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ON BOUNDEDNESS OF SUPERPOSITION OPERATORS IN SPACES 
OF TRIEBEL-LIZORKIN TYPE 

WiNFRiED SiCKEL, Jena 

(Received January 29, 1988) 

0. INTRODUCTION 

During the last twenty years many papers devoted to the problem of boundedness 
of superposition operators have been published. We give a short but of course not 
complete history. In 1965 S. Mizohata [11] (cf. also J. Rauch [14]) proved the 
nowadays well-known fact: Hs

2(Rn), s > n|2 is invariant under nonlinear mappings 
of the type TG:f^ G(f), GeC"(Rx). Here HS

2(R„) denotes the Bessel-potential 
space. The same was obtained for Slobodeckij spaces Wp(Rn), 1 ^ p ^ oo, s > n|p 
by J. Peetre [12] (actually he proved the invariance of the more general Besov 
spaces but we do not deal here with this type of spaces in general). Later on D. R. 
Adams [1] proved the counterpart also for the spaces Я*(й„), 1 < p < oo, s > n|p. 

In the eighties a new development was started by Y. Meyer [10]. Using the 
elegant method of paradiiferential operators he gave a new proof of Adams' result. 
Triebel-Lizorkin spaces Fs

Piq(Rn) generalize simultaneously Bessel-potential spaces 
and Sobolev spaces. Th. Runst [15] has shown that the method of paradiiferential 
operatorsworksalsoforthespacesFp^(^),0 < p,q < oo,s > m&x(n|p,(n|q) — n). 
Further extensions, obtained by this method, are due to M. Yamazaki [24] in con­
nection with anisotropic Triebel-Lizorkin spaces and to J. Marshall [9] in the case 
of weigthed Triebel-Lizorkin spaces. In all results mentioned above the inside part 
of the superposition is supposed to be bounded. 

In the case of unbounded functions (in the language of the function spaces con­
sidered here this means s < n|p) the following is known: G. Stampacchia [19] 
showed that the superposition operator TG maps a Sobolev space Wp(R„), 1 á P < °o 
into itself if G' є Loo(Rj). M. Marcus, V. J. Mizel [8] gave characterizations of all 
those functions G: Rx ~> Rt which map via superposition a Sobolev space Wp{R^j, 
1 ^ p < oo into itself. Finally, using characterizations of the underlying function 
spaces in terms of first order differences the boundedness of TG, G' є L^{R^ was 
also obtained for Triebel-Lizorkin spaces Fs

Ptq(Rt^ 0 < p, q < oo, aVA < s < 1 
(here 

?F.€ = n (-T^r : - Л , 
Vmm(l,p,4) ) 
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cf. G. Bourdaud [2], H. Triebel [22], D. E. Edmunds, H. Triebel [4], Th. Runst 
[16]). 

It is obvious there is a gap between 1 and n|p. Concerning this gap B. E. J. Dahlberg 
[3] has proved the following: A C^-function G: Rt -^ Rx which maps a Sobolev 
space Wp{R^, 1 ^ p g oo, 1 + l|p < m < n|p, into itself is necessarily a linear 
function. Using the same construction for the counterexample as B. E. J. Dahlberg, 
G. Bourdaud [2] and Th. Runst [16] have extended this to more general classes 
of functions. In the case of Triebel-Lizorkin spaces we have (cf. Th. Runst [ l6]) : 
Let 0 < p < oo and 0 < q ^ oo. Let n . max (0, (l/p) — 1) + 1 + l|p < s < n|p. 
Then every function G: Rx ~+ Ru Ge C 2 ^ ) , which maps F^J^R^ into itself is 
necessarily of the type G(r) — c . i, c e Rt. In view of this result a natural question 
is to flnd the minimal defect of smoothness in the case of a superposition G(/), 
where the inside part / belongs to a space F^J^R^, 1 < s < n|p and the outside 
part G is a Č°°-function. It is the aim of the paper to answer this question correctly. 
This means we have both affirmative and negative results to show the correctness 
of the number s 

(5- l ) ( (n/p)-5) 
{n|p) - s + 1 

which represents this defect. 
This paper is organized as follows. In Section 1 we collect some information about 

Triebel-Lizorkin spaces. Section 2 contains our main results concerning the super­
position operators TG, G e C™(R±)9 without proofs. Finally, in Section 3 the proofs 
are given. As an important substep ofthe proof we study there the mapping properties 
ofoperators ofthe type TG with G{t) = tß

9 G{t) = jř|M, д > 1. The results are partially 
announced in [18]. 

1. SOME INFORMATION ABOUT TRIEBEL-LIZORKIN SPACES 

If not otherwise stated all functions are defined on the Euclidean n-space R„ and 
so we omit Rn in our notation. 

Let S be the Schwartz space ofa l l complex-valued rapidly decreasing infinitely 
differentiable functions on Rn. By S' we denote its topological dual. If q> e S then 

^ <p(x) = (2ті)-"/2 JRn е-іж« ф({) df , x e, 

denotes the Fourier transform tFq> of q>. As usual, ŠF xcp means the inverse Fourier 
transform of cp. Let ф e S be a function with the following properties 

/ n 1 f<H*) = l if \x\úí, 
{ ) Щх) = 0 if |x| è 3/2 . 
By 

/ i 2\ i<Po(x) := Ф(х) , c>j(x) = tfr(x/2) - ф(х), 
1 ' ' [<Pj{x) := q»!(2-'+1x) , x є R„, j - 1, 2, 
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we define a smooth partition, of unity, i.e. 
00 

£ q>j(x) = 1 for all x e Rn . 
i=o 

Further, observe that 

(1.3) s u p p ^ c {x\xeRH9 У"1 й \x\ й 3 . 2 ' - 1 } , j = 1,2,.... 

Let 0 < p ^ oo and 0 < q S °°- If {fj)7=o *s a sequence of complex-valued 
Lebesgue-measurable functions on Rn then we put 

00 

II/; I ьД)|| = ||{/ЛГ=о | L,(0| = (Ь„ ( 1 |/,(x)|r* dx)1" 
i = o 

(with the usual modifications if max (p, q) = oo). 
Definition 1. Let — oo < s < oo, 0 < p < oo and 0 < q ^ oo. Then we put 

^ = {/|/eS', | / | f iJ*-l2^-^/0^/({)](-)Wyi < »}• 
Remark 1. The spaces JF^q are quasi-Banach spaces (Banach spaces ifmin (p, q) ^ 

^ 1), independent of the special choice of ф (equivalent quasi-norms). As mentioned 
in Introduction these spaces generalize the Bessel-potential and Sobolev spaces. 
More precisely, we have 

(i) F°Pt2 = Lp, 1 < p < oo, 
(ii) F™2 = W£9 1 < p < oo, m = 1, 2 , . . . , where W™ denote the Sobolev spaces, 
(iii) Fs

Pt2 = #p, 1 < jP < oo, — oo < s < oo, where Щ denote the Bessel-potential 
spaces, 

(iv) Fs
p>p = Wp, 1 й P < °°5 s > 0, s Ф integer, where Ŵ  denote the Slobodeckij 

spaces. 
In each case equality means the existence of an equivalent quasinorm. Moreover, 
as it is well-known for the Slobodeckij spaces, any space Fs

pq can be characterized via 
differences and derivatives, at least if s is large enough. We do not go into detail, 
referring the reader to H. Triebel [21, 2.5]. 

