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ON THE LATTICE OF CONVEX SUBSETS
OF A PARTIAL MONOUNARY ALGEBRA

DANICA JAKUBIKOVA-STUDENOVSKA, KoSice

(Received December 7, 1987)

The lattice of all convex subsets of a partial monounary algebra will be denoted
by Co(A4, f).

In the paper [5] the author described all partial monounary algebras (A, g) having
the property that Co(A4, g) = Co(A4, f), where (A, f) was a given partial monounary
algebra. '

In the present paper necessary and sufficient conditions for a lattice Lwill be found
under which there exists a partial monounary algebra such that Lis isomorphic to
Co(4, f). .

An analogous question concerning the lattice of all convex subsets of a partially
ordered set was investigated by G. Birkhoff and M. K. Bennett [4]; for related
questions cf. also Bennett and Birkhoff [3], and Bennett [ 1], [2].

1. PRELIMINARIES

By a (partial) monounary algebra we understand a pair (4, f), where A4 is a non-
empty set and f: A —> A is a (partial) mapping. Let % be the class of all partial
monounary algebras. To each (4, f) € % there corresponds a directed graph G(A,f) =
= (A, E) without loops and multiple edges which is defined as follows: an ordered
pair (a, b) of distinct elements of A belongs to E iff f(a) = b.

A subset B = A will be called convex (in (4, f)) if, whenever a, by, b, are distinct
elements of A such that by, b, € B and there is a path (in G(A4, f)) going from b, to b,
and containing the element a, then a belongs to B as well.

"The system Co(A,f) of all convex subsets of a partial monounary algebra (A,f)
is partially ordered by inclusion, and it is a lattice.

Let Z be the set of all integers and N the set of all positive integers. Let (4, f Yeu,
neN, xe A. Put fOx) = x. If f"~*(x) and f(f"~'(x)) exist, then we put f"(x) =
= f(f""'(x)). If x,ye A, f'(x) =fm(y) for some n,meN u {0}, then we write
x =, y. The relation =, is an equivalence relation on A. A partial monounary
algebra (4, f) is said to be connected, if A/= is a one-element set. If X € A/ =,
then X is called a connected component of (4, f).
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1.1. Notation. Let ¥, be the class of all monounary algebras which are isomorphic
to (Z, f), where f(i) = i + 1 for each i € Z. Further, let ¥, be the class of all con-
nected monounary algebras possessing a one-element cycle, and let ¥~, be the class
of all connected monounary algebras having a cycle C with card C > 1. The class
of all connected monounary algebras (A, f) which possess no cycle and such that
there are distinct elements x, y of A with f(x) = f(y) will be denoted by the
symbol ¥"5.

In [5] the following result was proved (cf. [5], Thms. 5.3.2, 5.3.3, 5.4.2 and 5.5.2):

(R) Let (4, f) be a connected partial monounary algebra. Then there is (4, g) €
€V U ¥ UY¥,uU ¥, such that Co(4, f) = Co(A4, g).

First we shall investigate conditions under which a lattice Lis isomorphic to some
(A.f)er(ief0,1,2,3}).

If Lis a lattice, then the set of all atoms of Lwill be denoted by A(L}; if no misun-
derstanding can occur, we shall write simply A4 instead of A(L}.

If (A, f) € %, then we shall denote the lattice-operations in Co(4, f) by the symbols
v €, A . Further, we shall write a € Co(A4, f), instead of {a} € Co(4, f).

From [5] (1.5, 1.6) we obtain
1.2. Lemma. If (A, f) € %, then Co(A, f) is a complete atomic lattice.

1.3. Definition. (cf. [4]). An atomic lattice Lis said to have Carathéodory rank 2
if, whenever p is an atom of L and B = A, then the relation p <V, b yields
p £ by v b, for two suitably chosen b,, b, € B.

(¢) Condition. Lis a complete atomic lattice having Carathéodory rank 2.
1.4, Lemma. If L = Co(A. f) for some (A, f) € U, then Lsatisfies the condition (e).
Proof. This follows from 1.2 and from the definition of convexity for subsets of A.

1.5. Lemma. Let Lbe a lattice satisfying the condition (¢), (4, f) e %, A = A(L).
Further suppose that the following conditions are valid:

(i) If Be Co(A,f). then B = {pe A: p < Vyep b}.

(i) If ue L, then {pe A: p < u} € Co(A, f).

Then @:B — Vyep b for Be Co(A,f) is a bijective mapping of Co{A,f) onto L
and ¢~ '(v) = {pe A: p < v} for each ve L.

