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1. INTRODUCTION

The different kinds of open mapping and closed graph theorems play central role
in the implicit function theorem, existence of solution of nonlinear systems, optimiza-
tion and so on ([1]—[4] and their references). These theorems represent abstract
forms of approximation processes in some sense, so in the heart of their proofs are
iterative and induction methods. The most familiar iterative method, which is used
in some situations, is the Banach iteration. Dmitruk, Miljutin and Osmolovskij [1]
give a very nice collection of applications of a type of open mapping theorems and
they emphasize that the iteration used by them is different from the Banach’s one.
They call their induction process Ljusternik iteration. Obtaining a theorem of the
closed graph type Ptdk [3. 4] has found a simple but very applicable theorem about
families of sets in complete metric spaces which gives the abstract background of
many results containing iterative processes in existence proofs. We shall call this
theorem or the iterative process represented by it Ptdk iteration. The aim of the
present paper is to show that the iterative and induction process of Ptdk is stronger
than the Ljusternik iteration in the sense that open mapping theorems of [1] can be
proved by a suitable form of Ptak iteration.

In the section 2 we deal with a slight modification of Ptak’s theorem and so called
uniform open mapping theorems will be deduced from it. The main part of the paper
is the section 3. Here we give such a form of Ptak’s theorem which uses the notion
of the system introduced by Miljutin [ 1]. This theorem yields open mapping theorems
which have non-uniform character. Along the way known theorems are proved and
new assertions are obtained. The methods of proofs are simple and elementary
and we shall use some ideas of Ptak [3, 4].

V. Ptak kindly informed me of his paper [5] after the reading of this article and I
discovered that our Theorem 3.1 can be found in [5] in a little different form.
Recently a systematic treatment of applications of the Nondiscrete Induction Prin-
ciple has been published [6].

We are grateful to professor Ptak for his helpful suggestions after reading of the
first version of cur paper.
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2. NOTATIONS

Now we introduce some notations. R, R,,R% denotes, respectively, the real,
nonnegative real, positive real numbers. If X is a metric space with the metric d, A is
a non-void subset of X and r > 0, the B(4, r) stands for the open ball around A
with radius 7 i.e. B(4,r) = {x € X: d(x, A) < r}. By 2(X) we denote the set of all
subsets of X. If Yis another metric space, then a rela’uon P from X to Yis a subset of
X x Y, Pis closed relation if it is closed subset of the product space X x Y. We write
yePxand xe Py iff (x, y) e P. Similarly for A = X and B = Y we write

P(A) = U{Pa:ae A} and P '(B)=U{P 'b:beB}.

By R(P) we denote the range of the relation or function. Let {4,} be a sequence of
subsets of X, the limit inferior of the sequence is defined by liminf 4, = {x e X:

n—+ o

Ix, € A,, x; > x}. If F is a function from X to 2(Y) then the subset {y € Y 3x, - X,
yn€ F(x,), y, — y} iscalled the limit superior of the function F at X. The composition
of function will. be denoted by o, and f" denotes the n-th iterate of the function,
f0 is the identity mapping by convention.

3. UNIFORM CASE

In this section we deal with a slight generalization of the induction theorem of
Ptak [3, 4], which yields a uniform open-mapping theorem. Among the corollaries
it can be found the closed graph theorem of Ptak [3]. The first theorem is a discrete
form of the induction principle and it can be considered as a lemma for the second
theorem of the section, but it seems to be interesting in itself.

Theorem 3.1. Let X be a complete metric space. Suppose that the sequence of
nonnegative numbers {1,},{0,} and the mapping Z:{z,} — P(X) satisfy the
assumptions

(1) 5,20, Yo, <+w,

n=0
and
(2) Z(t,) < B(Z(ty41), 0,) forall n.
Then the inclusion
(3)' Z(to) = B(liminf Z(z,), 2 0.)
holds.