Remark 2. The following continuous embeddings are of some interest for us: 

(i) n . f lQ U Lr if s > n m a x ( 0 , ( l / p ) - l ) . 
lâruoo 

(И) К*: G Г! FPiqQW;Q U FM = Fs
p>x , 1 < p < oo 

O<q^oo O<q^co 
for any e > 0. 
Since the last number will often appear in what follows we introduce the notation 
(1.4) Gp = n max (0, (l/jp) - 1) , 0 < p й oo . 

Remark 3. More information and proofs of the facts listed in Remarks 1 and 2 
may be found in H. Triebel [21]. For Bessel-potential and Slobodeckij spaces we 
refer also to E. M. Stein [20]. 
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Since we will consider in general real-valued functions we have tp introduce the 
real-valued part of Fs

pq. 

Definition 2. Let 0 < p < oo, 0 < q ^ oo, and s > ap. Then FPtq is the subspace 
of Fs

pq consisting of all real-valued functions and equipped with the same quasi-norm 
as FL 

2. BOUNDEDNESS OF SUPERPOSITION OPERATORS IN SPACES 
OF TRIEBEL-LIZORKIN TYPE. THE CRITICAL CASE 1 < s < n|p 

As usual, C"(Rx), m = 1, 2, . . . is the set of all functions / satisfying 

(i) / , / ( 1 \ ...,/ (m) are uniformly continuous functions on Rl9 

(ii) \\f\crißt)\\ = max sup |/<'>(t)| < сю. 
O ^ I g m teRi 

Moreover, we put œ 

C"(Ri) = Г! C"(Ri) . 

np 
For brevity we use the notation 

(2.1) Q = Q(S, n|p) = 

(n|p)-s+l 
Now we are in position to formulate the first result. 

Theorem 1. Let 0 < p < oo, 0 < q ^ oo and 
(2.2) ap + 1 < s < n|p . 
Furthermore, let 
(2.3) g > op . 
Lei G: Rt ^ R-jL be afunction with the properties 
(2.4) G(0) = 0 , 

(2.5) GeC*(Ri) . 

Then Tö : /-> G(/) is a bounded mapping of 
u ^,/into n n, . 

0<g^oo O<rgoo 
Moreover, for any r > 0 there exists a constant c such that 

(2.6) \\m\nÀzc(\f\nA + \\f\nÀ\e) 
f o r a l l / e J ^ . 

We shall discuss the conditions of Theorem 1. 

Remark 4. The assumption (2.2) implies 

(2.7) 1 < Q < s , 
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to see this use the equality 

n|p <«-»e (n|p) - s + 1 

So, in view of (2.3), Remark 2 and the properties of G, (2.4) and (2.5), we have 
G(f) e (J Lp for any/e lJ F * r Hence G(/) can be again interpreted as a regular 

1 g p ig oo 0 < q ig oo 

and tempered distribution. Consequently, we can deal with TG as with a mapping 
from a certain subspace of S' into <S' and this makes the theorem meaningful. 

Remark 5. Why we restrict ourselves to the values 1 < s < n|p is pointed out 
in Introduction. Some further remarks to the range 1 < s ^ op 4- 1 are given in 
Section 3, Lemma 3. The restriction of Q to values larger than n max (0,(l/p) — 1) 
has, may be, merely technical reasons. Nevertheless, taking into consideration 
formulae (1.4) and (2.7) we can see that (2.3) is a restriction only in the case p < 
< n|(n + 1) < 1. So, it does not occur in the case ofthe classical spaces of Sobolev 
and Slobodeckij types. 

Remark 6. Let us discuss the conditions on G. G(0) = 0 is necessary, since we 
measure G(f) in spaces which depend on integrability properties. G є C 0 0 ^ ) is not 
necessary, one needs a finite number of derivatives only. More exactly, ifg = NQ + xQ 
where NQ is a positive natural number and 0 < xQ g 1 then G e CNß+i(R1) is always 
sufficient. The dependence of the constant c which appears in (2.6) on G can be also 
calculated more precisely. We can choose 

(2.8) c = c'||G|C^(flO||, 

c' being independent of G. 

Remark 7. Ofcourse, U Fs
pq = Fs

poo. We have prefered the above formulation 
O<4^00 

to make the independence on q more obvious. Such a behaviour (independence on 
the parameter q) is also known for superposition operators of the type Tm: f~^fm, 
m = 2, 3 , . . . (cf. [17] and Section 3), 

To see the reasons which create such a difficult behaviour of the defect of 
smoothness we add an example. To avoid technical difficulties we restrict ourselves 
to p ^ 1. We put 

(2.9) fJtx) = \x\-*(x) 

where ф has the meaning from (1.1). Assume 0 < a < n|p. If 0 < s < n|p then we 
have 

(2.10) / в є П , р о 5 < " - а 
P 

(cf. E. M. Stein [20, Chapt. V., 6.9] or [17]). Let GeC*>(Rj. Let s be fixed, 0 < 
< 5 < n|p. Let m be a natural number with s — m ^ 0. This ensures the equality 
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( i n s ' } 

(2.11) дЩ/а))(х) = £ 1 G<"(/,(x))//,(x) d»'fx(x) 
Í = 1 ßl + ... + ßl = y 

for \y\ <̂  m (j81,..., ß1 denote also multi-indices oflength n, and |y| = yx + ... + y„). 
Let us further assume that we can avoid the influence of the factors G(/)(/a(x)) in 
(2.11). Choose y — ( 1 , . . . , 1, 0,..., 0). In this case the asymptotic behaviour is given 
by m-times 

(2.12) ду(°Ш) (*) ~ \x\'{a+1)m near zero . 
The assumption G(fa) e Fpa implies dy(G(fa)) e Lp for any y, \y\ ^ m and hence, 
from the asymptotic behaviour in the case y = (1 , . . . , 1, 0, ..., 0), we conclude 

m(a + 1) < -
P 

If a tends to ((n|p) — s), this is equivalent to 
n|p 

m < 
(n|p)-s+l . 

By virtue of (2.10) this corresponds to the results stated in our Theorem 1. A com­
parison of the asymptotic behaviour 

dyfa(x)~\x\-*~m
9 |y| = m, | x | ^ 0 

with (2.12) shows that, roughly speaking, differentiation of the composite function 
G{f) creates stronger singularities than differentiation of the original function. 

Since the above calculations give only a feeling of the correctness of Q we add the 
following theorem. 

Theorem 2. Let T > 0. Let 0 < p < oo and 1 < s < njp. If there exists a natural 
number m such that 

(2.13) 1 S m S Q = ~l- < m + 1 
(n|p)-s + l 

and 
(2.14) op g g - m < 1 
then for any non-vanishing (m + l)-rimes continuously dijferentiable and T-
periodic function G: Rt ~» Rx and for any e > 0 there exists a function fe Fs

PtO0 
with compact support and G(/) ф F%*£. 

