™™ and since 0, < @ + ¢ — m < 1, by choosmg e>0
small enough we obtain
o \™

(3.60) Y sup |h|"eme | 4] —‘—> G(H))|L
lalj=m h*0 6,\'1 |

(cf. H. Triebel [21, 2.3.2, 2.5.12]).
Our aim is to show that (3. 60) is impossible. Let us look at 4}(8/ox,)™ G(f).
Restricting these functions to P} ; and using (3.58), (3.59) we find

(e
0x,
= KOGk (xy — 25 + hy)) = GO(k*HH(xy — Z4))),
atleastif h = (hy,0,...,0), k < D,and j £ C,. By (3.50), (3.55)— (3.57) this leads to
1/p

o (e eera)

Dhr—1 Ci o1
= A( kzl g (I K@EDmEDEEE g1e > cp ;Z‘; @B+ Dp=anyile >
J ' e« n 11
-t — —— ——— .
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if

(3.62) 7 (e+B)(m+1)p—oan>—1.

Note that, ¢’ is independent of i; > 0. By (3.60) and in view of (3.61)
o« n 1

1
—_———————mzZgo+&—m.
«+pfp a+fp

[— 1 _.*.a(_’.l._s)
min (1, p) p

(3.63)

If B tends to

from below (cf. (3.54)) then

« n 1 1 _)l oan — 1
a+Bfp a+pfp Pt i) - ' 1
P min (1, p)
By the foregoing considerations, for any «, f satisfying
1

((n/p)—s)min(l,p) <a<ow, >0

and (3.54) we have fe F;,w. Letting « tend to infinity we obtain

n_1
(3.64) P —0.
n 1 1
m s 1—-
P a min (1, p)

Hence, for any sufficiently small ¢ > 0 we can find a pair «, § such that (3.54) is
satisfied while (3.63) is not. For small ¢ > 0 and consequently for any ¢ > 0 this
contradicts our assumption G(f)e F¢';.

We have to add two remarks. First, we must look at (3.62). The last inequality

in (2.13) implies "
(——s+1)(m+1)p>n
p

and if « is large enough then also

oc(z-—s+1 (m+1)p—(m_—+1)£>om—1.

p min (1, p)

Now, if we take sufficiently large f satisfying (3.54) the condition (3.62) is fulfiled.
The second remark concerns the compactness of supp f. However, this is an easy
consequence of o > 1 and (3.51). The proof is complete.

Proof of Theorem 3. The proof follows the same lines as above and is easier,
since one has to replace any sequence {Pk, j} ; by a single cube P, only. This is exactly
the case considered in the papers mentioned at the beginning of the proof of
Theorem 2.
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