Proof. Assume that B, C € Co(4, f), ¢(B) = ¢(C). Then Vyep b = V cec ¢; denote
this lattice element by the symbol u. Hence (i) yields that B = {pe 4: p = u} = C,
therefore ¢ is injective. Now let ve L. Then (ii) implies that {ped:p = v} e
€ Co(A,f); put D = {pe A: p < v}. Hence

@(D) = Vyen b = v
and ¢ is surjective. Further, 9 "!(v) = D = {pe A: p £ v}.
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1.6. Lemma. If the assumption of 1.5 is valid and ?(B) = Ve b for each
Be Co(A, f), then ¢ is a lattice isomorphism of Co(A, f) onty L-

Proof. According to 1.5, ¢ is a bijection. If B, C € Co(4, f), p € C, then obviously
®(B) = Vbes b £ Veec ¢ = ¢(C). Ifu,ve L,u < v, then ‘P_l(u) ={pedipsujc
c {ped:p <o} = ¢ !(v) (in view of 1.5).

(«1) Condition. Assume that L satisfies (¢). For each x,ye A, X ¥V there are

uniquely determined n = n(x, y)€ N and distinct atoms x = uo(X, y‘), uy(x, y),
.o u(x, y) = y such that, whenever 0 < i < j < n, then

{pedip S ulx,y) voulxy)} = {udx, y) uisa(x, p), . ui(x, y)} .

1.7. Lemma. If the condition (al) is satisfied, then n(x, y) = n(y- x) and w(x, y) =
= Uy py—ilV, X) for each x, ye A, 0 £ k £ n(x, y).

Proof. The assertion is obvious.

1.8. Lemma. Let the condition (x1) be satisfied, x,ye 4, 0 =i <Jj = n(x,y),
0L k=j-1i Then

(l) n(ui(x’ ,V), uj(x7 .V)) = j - i’

(ii) uk(ui(xa Y), uj(X, y)) = ui—i—k(x’ ,V)'

Proof. Put n = n(x, y), a = uyx, y), b = uj(x, y). Then in view of («1) we have
k n(a, b) = n(uyx, y), ux, y)) = card {pe A: p < ux, y) v u(x, )} = 1 =

= card {u,(x, y), u;ps(x, p), ccoufx, p)} = 1 =j — 1,
thus (i) is valid. Further put v, = u;,,(x, y) for 0 < k £ j — i. We have v, = a,
vji_;=Db.Let0 < m < I <j— i. According to («1) we get
{pe A: p é ui+m(x7 y) v ui+l(x’ y)} = {ui+m(x7 y)’ ui+m+ l(x» y)’ AR} ui+l(x» Y)} >
ie., .
{pEA: p :<: U V vl} = {Um, Um+ 15 -‘-avl} .

Therefore a = vy, vy,...,0;_; = b are exactly the elements a = vy = uy(a, b),
vy = uy(a,b),...,b =v;_; =u;_[a,b), since such elements are uniquely deter-
mined in view of («1).

1.9. Lemma. Let (A,f)e ¥ U ¥y U ¥ 3. Then L= Co(A,f) satisfies the con-
dition (al). Moreover, if xe A, y = fx) + f*"'(x), ke N, then n(x,y) =k,
uyx, y) = fi(x) for each 0 < i < k.

Proof. In view of 1.4, Lsatisfies the condition (&). If x, ye A, x ¢ {f*(y): ke N U
v {0}}, y ¢ {f*(x): ke N U {0}}, then x v y = {x, y} and we can set n(x, y) = 1.
Assume that y = f*(x) # f*7!(x), ke N. Then

x vy = {x, f(x), o fH(x)}
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Put ux, y) = f(x) for each ie {0, ..., k}, n(x, y) = k. We infer that ulx,y) *
+ uyx, y) and
(1) w6 9) v ux, ) = {u(x, p), iy (5 V) o 050 9]

foreach0<i<j=<k. If meN and x = Vg, Uy, ---» Um = y are distinct elements
of A such that

(2 0; V= {0 0p4 4,00 U

for each 0 < i <j < m, then (in view of (1) and (2))

(3) {uo(x, V), cou(x, ¥)) = ug(x, y) veu(x, ) =x vy =
=0V, = {v5, 0y, ..0r Unj -

Thus k = m, v; = u,(x, y) for some permutation ¢. Since ug(x, y) v < uyx, y)
is covered by (X, ¥) v u,,(x, ) for each i € {0, ..., k — 1}, we get that ¢(i) = i
for each i {0, ..., k}.

1.10. Lemma. Let Lsatisfy the condition (a1). Suppose that a, b, c € A, ua, b) =
= uy(a, c) for some i,jeN, i < n(a,b), j < n(a,c). Then i = j and uya, b) =
= wfa, c) for each 0 < k < i.