Proof. Let x4 € Z(to) Since Z(1o) = B(Z(t,), 0o), there is a point x, such that
x; € Z(ty) and d(x,, x;) < @o. Similarly by Z(t,) = B(Z(t,), 0,) we have got an x,
such that x, € Z(rz) and d(x,, x,) < ¢;. Continuing this process we have a sequence
{x,} such that ,
x,€Z(t,) and d(x,_. x,) < 0y
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for n = 1,2, .... That gives at once

m+n

d(xn’ xn+m} é d(xm xn-l—l) + d(X,,+1, xn+2) + d(x,,, xn+m) < z Qj
j=n
thus by (1) the sequence {x,} is fundamental and by completeness of X converges
to a limit x,, and d(x,, x) < Y. ¢;. The inclusion x, € liminf Z(z,) is evident by (1)
i=o

n— o

and the definition of the limit inferior, hence (3) follows at once. ®

Theorem 3.2. Let X be a complete metric space. Let t, be a positive number
and o« and y be mappings from (0,1,) to R,. Suppose that the inverse mapping

of @ o™ ! exists and B is a mapping from (0, t,) to R(a). If a mapping Z: R{or) U
V] R(ﬁ) — ?7(X) and the mappings o, 8,y satisfy the assumptions

(1) lim (=t o By (1) =0, a(t)=0 if t-0,

(2 o(t) = Zoyo(a‘l o) (1) < + o0,

and

©) Z(«(1)) = B(Z(B(1), ¥(1))

for all t€(0, to), then the inclusion

4 Z(o(1)) = B(limsup Z(h), o(1))
h=+0

holds for all t € (0, t,).

The existence of &~ ! is not an essential assumption, since an arbitrary right inverse
of a: (0, t) — R(e) (which always exists from R(a) to (0, ,) would serve the purpose.

Proof. Let t€(0, t) and x, € Z(e(t)). Taking («™" o B)"(¢) in (3) instead of ¢
we have the inclusion

Zo a(((x_l o ﬂ)n (t)) o= B(Z o a((a‘l o ﬂ)”+1(1)), Yo (a—l o B)n (t))
for all n. From this and by (1) and (2) the sequences
T, =@ e B (t), en=70(a"t0op) (1)
and the mapping Z . a satisfy the assumptions of Theorem 2.1, thus the inclusion
Z(a(t)) = B(liminf Z - afz,), o(1))
n—>+ o0
holds. Since by (1) liminf Z(,) = limsup Z(h), the inclusion (4) is proved. ®
u—>+ oo h—0
Now we assert a uniform open mapping theorem.

Theorem 3.3. Let 1o be a positive number and o and y be mappings from (0, t,)
to R,. Suppose the inverse mapping of « a~' exists and B is a mapping from
(0, t0) to R(x). Let P be a close relation in the product X x Y of metric spaces X
and Y, where X is supposed complete.
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If the relation P and the mappings &, B,y satisfy the assumptions

(1) lim (a™* “"(t)=0 a(t) =0 if t >0,
@) ) = Syt < 4
and

(3) B(Px, (1)) = B(P(B(x, (1)), B(1))

Sor all t€ (0, ty), then the inclusion

@ B(Px,o{0) < P(B(x. 1)

holds for all t € (0, t,).

The remark made after the Theorem 3.2 concerning the existence of the inverse
of a is valid here, too.

Proof. Let t, €(0,t,) and ye B(Px, a(t,)). Since B(y, «(t;))n Px + 0 is equi-
valent to x € P~ '(B(y, «(t,)), y € B(Px, a(t,)) if and only if x € P~ '(B(y, «(t,)).

Define now the mapping Z: R(a) U R(B) — 2(X) by the following way

(3.1) Z(t) = P~1(B(y, 1)) forall teR(x)u R(f).
According to this definition y € B(Px, «(t,)) is equivalent to
(3.2) - x € Z{o(t,))

If x e Z(a(t)) = P~(B{y. oft)) (te(0,1)) then Pxn By, aft)) + 0 thus ye
€ B{Px, u(t})). Hence using (3) we have y € B(P(B{x, y(1)). B(t)), which implies
B(y, B{t)) 0 P(B(x,y(1)) 0 ie. P~ '(B(y,B(t)) n B(x.y(t})) =0,
so we get finally x € B(P™'(B(y, f(t)), ¥(t)) = B(Z(B(1)), (t)). Hence we have
(33) Z(o(t)) = B(Z(B(1)), y(1)) forall 1€(0,1,).