Remark 8. The main consequence ofTheorem 2 is the fact that Theorem 1 cannot 
be improved in the framework of Triebel-Lizorkin spaces if p is fixed, that is if we 
measure / and G(f) in the scale {Fs

pq; 1 < s < n|p, 0 < q <j oo}. Consequently, 
it is also impossible to improve ,the number g in the case of Sobolev spaces. For 
instance, by the embeddings (ii) from Remark 2 we obtain under the same assumptions 
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as in Theorem 1 that TG is a bounded mapping from W™ into W** and"m0 is the 
integer part of 

n|P 
(n|p)-s+l' 

Moreover, Theorem 2 again with the embeddings from Remark 2 (ii) tells us that 
in general ra0 is the best possible choice. 

Remark 9. The proof of Theorem 2 is based on Dahlberg's counterexample and 
on the characterization of the underlying Triebel-Lizorkin spaces in terms of first 
order differences. It is possible that the assumption g ~ m ^ op (instead of the 
more natural condition g > op) is only technical. The method of Th. Runst [16] 
of proving the negative result mentioned in Introduction is not applicable. He 
reduces the problem via appropriate embeddings to the above stiuation, but the use 
of embeddings leads to changes of our number g. 

Remark 10. The fact that we can choose the function/with a compact support 
indicates there is no further progress if one replaces the function spaces defined 
on Rn by the corresponding spaces on domains. 

Remark 11. The assumption on G to be periodic is not necessary. It can be 
weakened. One needs the existence of a sequence of disjoint intervals {lj]f=o with 
(2.15) infA(/,) ^ B > 0 
and 
(2.16) Ij c {t \teRl9 JG(w+1)(i)| ^A} 
for some positive numbers A and B (A denotes the Lebesgue measure on Rt). Note 
that the disjointness of the intervls Ij implies 

X({t \teRu |G(m+1)(ř)| ^ A}) = oo . 

Remark 12. Also the following consequence of Theorem 1 is of some interest. 
Let 0 < p < oo, 0 < q й oo and 1 < s g 1 + l|p. There exist C°°-functions G 
which do not map via superposition FpA into itself. Thus Theorem 2 is also a sup­
plement to the negative results of B. E. J. Dahlberg [3], G. Bourdaud [2] and Th. 
Runst [16]. 

Remark 13. We add a trivial observation about the defect of smoothness. Let n 
and p be fixed and such that n|p > 1. Put d(s) = s — g(s, n|p). One easily checks 
that lim d(s) = lim d(s) = 0. Since Q < s (cf. Remark 4), the function d(s) has 

s | l spt/p 
a maximum in (1, n|p). It will be assumed at the point s = (njp) — y/(n|p) + 1. 
In this sense we have a little bit surprising effect that there exist the worst spaces 
with respect to the superposition mappings, namely Fs

pq, s = (n|p)—y/(n|p) +1 with the 
absolutely largest defect on smoothness (^f(n|p) — 1)2. Since a function with compact 
support or rapidly decreasing smooth function like e"řcannot satisfy the assumptions 
(2.15), (2.16), the next theorem is also of some interest. 
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Theorem 3, Let 0 < p < 00 and 1 + i|p < s < n|p. If there exists a natural 
number m such that 

(2.17) m š e* := ± + Ш~*Ь < w + ! 
(n|p) - s + 1 

and 
(2.18) o, g £* - m < 1 

iften for every G: Rt ~> ЙІ9 (m + l)-times continuous dijferentiable, G(w+1)(i) 
non-vanishing, andfor any e > 0 ifrere exisfs a functionfeFp^ with compact 
supportandG(f)$Fl*X*. 

Remark 14. Since 0 < s < n|p we have £* < n|p. Moreover 

Q* < s 0 1 + i|p < s . 

This is the réason for restricting s to the values larger than 1 + i|p. 

Remark 15. Affirmative results related to Theorem 3 are not known to the 
author. Nevertheless, a result of G. Bourdaud [2] is of some interest in this direction: 

A twice differentiable function G with GeC^-(R^ and G"eL^R^) maps via 
superposition the spaces Wl and W[, 0 < s < 2, s ф 1 into itself. 

So, there is some hope that one can improve the number g in the case s < 1 + l|p 
with the help of additional integrability properties. 

Remark 16. Everybody who is familiar with the modern theory offunction spaces 
(cf. E. M. Stein [20], H. Triebel [2l]) would ask also for similar results in the case 
of Besov spaces BS

PA. All methods applied here work also in this case. Under the 
same conditions as in Theorem 1 one obtains boundedness of TG as a mapping from 
Bs

PtPQ into BQ
poo (again ~ is used as a symbol of restriction to the real-valued part). 

At the moment it is not clear whether it is natural to restrict the second lower index q 
to thevalues less than or equal to pg in order to ensure G(f) e BQ

po0. Also the question 
whether "00" can be replaced by a smaller value, may be under additional as­
sumptions on the second upper index q of the original, is still open. Only partial 
answers can be obtained via embeddings in connection with Theorem 1. 

3. BOUNDEDNESS OF SUPERPOSITION OPERATORS OF TYPE 
Tt:f-+f, p > 1 

The results of this section are of independent interest but they are also strongly 
related to Section 2. As we shall see Theorem 1 appears mainly as a consequence of 
some boundedness results for the above type of superposition operators. 

3.1. Mappings of type Tm:f^fm, m = 2 , 3 , . . . . We introduce the following 
notation: Let [i > 0. Then we put 
(3.1) v = = s - O i - l ) ( 0 # ) - s ) . 
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Theorem 4. Let m = 2, 3 , . . . . Leí 0 < p < oo, 0 < q й °° an(l 0 < s < n|p. 
Moreover, let 
{3.2) s > n max (0, (l/p) - (l/m)) . 

Thenfor any r, 0 < r <j oo, there exists a constant c such that 

<3.3) I|r|^l|sc|/|FJ|-
f o r a l l / e F ^ . 

R e m a r k 17. Theorem 4 in the case m = 2 is contained in M. Yamazaki [23] 
and also in [17]. An extension to the values m > 2 may be found in [17, Theorem 
12] but with a more restrictive condition on s. To obtain (3.3) in the remaining 
cases one can apply the method of proof presented in [17] in the case m = 2, 
including the following modification. Instead of an iteration of Theorem 4 in the 
case m = 2 one has to use an iteration of the paramultiplication principle (cf. [17, 
formula (3.3)-(3.6)]). That means, one has to decompose the product /m in a finite 

m 

number of infinite sums of the type £ ( Y[ ^"*[<Pfc^/])? where Q is an appropriate 
keß i = l 

subset of {k | ke Rm, kt non-negative integer, i = 1, . . . , m} (recall that q>t has the 
meaning from (l.2)). As in the case m = 2 this decomposition has to be done in 
such a way that the support of the Fourier image of each sum is controllable. 