Proof. Let the assumption hold. Then («l) yields
i + 1 = card {uq(a, b), u,(a, b), ..., ufa, b)} =
= card {pe 4: p < uy(a, b) v ufa, b)} =
= card {pe A: p < uya, ¢j v ufa, ¢)} =
= card {uo(a, ¢}, us(a, c), ..., ufa, ¢)} =j + 1,
therefore i = j. Let 0 < k < i. According to 1.8,
ula, b) = u,,ofa, by = uuq(a, b), ufa, b)) =
= w(ug(a, c), ufa, c)) = up,o(a, ¢) = wfa,c).
1.11. Lemma. Let Lsatisfy the condition (al). If x, z, vy, v, € A are distinct and
Z S0y V Uy, X S Uy V Uy, then either x £z Vv,0orx £z v v,

Proof. Let x, z, v,, v, be distinct elements of 4 such that z < v, v v,,x S v, v
v v,. Then («1) yields :

z = ufvy,v,) forsome 0 <i < n(vy,uv,),
x = ujv,,v,) forsome 0 <j < n(vy,v,).
If i <j, then
{ped:p=zvuo) ={ped:p=<uyv,,v,) Vv ufv,v,)} =
= {ug(vy, v2), ..., u vy, v,)}

and this set does not contain u (vy, v,) = x, thus x £ z v v,. Analogously, if i > j,
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then
{PE A:p=z vV Uz} = {PE A:p £ “i(Up vz) Vv un(v;,vz)(vl’ Uz)} =
= {uy(vy, 02), -+ s Un(oyon(V1> U2)}
which implies that x = u;(vy,v,) £ z v v,.
'1.12. Lemma. Let L satisfy the condition (ocl), let a,b,ce A be such that b <
< a v c. Then n(a, b) + n(b, ¢) = n(a, c).

Proof. Let the assumption be valid. Since b < a v ¢, (ocl) implies that there is
0 < i < n(a, ¢) with b = ua, ¢). We have

(1 ufa, ¢) = b = uyqpfa, b),
hence 1.10 yields

(2) i =n(a,b).
Further, by 1.7, b = ua, ¢) = . -c, a), thus
(3) ) Unaey-i€: @) = b = u, . p(c, b).
According to 1.10 we get
4 n(a,c) — i = n(c, b).
In view of 1.7, (2) and (4) we have n(a, ¢) = n(a, b) + n(c, b) = n(a, b) + n(b, c).
1.13. Lemma. Let Lsatisfy (al), let y, z, ¥, v be distinct elements of A such that
zsyvrrsyvoThenz=Z<yvovandr <z v v
Proof.Sincez Z yvr,r <y v, weget
(1) z
(2) r=ufy,v) forsome 0 <j<n(yv).
Then uy(y, v) = r = u, (v, r) and 1.10 implies

3) - j =n(y,r),

I

ufy,r) forsome 0 < i< n(y,r).

Il

(4) u(y,v) = uy,r) foreach 0 <k < n(y,r).
According to (1) and (4) we have

() z=uly.r) =ufyv),

hence

(6) zZyVvo.

Further, in view of («1), (1), (3) and (5),

r=uy,0) e {uly, v),....uy,v), .., Uiy Vs 0)} =
={pedip = ufy,v) v ), v)} ={ped:pLzv v},
and therefore

W) r<zvo,
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2. THE CLASS 7,

In this section we shall investigate conditions under which the lattice L is iso-
morphic to Co(4, f) for some (4, f) € ¥,.

(«2) Condition. L satisfies the condition (al) nad whenever x, y € A, then there
iszeAsuchthatx +z+y, xSy vV z

(«) Condition. The condition (a2) is valid and whenever x, y, z € A, then either
xSyvzory<xvzorz=xV).

2.1. Lemma. If (4, f) € ¥, then L = Co(A, f) satisfies the condition (a).

Proof. Let us show-that (Z, f) with f(i) = i + 1 (for each i€ Z) satisfies ().
According to 1.9, (al) is valid. Let x, y be integers, x less than y. Then

xeyvex—-1D={x—-1xx+1..y}
and (a2) holds. If x, y, z € Z, x is less than y, y is less than z, then
yexv@z={x,x+1,..,y,y+1,..,z}.
Therefore Co(Z, f) satisfies the condition ().
2.2. Lemma. Let Lsatisfy the condition (oz). There are distinct elements a,a’ € A
with{peA:p<ava}=1{aa}.

Proof. In view of («2), card A > 1. There are a,be 4, a #+ b. According to
(al), uy(a, b) * ug(a, b) = a; put a’ = u,y(a, b). We get
{ped:p<ava}={peA: p=uyfab)v uab)}=
= {ug(a, b), u,(a, b)} = {a,a’}.
2.3. Lemma. Let L satisfy the condition () and suppose that x,z,v,,v, are

distinct elements of A such thatx <z v vy, x £ z V v,. Then either vy < x Vv v,
or v, £ X V 4.