This inclusion and assumptions (i) and (2) give that Z, a, f, y satisfy the conditions
of Theorem 3.2, and so the inclusion i

(34) Z(o(t)) = B(limsup Z(h), o(t))
h—>+0
holds.
We now show that limsup Z(h) < P™'y. (Actually equality holds but it is un-
ho+0
necessary to us.) Indeed, if u e limsup Z(h), then there are sequences {h,}, {u,}

. h-+0
such that h, - +0, u, e Z(h,) and u, — u. By u,€ Z(h,) = P~'(B(y, h,)) we have
Pu,n B(y, h,) # 0, thus there is a sequence {y,,} such that y, e Pu, and y, = y.
Since P is closed this gives y € Pu i.e. u € P~ 'y, which was asserted.

Using the previous observation and (3.4) we have

Z(«(t)) = B(P™'y, o(1)) -
Applying this inclusion for t = t, by (3.2) we get x € B(P™'y, o(t;)), which is equi-
valent to y € P(B(x, 6(t,}), hence the inclusion (4) holds for all ¢, € 0,15). =
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Take the mappings o B,y in the previous theorem B(t) = ofet) and (1) = 1,
where 0 < ¢ < 1. Then we get the following

Corollary 3.4. Let X be a complete metric space and Y be a metric space. Suppose
that ty is a positive number, « is an invertible mapping from (0,1,) to R, and
¢€(0,1). If a closed relation P in X x Y satisfies the assumption

(1) B(Px, oft)) < B(P(B(x, 1)), ofet))
for all t€(0, t,), then the inclusion
(2) B(Px, oft)) = P(B(x, t|(1 — ¢))
holds for all t € (0, t,), provided that o(t) — 0 if o — 0.
Since cl (P(B(x, t)) = N B(P(B(x, t)), 6), the previous theorem is a generalization
of the following one.

Corollary 3.5. (Closed-graph theorem of Ptdk [3]. Let X be a complete metric
space and Y be a metric space. Suppose that t, is a positive number and P is a closed
relation in X x Y. If there is an invertible mapping «:(0,1t,) > R* such that
(1) B(Px, oft)) = cl(P(B(x, 1))

Sor all t (0, t,), then the inclusion
(2) B(Px, oft)) = P(B(x, 1))

holds for all t,t' €(0,t,) and t < t'.

4. NON-UNIFORM CASE

First we introduce the notion of the total system in a metric space, following [1].

Definition 4.1. Let X be a metric space with the metric d, and let </ be a relation
in the product X x RS.. We shall say that s/ is a total system for X, if (x, o) € o,
(x',e')eX x RS and d(x,x') + o' < ¢ imply (x', 0') e .

Let S be a subset of X. The most important example of the total system is the
family

{(x,e)e X x R%: B(x, 0) = S},
which will be denoted by T(S).
Now we can assert a non-uniform version of the iteration process of Ptak.

Theorem 4.1. Let X be a complete metric space and let & be a total system for X.
Suppose that the sequences of nonnegative numbers {t,}, {0,} and the mapping
Z: {1,} - P(X) satisfy the assumptions
(1) 7, = 0
(2) Qn+1n+1—<—1‘-n fOT n=0’192a-'->
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and

(3) Z(t,) N {xe X: (x,1,) € &} < B(Z(t,+4), 0n)

for all n. Then the inclusion ‘

4) Z(to) N {x e X: (x, 7o) € &} < B(liminf Z(z,) n {x: (x, 7,) € &}, 7o)
holds.