Because no other new idea is needed we omit the proof of Theorem 4 and refer 
to [17]. Observe that a restriction to the spaces Fpq is not necessary here. The 

meaning of/m in S' is always clear since we have f,fm є U Lp I this follows from 
ІйРйоо \ 

n max (0, (l|p) — (l/w)) ^ n max (0, (l/p) — 1) and from the embedding 

FPtqQLt9 ^ * < ^ _ 
(n|p)-s 

cf. H. Triebel [21, 2.7], which implies 

fm e Lt, where t = —тт^ > 1 
m((n|p)-s) 

R e m a r k 18.The restriction of s to thevalueslarger than n max(0 , ( l /p ) - ( l /m)) 
turns out to be optimal. To see this one can again apply the example of the function fa 

(cf. (2.9)). Inequality (3.2) is equivalent to m((njp) — s) < n and s > 0. It follows 
that (3.2) ensures that (/a)m is а distribution. If in (3.2) equality holds and s > 0 
then (fa)m is no longer a tempered distribution and hence by definition it is not 
contained in any Fs

pA9 — oo < s < oo, 0 < p < oo, 0 < q ^ oo. 
Moreover, as is pointed out in [17], the smoothness sm is optimal if p is fixed. 

3.2. Mappings oftype Tß:f^P, ji > 1. 

Theorem 5. Let pi > 1. Let 0 < p < oo and 0 < s < n|p. 

(i) Let 

(3.4) 
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(cf. (3.1)). Then T/.f-tf» is a bounded mappingfrom 

U Ргл into n F&. 
O<q^oo O<r^oo 

Moreover,for any r, 0 < r ^ 00 there exists a constant c such that 

(3-5) \\r\F^\\uc\\f\FlJ\^ 
forallfeFs

p>ao. 
(ii) Let max (1, ap) < fi < n|p and 

fi — 1 n 
s = 1 + — . 

H> P 
Then Tß:f^fß is a bounded mappingfrom (J Fs

pq into F£f00. Moreover, there 

exists a constant c such that o<e^a> 

(3.6) \\r\Fl4<Lc\\f\FpJ\* 
f o r a l l / є ^ . . 

R e m a r k 19. An easy calculation shows that (ii) represents the limit case of (i)* 
that is 

/ a — 1 n\ 
( ! + - = ^ 
V p pJß 

(cf. (3.1)). Let fi be not an integer. For the function g(x) — ф(х) xu x = ( x l 5 . . . , xn) e 
e йп one derives by explicit calculations 

g e Fs
pq , — 00 < s < 00 , 0 < p < оэ , 0 < q fg 00 , 

g* є FPfP , 0 < p < 00 , ap < s < fi + (l/p) , 
and 

д*фРЇЇш> 0<p<œ, a,<p + (l|p) 

by using the characterizations of Fs
PiP in terms of differences, cf. H. Triebel [21, 

2.5.12, 2.5.13]. The upper bound ft + (ljp) reflects the smoothness of the outside 
function G{t) = tß in the framework of the F-spaces. The reason why ß appears 
in (3.4) instead of the more natural number д + (l|p) is to be found in what follows. 
We are not able to make use of G( i ) e -FJ+^^>" ' ' 1 0 ^ ) , s > 0. We only apply here 
the fact that G(t) є C^**(Rj. Note in this connection that C*'*"(Rx) Ф Fp^,ioc(^i) 
for any p, e > 0. 

R e m a r k 20. Let us look at the condition op < sß. In the case 0 < p ^ 1 it is 
equivalenttOju((n/p) — s) < n. In view of our example treated in Remark 18 this is 
necessary. By virtue of the smoothness of / one can easily derive that sß = 
= s — (fi — 1) ((n|p)- s) is the best possible value. To see this we apply embedding 
theorems for the F-spaces (cf. H. Triebel [21, 2.7]). F r o m / є Fpq, s > op we obtain 

(3.7) feLt, putun|((n|p)-s) 
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and consequently 

(3.8) P є Lt, 1 ^ t й - . 
p ((n|p)-s)p 

F%teQLt, r = n U - - 5 J - a l for e > 0 , 

the optimality of sM follows from the fact that (3.7) and so (3.8) cannot be improved. 
To prove (3.5), (3.6) we need some preliminaries. As usual, 

М/(х) = *ирщіаШ\йУ> 
where the supremum is taken over all balls Q with center x, denotes the Hardy-
Littlewood maximal function. Furthermore, we put 

Alf{x) = f(x + h) - f(x), x, h e Rn . 

Now we can introduce the following notation. Let fi > 0. L e t / є É™ax(ífi). Then we 
define 
(3.9) / ř / ( x ) : = f W š 2 - f c | 4 7 W | M d z , хЕЙ„, fc = 0 , ± l , ± 2 , . . . . 

The crucial step in the proof of Theorem 5 is the following lemma. 

Lemma 1. Let 0 < p < oo, 0 < q ^ oo. Let 
(3.10) арл = n max (0, (l/p) - 1, (l|q) - 1) < s < p . 
Then there exists a constant c such that 

(3.11) ||( £ 2*<»+»>*|4V(*)|ri Я й c\\f\F%J* 
к— — oo 

forallfeL'Zx(1}fl)with 

(3.12) / - i ^ " 4 > j * f l in Ü? 
j = o 

{{<Pj)j is defined in (l.2)). 
Proof. Step 1. We start with some basic inequalities. Let k be a natural number 

and m an integer. Let a be а multiindex of length n. Let {q>k}T=o denote the system 
defined in (1.2). Put cpk(x) = 0 if k = - 1 , - 2 , . . . . Then for all jc, h є ЙЛ5 |h| ^ 2~* 
and all m < 0 we have 
(3.13) |4^ - ' [<r>*+m^/ ] (*) | s2 -* sup I K / " K , ^ ] ) 0 ' ) | | 

| x - , | g2-* |o t | - l 

<Ce2-,z 5ирщщпш, a > o. 
| . f i i^U |1 + |2^|" 

In view of this formula we introduce the maximal function 

(3.14) W / ) W : . , u p Ö ^ M 
yeR„ 1 + \2Jy\a 
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for any / є S', where a is a real positive number which will be fixed later on. Using: 
well-known properties of the Fourier transform and a homogeneity argument, we 
obtain from the estimate (3.13) 

(3.15) K ( ^ [ < P * + ^ / ] ) (*)| ^ c'a 2~k 2*+™(<p*k+J) (x) . 
Here c' is independent of/, x, k and m. 

If m > 0 and \h\ ^ 2~k we obtain 

(3.16) | 4 ( ^ ^ [ ^ ^ # / ] ) ( x ) | ^ 2 sup | ^ - ^ * + - ^ ] M | a 
|x-y|^2-k 

<g 2 ~+i U ' ^ % ^ Š 2-+1(Ф?+«/) « . 
LyeRn 1 + |2k+m(x - y)\a 

Step 2. Let 0 < g < oo. By assumption (3.12) we have 
oo 

(3.17) ||( 1 2*<"+^/(*)|*)1/9 |Ьр|| = 
k= — oo 

00 00 

= ll( I 2'*(ii,,;nHU( I *-4>*+^K*)l'<Hri**U 
m = — oo 

- 1 

gc[||( X 2 ^ s u p | ^ U ( X ^ f o + ^ ) M W ' * l * * l + 
fc=-oo ] z | ^ l m=-oo 

+ ||( £ 2^(fwst Mi-a f ^^*+^/ ] )Mf<Wib , I = e[Tx + T2] -
fc= — oo m = 0 

Substep 2.1. Estimate of Ti. Let d = min(l,pjU,4ju). We shall apply (3.15) 
in connection with the maximal inequality 

(3.18) \W\4h)\\ Ž 4*-49jff] (•) | Lp(k)\\ 

for a n y / є S', any a > n/min(p, g) (cf. H. Triebel [21, 2.3.6], in the case p = pp 
Я. = #/*). This leads to 

00 - 1 

(3.19) T r = | | ( I 2 ^ - ( s u p | ^ U ( 1 ^ - 1 [ % + т ^ Л ) ( * ) І * * ) 1 / * І І ^ І Ґ ^ 
&=-oo l z | ^ l m=-oo 

- 1 oo 
M I 2-*|| X 2 ^ ^ * ^ / r ( x ) ) ^ - | L , , | y ^ 

m = — oo fc = — oo 

йс{ £ 2 ^ ^ ^ > | 2 ^ > , V | L j i J | r s c ' l / | F ^ | r 
m = — oo 

since s < jU, and again c' does not depend on/ . 