Proof. Let xq € Z(to) and (xo, 7o) € &. Using (3) with n = 0, there exists a point
x; € Z(t,) such that d(x,, x;) < @o, thus by (2) we have d(x,, x,) + 7 < 7, and so
(x4, 74) € . Similarly from x, € Z(z,), (x;, 7,) € & and by (3) we have got a point
x, € Z(t,) with d(xy, X,) < @4, thus by (2) d(x;, X,) + 7, < 7, so that (x,,7,) € .
Continuing this process we have a sequence {x,} such that

(4.1) x,€2Z(t,), d(X,-y,%,) < 04—y and (x,7,)eL for n=12,...

This gives at once
* m+n

(X Xpim) S d(Xpo Xpi1) + oo + AXpome1s Xppm) < Z 0;-
J

=n
m+n

From (2) we get easily ) @; < T, — Tp4m+1, thus the sequence {x,} is fundamental
j=n

by (1), and so using the completeness of X it converges to a limit x,, and d(x,, X,,) <
< 7o. The relation x,, € liminf Z(z,) n {x € X: (x, 7,) € &} follows from (4.1), (1)
and the definition of the limit inferior. ®

Theorem 4.2. Let X be a complete metric space and < be a total system for X.
Let t, be a positive number and o and y be mappings from (0, to) to R,. Suppose
that the inverse mapping of o a™' exists and B is a mapping from (0, t5) to R().
If a mapping Z: R(a) U R(B) - P(X) and the mappings o, B,y satisfy the as-
sumptions

0} (1 By ()= 0, al)=0 if 10,

©) P B + BT S (o B D),
and

(3) Z(e(t)) N {x e X: (x, t) e &} = B(Z(B(t)), y(t))

for all te(0, ty), then the inclusion
(4) Z(t) n{xeX:(x,t)e A} = B(lirfi%p (Z(h) O {x: (x, h) e £}), 1)

holds for all t € (0, t.).

It would be sufficient to assume that «, 8, y are defined only on the set {t: dxeX
(x, 1) € #}. The invertability of a is not necessary, since ™' can be choose a right
mverse to o.

Proof. Let (xo, t) € &, t€(0, t,) and xo € Z(r). Taking («~' - )" (t) in (3) in the
place of t we get

Zoof(a o B (1)) {x: (x, (@7t o By (et} <
S B(Zoofa o B)FL(t), vol(a™toB) (1),
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for n =0,1,2,.... Hence the sequences
T, ="' By (t) and @, =yo(a" o By (1)
and the mapping Z o a: {7,} — 2(X) satisfy the assumptions of Theorem 4.1, so that
we have the inclusion
Z(«(1)) 0 {x: (x, t) e o} < B(liminf (Z o oz,) N {x: (x, 7,) € #}), 1),
which gives (4) immediately. e

Next we turn to investigate non-uniform open mapping theorems.

Theorem 4.3. Let X and Y be metric spaces, & be a total system for X and suppose
that X is complete. Let t, be a positive number and o and y be mappings from
(0, to) to R,. Suppose that the mapping o is invertible and B is a mapping from
(0, to) to R(a). If a closed relation P in X x Y and the mappings a, B,y satisfy
the assumptions

1 lim(a”:-')’;(t)—»O, a(t)y>0 if t>0,
) vola e B (D) + (@7 e BT = (@7 B (1)
and

©) B(Px, o(t)) = B(P(B(x, ¥(t)), A(t))
for all (x, t)e o, t€(0, t,), then the inclusion

4) B(Px, oft)) < P(B(x, t))
holds for all (x, t)e o, t (0, t,).

The remark made after Theorem 4.2 concerning the existence of ™! is valid here,
too.