Substep 2.2. Estimate of T2. Let d = min (l, p, q). Since 

s > <rn.fl = n 
^min(l,p,4) 

we can choose three numbers Â, a and є suchthat 
(3.20) 0 < X < min( l ,p ,g) , 

l U » -(1 - m i n ( l , p , e ) ) 
/ mm (p, g) 
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pL min (p, q) ' 
p(s|ti - fl(l - Я)) ^ 2г > 0 . 

We start our estimate ofT2 by using (3.16): 

Ji,i*i МЫ І ^ Ь / Л І М І ^ s 
m = O 

00 

й X 2~JWS1 \A\-kzŠF-\q>k+JFft{x)\»bz й 
m = 0 

á Î2mÍU*m М2-^_1[%+»^Л (*)P<fc. 
m = 0 

. SUp | j l - ^ - ! [ ^ ^ # / ] (x)|*1"") â 
l*ISi 

g c І 2-(M | ^^[%^#-/r) (x) 2-<*-^(9W */)M1_A)W • 
m = 0 

Repeated use of Holder's inequality with 
i _ - i 1 - Я J _ _A_ 1 - Я 
qfi qfi qfi Pß pfl p\i 

yields 
Td

2 й с X 2та(в+а(1~ад | |{(М | 2 ^ # - ^ c > f c + ^ / ] | ^ ) ( - ) . 
m = 0 

.(2^фА+и*/)(-)}г=-оо|ьр(дц^ 
Š с f 2^-^-<^*))||{(Ai | 2 * * ^ - 1 [ % + и ^ П (•)}*-— | V ( U l l ' • 

m = 0 

.|{^4*/)r...iugr^. 
Since min (jp/A, g/A) > 1 and а > n/min (рд, #ju) (cf. (3.19)) we can apply the vector-
valued Hardy-Littlewood maximal inequality (cf. Ch. Fefferman, E. M. Stein [5]) 
to Lp/djq/x) and the maximal inequality (3.18) with p = p^ and q = qfi. This com­
bined with (3.19) leads to 
(3.21) т2 <; c'\\{2^3?-\<pk&fY | LP/;.(U|| l***'4<bff] | MUl (1-*>' ^ 

á c'||/1 f # J T ||/1 F^,J|(W)M á c'||/1 F/;J|* . 
Putting (3.21) and (3.19) into (3.17) proves the lemma in the case 0 < q < 00. The 
case q = 00 follows by obvious modifications. 

The limiting case s = fi is also of some interest. Looking for the proof we easily 
see that s < jU is needed only in Substep 2.1 to derive formula (3.19). The counterpart 
of (3.19) is now given by 

I sup 2 * s u p | ^ L ^ % + ^ ) ( * ) N * * M 
fc = 0 , ± l , . . . | z | g l w = - o o 

йс\\ sup £ 2 * 2 " ' ( % * + J 0 ( x ) | L j ^ 
fc = 0 , ± l , . . . m= - o o 

sc'i2Hcp*f)lLMVUc"iflFl^. 
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Hence, we have proved another lemma: 

Lemma 2. Let 0 < p < 00 and ap < fi. Then there exists a constant c such that 

(3.22) || sup 2^\llf(X)\\Lp\\<Lc\\f\Flti\\> 
k = 0,±l,... 

for allfeLlZ41,ß) withf= | *-4<Pj*f] in L';c. 
i = o 

R e m a r k 2 1 . The use of maximal functions of the type (3.14) is standard in the 
modern theory of function spaces provided p < 1. They were introduced by Ch. 
Feiferman, E. M. Stein [6], J. Peetre [13], and afterwards extensively used by HL 
Triebel, cf. [21]. Furthermore, in our proof we have sometimes used the ideas 
of H. Triebel [21, 2.5.10 and 2.5.12]. So, the basic formulas (3.15) and (3.16) may 
be found in his paper. 

Remark 22. The importance ofI%f in connection with the mapping properties 
of the superposition operators was pointed out by Th. Runst [16]. There he gave 
estimates ofI^fin the case of bounded functions. 

P roo f of T h e o r e m 5. Step 1. We collect some preliminaries. Let fx have the 
decomposition p, = N + t , where N is a positive integer and 0 < т ^ 1. Then 
G(i) = tß has the Taylor expansion 

t, J £ gfr-l)..-fr-J + l) w,-,(i _ wy + 
j = o ;'! 

+ 7^Z~ïy ÍÍ(° - wf_1 fa - l)-(M - N + l) v'dv 

for any pair (ř, w) є Rx x Rt. 
For a func t ion /eFp^ , s > ap there exists a set E of Lebesgue-measure zero such 

that \f(x)\ < 00 for all x є Rn \ E. Since we can change our function / on a set of 
measure zero without changing the distribution / we suppose | / (x) | < 00 for any 
x є Rn. Hence, for any pair (x, у) є Rn x Rn we have 

/(*)'="l £ ( i ) ( - i ) w ^ " 1)-"iM" * + ^f(yy-'f(xYf(y)1-' + 
l = 0 7 = O y / /! 

+ ( ^ ^ i ^ S ( » - A j ' ) r i K A * - i ) - » ( M - ^ + i)»,do. 

Recall that {<pfc}£Lo *s t n e system defined in (1.2). The following identity is the starting 
point of our calculations. 

(3.23) ^ " 4 > * # f l G 0 -
riV-1 ' /z\, uříi-ii..řu-1+ік,. . . . . . (2*)-" Ы*-Ч№ - *){X1 £ (!)(-1)-' ^ " ^ " ^ V O T ' A * ) ' 
[ i -o j -oV/ I! 
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+ ( ^~ I y ! ІЇЇЇ (f - /(У))"-1 К» - 0 • • • 0* - * + 1) ^ dt;J dx = 

= (2*T" /2ÍZ Í Г м . і » + Т2Л(у)), у e R„ . 
/ = O j = 0 

Step 2. Estimate of T1}kílJ. Let r > 0. Let sß < ц. Then we choose a number š 
with s^ < s < min (fi, sN) and define 

n 
P = s - sM - n/p 

This ensures the continuous embeddings 

(3.24) Fi^Q fi F£r 
0<r^oo 

and 

(3.25) F ^ Q n П, іГ with p2 = * , j = l,...,iV 
0 < r ̂  00 («/і?) - (^ - J) ((n|p) - S) 

(cf. H. Triebel [21, 2.7]). 
Let 0 < j g N. Obviously sß < s and hence ap < s. By (3.8) we can apply Holder's 

inequality with 

(3.26) ! = fr-M*/*)-g) + Ш-Ь-МШ-') s 1 + 1 e 
p и и Pi p2 * 

This yields 

(3.27) I { 2 " r ^ , , j ) f . o | ^ / . ) N 
á c J / " | LPl\\-\\{2* J ( ^ "V , ) (y - *)/(xyd*)r.o | Ы У | | . 

Observe that the embedding i^>00 Q Ln/((n/p)_s) is continuous and hence 

(3.28) l/'-'|^J*cl/|n..r'-
On the other hand, by Theorem 4 and the continuous embedding (3.25) we have 

(3.29) | | {24F-4<M^]K% | U U I I = I / ' I n,.co|l ^ « I / | n . « F • 
Now, (3.28) and (3.29) together with (3.27) yield 

(3.30) |{2иГ1 Д ,и}£о | Lp(/.)|| ^ c||/1 ПЛ i f ° < J ^ * . 
In the casej = 0 we have to use some properties of our system {q>k}%LQ in connection 
with the well-known formula cJ5" 1 = ô (Dirac distribution). We obtain 

J ( ^ " 4 ) ( y - J c ) d x = 0 if fc= l ,2 , . . . 
and 

J ( # - > o ) ( j ; - x ) d x = c ^ . 

Moreover, observe that p g jup for an appropriate choice of š in a small neigh­
bourhood of sß. This together with sß > ap and Fs

PfO0 Q Lř, p <£ t g n|((n|p) — s) 
(cf. H. Triebel [21, 2.7]) ensures the continuous embedding F* œ Q £_ Applying 

337 



this one obtains 
(3-31) | | { r 1 > M > 0 } r = 0 | b , ( g | | = c V o I ^ | L ř | | = 

-l/W'scf/KJ'. 
Step 3. Estimate ofT2fk. We follow Th. Runst [16]. For any т, 0 < % S 1 we have 

(3.32) 

m Ф - /oorl <** - w{f(x) ~ / g + i/S (* - /wr v - /wT) ̂  • 
Note that 
(3.33) \vr - wx\ й 2\v - w|T 

holds for arbitrary t;, w є Äx. Applying both (3.32) and (3.33), we obtain 

(3.34) \T2tk(y)\ й c { | J ( ^ - V , ) ( j ' - x)f(yy(f(x)-f(y))Nâx\ + 

+ l\{^-lcpk){y~x)\\f{x)-f{y)Yáx}. 

The first summand can be handled as in Step 2. For the estimate of the second we 
apply the formula q>k(') = q>l(2~k+1 •), k = 1,2, ... , cf. (1.2). Since q>^^eS this 
yields 

| ( ^ V t + 1 ) ( z ) | = 2*" | (^ -> t ) (2*z) | ^ cM(l + |2*z | ) -*2* 

where M is an arbitrary positive number and cM an appropriate constant independent 
of k = 0, 1, ... and z є Д„. By means ofthis inequality we find 

(3.35) J | ( ^ " 4 ) (z)| | / W - / ( z + ^) |" dz ^ 

á cM($U[á2-k2
k"\f(y)-f(z + y)Yaz + 

00 

+ I j 2 - * - i | . | i 2 - * - . 2 * - " 4 / 0 > ) - / ( z + j ) | 'dz) g 
/ = 0 

00 

^4Ir""(t./)W. 
/ = 0 

Let J = min(l,jp). With the help of Lemma 1 the following estimate is derived 
from (3.35): 

(3.36) | |{2- J | ( ^ " V , ) (z)| \f(y) - /Or + z) | ' dz j r .o | LJtQY й 
00 

<; c 12-'^||{2^+s>/ř_;/}r=o | J ^ / . ) | ' ž 
/ = 0 

oo 

g c X 2 - ' ^ - " ^ > | | { 2 ^ + ^ / ) r = _ j L , ( U l " ^ c ' | | / |F* to i r> 
ï = 0 

since M can be chosen arbitrarily large. It remains to check whether the assumptions 
of Lemma 1 can be satisfied. Since sß > ap we have fi(n|p — s) < njmin(l,p). 
By the continuous embedding mentioned at the end of Step 2 we know that fe 
e Ln|{{n|p)-sy a n d hence by the above inequality a l s o / є L^c. Moreover, fi > 1 implies 
F°^2C == ^T anc* t n e identity (3.12) appears now as the so-called Nikol'skij repre­
sentation o f / i n F°>2 (cf. H. Triebel [21, 2.5.2]). Finally, consider (3.10). We have 
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to guarantee 
0pf00 = n max (0, (l/p) - 1) < š , 

but this is equivalent to sß > ap. 

To complete the calculations in this step observe the continuous embedding 

(3.37) rPi„QF%in 

which follows from 
n 1 / n\ s n 

s — 
P H> \ P/ V> № 

As a consequence of(3.34), (3.36) and (3.37) one obtains 

\*тгл\Чі.)\*'Ѵ\г,Л'-
This combined with (3.30)-(3.3l) implies 

(3-38) \\r\F\J\Sc\\f\FlKY, 
whenever s is chosen in a sufficiently small neighbourhood ofsM. But Fgj00 Q 
Q П F^andso(3 .35) fo l lowsfrom(3 .38) . 

0^r<oo 

Step 4. The proof of (ii) is principally the same as that of part (i).We only have 
to apply Lemma 2 instead of Lemma 1 since sß = /í. The proof is complete. 

R e m a r k 23. We have proved more than is stated in Theorem 5 (i). We have 
shown in (3.38) t h a t / i s contained in a proper subspace of П FP"r since U Fp,<x>> 
w h e r e s > s ^ a n d 0<r=°° p<p 

p = n|(s - sß + (n|p)) 

is a proper subspace of П Fs£r. One can ask for the best possible choice of š. 
0<r^oo 

Ommitting details we observe that it can be s = š under stronger assumptions on s 
and p. Results in this direction in the case ^ = m, m = 2, 3 , . . . may be found in 
[17]. We return to this problem in Remark 28. 

Let us look again at the proof of Theorem 5 and let us collect the properties of 
G(t) = tß, fi > 1 applied there. 

First, we have used the fact that G admits a Taylor expansion of order N where N 
is an integer with 0 < pi — N ^ 1, or equivalently G: Rt ^> Rx is an iV-times con­
tinuously diíferentiable function. Secondly, certain growth behaviour of G and of its 
derivatives, namely 

(3.39) |G(I)(OI ^ *,|f|*-1, teRl9 1 = 0 , l , . . . , i V , 

cl appropriate constants, was applied in (3.28) and (3.31). Finally, the Hölder 
continuity of order т = fi — N of the iV-th derivative of G, 

(,.40) sup Ща - ̂ M s . < «, , 
U,toeRi \t0 — t^y 
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was used in (333). If 

(3.41) G(Z)(0) = 0 , f = 0 , l , . . . , N , 

then (3.39) is a consequence of (3.40). Hence, we come to the following result. 