Proof. Let (X, 7)e o, 1€(0,1,) and y € B(Px, «(f)). It is easy to see, as at the
beginning of the proof of Theorem 3.3, that these conditions coincide with
(4.2) xe P"Y(B(y,7)), i€(0,%) and (x,f)eo.
Define now the mapping Z: R(«) U R(8) —» #(X) by the following way
(4.3) Z(t) = P~Y(B(y, 1)) forall teR(x)u R(B).
If xe Z(«(t)) = P~'(B(y, «(1))), te(0,15) and (x, t)e o, then ye B(Px, oft)) thus
by (3) y € B(P(B(x, y(1)), B(t)), which gives as in proof of Theorem 3.3

x e B(P™'(B(y, B(1)), v(1)) = B(Z(B(1)), (1)) -

Hence we have
(4.4) Z(o(t)y n {x: (x, t) e £} = B(Z(B(1)), 7(1))
for all t € (0, t,).
By (4.4), (1) and (2). the assumptions of the Theorem 4.2 are satisfied, thus the
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inclusion
(4.5) Za(t)) n {x: (x,t)e &} = B(li,r-r.lilf)p (Z(h) 0 {x: (x, h) e A}), 1)

holds for all t € (0, t,).
We now show that limsup (Z(h) n {x: (x, h)e o}) = P 'y.
. h=+0

Really if u is an element of the left-hand side, then there are sequences {h,}, {u,}
such that h, - +0,u, — u,u, Z(h,) and (u,, h,) € . Byu, e Z(h,) = P"(B(y, h,))
we get Pu,n B(y, h,) + 0, thus there is a sequence {y,} such that y, e Pu, and
Y. — . Since P is closed this gives y € Pui.e. u € P~'y. Hence by (4.5) we have

Z(oft)) " {x:(x, 1) e L} = B(P" 'y, 1)
for all 1 € (0, t,).
Applying this inclusion for t = 7 by (4.2) we get x € B(P™'y, ), which is equivalent
to y € P(B(x, 7)), hence summarizing we have finally
B(Px, «(f)) < P(B(x, 1)) forall (x,i)e o, 7e(0,1),
which was to be proved. H

We mention two special cases of the previous theorem, the following corollary
is a theorem of Dmitruk [1, 2].

Corollary 4.4. Let Y be a metric space and let X be a complete metric space
and o a total system for X. Let 0 £ b < a.If a closed relation P in X x Y satisfies
the assumption

(v B(Px, at) = B(P(Bx, (1 — bla) t), bt
for all (x,t)e o and t (0, ty), then the inclusion

2 B(Px, at) = P(B(x, t))

holds for all (x, t)e o and t € (0, t,).

In the Theorem of Dmitruk P is a function from X to Y so the Corollary is a slight
generalization of his theorem. It is easy to see that Dmitruk’s Theorem is the best
possible consequence of the previous theorem provided that the mapping «, B,y
are products with any constants. The linear form of Dmitruk’s Theorem can be found
in [7] even in a stronger form.

Proof. Take a(t) = at, p(t) = bt and y(t) = ((a — b)/a) ¢ in the previous theorem.

u

Choose (1) = x{et) in the Theorem 4.3. The condition (1) is satisfied if 0 < e < 1,

the condition (2) holds if (1) < (1 — &) 7, thus we have the following Corollary.

Corollary 4.5. Let Y be a metric space, X be a complete metric space and < be
a total system for X. Let t, be a positive number and a be an invertible mapping
from (0, 1,) to Ry. If P is a closed relation in X x Y and 0 £ ¢ <1, and the
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inclusion
(1) B(Px, o(t)) = B(P(B(x, (1 — &) 1), «(et))
holds for all 1€ (0, t,) and (x, t) € &, then the inclusion
(2) B(Px, (1)) < P(B(x, 1))
holds for all te (0, t,), (x, 1) € &, provided that a(t) >0 if t > 0.
Similarly as in the previous section this yields a closed graph theorem closely

related to Theorem of Ptak [3].

Corollary 4.6. Let Y be a metric space, X a complete metric space and o a total
system for X. Let t, be a positive number and o be an invertible mapping from
(0, to) to R,.If Pis a closed relation in X x Yand 0 < ¢ < 1, then the inclusion

(1) B(Px, o(t)) < cl(P(B(x, (1 — &) 1)) forall 1€(0,1,),(x,1)e o/
implies the inclusion
(2 B(Px, «(t)) = P(B(x,t)) forall te(0,t,),(x,t)e .

Finally we remark that the open mapping theorems have also discrete forms ac-
cording to iteration processes (Theorem 3.1,4.1).
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