Theorem 6. Let N be a natural number. Let G: R1 ~> R± be an N-times con­
tinuously differentiablefunction satisfying (3.40) and (3.41) with some т, 0 < т g 1. 
Put p = N + т. Then Theorem 5 remains valid with TG:fh^ G(/) instead ofTß. 

R e m a r k 24. The smoothness of G and of its derivatives ensures the Lebesgue 
measurability of G(f). Moreover,sinceF*> 0 0QL„ / ( („ / p )_ s ) and sß>ap, wehave 
G(f) e U Lp Q S'. So we can interpret TG as a mapping of a subspace of S' into S'. 

1 âP^oo 

R e m a r k 25. The restriction to real-valued functions appears in connection with 
(3.33). This inequality holds no longer true if one replaces v, w e R1 by z0, z1 є C 
However, in the case of the function G(z) = |z|M5 z є C all the above considerations 
are meaningful, the counterpart of (3.33) holds true also in the complex case, and so 
Theorem 6 is valid for the whole space Fpq instead of its real-valued part. 

R e m a r k 26. Ofcourse, Theorem 5 or 6 can be extended also to the values s > n|p. 
Results in this direction may be found for instance in Th. Runst [16] and the refer­
ences given there. Mappings of the type / ^ | / | д , fi > 0 are studied also in M. 
Marcus, V. J. Mizel [8], (д è 1), H. Triebel [22], D. E. Edmunds, H. Triebel [4] and 
Th. Runst [16]. The very interesting case д = 1 has been considered only in spaces 
ofsmoothness s ^ 1. Nonetheless, in view of G. Bourdaud's result stated in Remark 
15 it is at least meaningful to ask whether the mapping/ ^> j / | is bounded in spaces 
with smoothness s < 1 + i|p. 

3.3. Proof of Theorem 1. In order to make the proof more transparent we prove 
at first a weaker assertion than that stated in Theorem 1. Recall that 

в - ^-~. 
(w /p ) - s + l 

Lemma3. Let 0 < p < oo, 0 < q ^ oo and 

(3.42) 1 < 5 < n|p . 

Furthermore, let 
(3.43) Q > ap . 

Let G: Rx ^ Rl be a function with G(0) = 0 and G e C°°(W1). Then TG:f^ G(f) 
is a bounded mapping of Fpq into FQ

poo. Moreover, there exists a constant c such 
that 

(3.44) II<WI^JMI|/KJ + II/KJ') 
forallfeF^. 
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Proof. Step 1. First we shall study the mapping properties of TH, where 
N GU)(Ö\ H(t) = G(t)-Y ^P<J> teRl9 

j=i j \ 

and N is a positive integer which will be fixed later on. Let s be fixed. Then we choose 

n|p 
pL = Q = '— . 

( и / р ) - 5 + 1 
This implies 

fi - 1 Ti 

s = 1 + £ . 
fi p 

Consequently, by the assumptions (3.42) and (3.43) we obtain 

(3.45) max ( l , ap) < fi < n|p . 

Now we choose N such that 0 < pi — N g 1. 

Obviously, H fulfils the assumptions of Theorem 6 for д. Hence we obtain 

(3-46) | | H ( / ) | F ^ | | z c | / | F ^ | ^ 

by applying the analogue of Theorem 5 (ii). 

Step 2. Let us consider the remainder. It is a polynomial of order N. Therefore 
we make use of Theorem 4. Assumption (3.43) implies (3.2) for any m, m ^ N, 
because (3.2) is equivalent to m((n|p) — 5) < n,s > 0, and 

Gv < g iff g((n|p) - s) < ~~-—-
mm (1, p) 

(use Q = n|p — Q((n|p) — s)). This implies 

(3.47) ||G(/) - H(f) | F%,4 = ||( І ¥M A (/) | рЦ è 
llVj-=i j ! / II 

s*z!^H^..Isczl/'|J7..ls; 
j = i j ! j = i 

á^l/in.j + l/ІП..П. . 
Now, (3.46) and (3.47) yield (3.44). 

R e m a r k 27. If one compares Lemma 3 and Theorem 1 then the fact that the 
lower bound 1 for s in (3.42) is better than that in (2.2), at least if case p < 1, is of 
certain interest. 

P roo f of T h e o r e m 1. Our assumptions ensure 

(3.48) A e ( / ( x ) ) = G < " ( / ( , ) ) l ( x ) in S', feF^, 
OXj CXj 
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since the right-hand side belongs to L*°c and G є C1(ff1) (cf. M. Marcus, V. J. Mizel 
W). 

Now, we use a lifting property ofthe underlying spaces. Since Q > op9 we have for 
any q > 0 

G(f)eF^ iff G(f)eF%^ and ^G(f)eF^1, j = l,...,n 
OXj 

(this is a small modification of Theorem 2.3.8 combined with formula (2.5.9/37) of 
H. Triebel [2l]), and also the appropriate quasi-norms are equivalent. 

Applying Lemma 3 to G(1)(/(x)) we obtain G(1\f)eF6
Pt00. Moreover, since 

GeC*>(Rj, we have G^\f)eFe
p>OQ n Lœ. Thus, the right-hand side of (3.48) can 

be interpreted as a product of type h . g, where h e FQ
po0 n Lœ , 0 < g < n|p and 

geFs~q\op < s - 1 < n|p. 

Such products have been studied in [17]. Theorem 7 ofthis paper leads to 

df 
G<"(/) 

dxj 
Ï7Q~ 1 
* P , ? 

s c ( | | G < ^ ( / ) | L ^ | | + 

+ ||G<*>(/) | L j 1 " * ' - " ' " ||G<"(/) | i%fl* ' - '> ' " ) 3/ 
dx, 

for any q, 0 < 4 íí co. 

In view of (3.44) and of the above stated equivalence this implies 

д \W) ПЛ ^Ml|G(/)|n.o + E 
i = i dx G(f)]n^ < 

+ .I(I/In, 
ac(I/|n.. 

sc'(B/ln.-B + i/|**F.-l' + 
+ I/In.ooir^^ll/I^l!)a 

+ |/ln..h 
since g(s ~ 1) (і?/и) + 1 =̂ £ and 1 < 1 + (s — 1) p|n < Q. The proof is complete. 

R e m a r k 28. Similarly as in Remark 23, even in the case of operators TG: f ~> G(f), 
G є C^(^i ) one can look for an improvement of Lemma 3 or Theorem 1. We know 
that f o r / є Fs

PfO0 the best possible space with first lower index p containing the com­
position G(f) is П FQ

P,r- Now, it is meaningful to ask whether it is possible to find 
0<r^oo 

G(f) in a space F*Ptq9 where s > Q and š - (n|p) = Q-(n|p) (cf. H. Triebel [21, 2.7]). 
Consequently, a necessarycondition for such an improvement is G(f) e Lp. However, 
this is not true in general. One needs further assumptions. The easest way is to assume 
s u p p / to be compact. Then one can follow the method described in this section 
respecting this new point of view. The crucial point is an improvement of Theorem 4. 
For m = 2 this can be found in [17]. The result is as follows. Let 0 < p < oo, 
0 < q ^ oo and 1 < s < n|p. Let s((n|p) - s) < n. Let G є C"(RX) and G(0) = 0. 
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L e t / e i ^ and let s u p p / be compact. Then G(f) e F*ttO0 and 

(3.49) | | G ( / ) | F ^ | | s c ( | | / | F ^ | | + | | / | F ^ | | 0 , t = 
s((njp) - s + 1) 

However, the constant c depends on the volume of supp/ . 

3.4. Proof of Theorems 2 and 3. P roof of T h e o r e m 2. As remarked above our 
counterexample goes back to B.E.J .Dahlberg[3] and was later used also by G. 
Bourdaud [2] and Th. Runst [16]. The proof of Theorems 2 and 3 is a refinement 
of G. Bourdaud's proof, added here more or less for completeness. 

Step 1. Properties of the outside function G. There exist real numbers a, b,A 
with 0 ^ a < b < Tand A > 0 such that |G(w + 1)(f)| ^ A if t e [a, b]. By the mean-
value theorem we have |Gw(i0) » G(m)(t)\ 2> A\t - t0\ if t, t0e[a, b] . Since G is 
jf-periodic we obtain 
(3.50) |G("l)(ř0) - G<">(i)| ^ A\t - í0 | 

if there exists an integer j with t, t0 є [a + jT, b + j T ] . 
We put aj = a + j T a n d b^ = b + jT. 

Step 2. Construction of the inside part of the superposition. Let u be a real-
valued, infinitely difTerentiable and compactly supported function with 

(3.51) u(xu ...,x„) = u(x) = xx if |x| <̂  1 , 

tt(x) = 0 if |jc| ^ 2 . 

Let a, ß > 0. Let {zj}f= t be а sequence of points in Rn with 

(3.52) i n f | z ' - z * | = | z ' - z ' + 1 | = i , ; = l , 2 > . . . . 
k / 

We put 

(3.53) / (x) = f / Ц Д х - z ' ) ) , x є Я и . 
j = i 

Applying some known properties of the dilatation operator (cf. H. Triebel [21, 
Proposition 3.4.1]), we o b t a i n / є F*>00 for a, ß satisfying 

(3.54) ß + a(s - (n/p)) < - l/min (1, p) 

at least if s > Gr 

Step 3. Construction of the cubes Pkj. As usual, we denote the components of 
x є Rn by xu ..., xn. Let us define two sequences of cubes by 

(3.55) PkJ = [x\xeRH, \xr-zk
r\ < j r = 2 , . . . , n , 

{ 2 V(n) ka 

üjk-^ß) < Xí __ zfc < fyfc-c+ЯІ , /c,j = 1,2, . . . 
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and 

(3.56) Plj = }х\хє. 2,...,n, 

a,.fc~<"+« < x, 

' " 2V(n)k"' 
<«L±Aife-(«^)) fc,j = l ,2 , . . . . 

2 j 
We list some properties of these cubes. 

IfO й bj ^ kr|{2 V") then x e PkJ implies |x - zk\ < l/(2k*), and hence by (3.52) 
(3.57) P f e J n P ř f I = 0 

if к Ф r, 0 ^ (j + l)Tu k'[(2y/n), and 0 й (1 + l ) T z r*|(2Jn). For brevity 
we introduce the notation 

Ck: = _ J ^ _ - 1. 
2y/(n)T 

Using (3.57) we find 

(3.58) . / W = ^ ^ ( x i - 2 * ) if x e P k J , ; ^ Q . 

The advantage ofthe sequence {JP*j)*j consists in the fact that for h = (й1э 0 , . . . , 0) 
with 0 < /îi < i(bj - üj) k~(a+ß) we have the implication 

(3.59) x є P*j => x + й є Pkj . 

We put Dh : = ( l ( b - a) ft-*y/<*+*> in view ofthe condition on hx. 

Step 4. Estimate of (d|dx^ G(f). To this end we make some use of a lifting 
property of the underlying function spaces. The assumption G(f) e FQ

p
+£ necessarily 

implies (d|dxif1 G(f) e Fe
p*£~m and since op < Q + є - m < 1, by choosing e > 0 

small enough we obtain 

(3.60) £ sup|^|m~^~c 

| a | = m йФО *C)>> < oo 

(cf. H. Triebel [21, 2.3.2, 2.5.12]). 
Our aim is to show that (3.60) is impossible. Let us look at dl(d|dXi)"1 G(f). 

Restricting these functions to P*j and using (3.58), (3.59) we find 

K0<*/))w = 
= fc<«+«m(G<m)(ka+/,(xi - A + h)) - G(m)(Jk"+'(x, - z\))), 

atleastifft = (hi,0,...,0),k < Dhandj ^ C*.By(3.50),(3.55)-(3.S7)thisleadsto 
д 

(3.61) Al 
дх1 

G(f))(x) 
P \1/P 

dx\ > 

Dh - 1 Ck Dh - 1 

^ A( £ I Jpft ,.£ (в+/ , ) (и+1)рЛ? dx)í/p ^ САД X fc<e+™* + i>p-«)i/j> ^ 
fc=l j = l ' fc=l 

а n 1 1 

^ c'hl
 a+ßp *+ßp 
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if 

(3.62) (a + ß) (m + 1) p - осп > -1 . 

Note that, c' is independent of пх > 0. By (3.60) and in view of(3.61) 

/^ ^~\ 0C ft 1 1 ^ 
(3.63) — m g; g + г — m . 

a + ß p a + ß p 
If ß tends to 

1 (n 
+ a m i n ( l , p ) \p 

from below (cf. (3.54)) then 

a n 1 1 1 an 

a + ßp oc + ßp P j n „ s ^ 

KP ) m i n ( l , p ) 

By the foregoing considerations, for any a, ß satisfying 

y < a < co , ß > 0 

((n|p)-s)mm(l,p) 

and (3.54) we h.a.vQfeFs
poo. Letting a tend to infinity we obtain 

n __ 1 

(3.64) — p ; - ^ g . 

^ - 5 + 1 - Ì 1 

p amin( l 5 j p) 

Hence, for any sufficiently small г > 0 we can find a pair a, ß such that (3.54) is 
satisfied while (3.63) is not. For small s > 0 and consequently for any є > 0 this 
contradicts our assumption G(f) e Fe

p*£. 
We have to add two remarks. First, we must look at (3.62). The last inequality 

in (2.13) implies . 
(- - s + lJ(m + l)p > n 

and if a is large enough then also 

(n Л / л (m + l)p 
a s + 1 (m + 1) p - * ^ - > an - 1 . 

\P J m i n ( l , p ) 
Now, if we take sufficiently large ß satisfying (3.54) the condition (3.62) is fulfiled. 
The second remark concerns the compactness of supp/ . However, this is an easy 
consequence of a > 1 and (3.51). The proof is complete. 

P roo f of T h e o r e m 3. The proof follows the same lines as above and is easier, 
since one has to replace any sequence {Pkj}j by a single cube Pk only. This is exactly 
the case considered in the papers mentioned at the beginning of the proof of 
Theorem 2. 
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