Proof. Let the assumption be valid and let v; £ x Vv v,, v, £ x v v,. According
to () we obtain

(1) XL, Vo,.
From (1) and 1.11 we obtain
(2 zXv, vVo,.

In view of (2) and («) we have either v; < z v v, or v, < z Vv v,. Both the cases are
analogous; let us suppose that

3) vy SzZV U,
holds. Since x £z v v, x £z vV v,,
4) x = ufz,v,) = ufz,v,) forsome 0=i=n(z,v,), 0=j<n(z,0,).
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According to 1.10,

(5) i=j, x=uz,v;)=ufz,0,).
Further, 1.7 implies
(6) X = Up(zop-i{V2: 2) -

Moreover, x < v, V vy, hence x = w(v,, v,) for some 0 < k < n(v,, v,) and this,
in view of (6), yields

(7) k=n(z,0;) — i, X =ty -V, Z) = Up(z op—ilV2, V1) -
Further, according to 1.7 we have
(8) un(z.vz)-i(vb 1’1) = un(uz.vl)—u(z,uz)-i-i(vls Uz) .
From (5) and 1.7 we get
) x = u(z, V1) = Upz oy-i(1, 2)
therefore (8), (9) and 1.10 imply
(10) n(vy, v4) — n(z,v,) + i =n(z,v,) — i,
n(vy, v1) + 2i = n(z,vy) + n(z,v,).
According to (3) and 1.12 we obtain

(11) n(vy, v1) + n(vy, z) = n(v,, z),
thus (10) and (11) yield
(12) i=n(z,vy).

Therefore x = u(z, v3) = U, 0,y(2, v;) = vy, Which is a contradiction.

2.4. Lemma. Let Lsatisfy the condition (a) and let a, a’ € A be as in 2.2, ne N.
(1) There is ve A such that a' £ a v v, n(a’, v) Zn
(ii) There is x € A such thata < a’ v x, n(a, x) 2 n.

Proof. We shall show only (i); the proof of (ii) is analogous. From («2) it follows
that there is v, € 4 such that

(1) af+v,+a, a<avo.
If n(a’, v,) 2 n, then the assertion is valid. Let us prove that there is v, € A with
(2) a’'<avov,, na,v)>n(a,v).

Then we obtain by induction that (i) holds.
In view of («2) there is v, € A such that

(3) aF+v,%+v,, v1£aVu,.
If ' = v,,then v, < a v a,ie., v, €{a,a’} (in view of 2.2), which is a contradic-

tion to (1). Hence the elements a, a’, vy, v, are distinct and (1), (3) and 1.13 (with
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a,a’, vy, v, instead of y, z, r, v) imply

4) a <avo,,

(5) v, <a Vvo,.

Then 1.12 and (5) yield

(6) n(a', v;) = n(a’, vy) + n(vy,v;) 2 n(a’, v,) + 1 > n(a’, vy).
Combining (4) and (6) we obtain that (2) holds.

2.5. Notation. Let L satisfy the condition () and let a, a’ € A be as in 2.2, x € A.
Then 2.2 and () yield that some of the following conditions is valid:

(1.1) x=a,
(1.2) x+xas<xva,
(1.3) a<xva.

Let % be a mapping of A4 into Z which is defined as follows:
0, if x=a,
ux)={-n(a,x), if x+a<sxva,
n(a.x), if a <xva.

2.6. Lemma. Let L satisfy the condition (). The mapping »: A — Z defined
in 2.5 is surjective.

Proof. Let ke Z, k > 0. From 2.4 (1) it follows that there is ve A with a’ <
<avon(a,v) =k Put x=u,_,(a’,v). Then x<a'Vvv,a’<avvand 1.13 (wit
v, x,a’,a instead of y, z, r, v) yields that a’ £ a v x whenever ¢’ + x 0. If x =4’
or x = v, then obviously ¢’ < a v x, hence )

(1) ad<avx.

According to 2.5 we have x(x) = n(a, x). Further, (1) and 1.12 imply

2) #(x) = n(a,x) = n(a,a’) + n(a’,x) = 1 + n(a’, x)
(by 2.2). Since x = uy_4(a’, v) = Uy, o(a’, x), 1.10 yields
(3) n(a’,x)=k—1.

From (2) and (3) we obtain that x»(x) = k.

Letme Z, m < 0. Inview of 2.4 (i) there is u € A such thata £ @’ v u, n(a, u) =
= —m. If we put x = u_,,,(a, u), then analogously as above we get thata < a’ v x,
n(a, x) = —m, thus »(x) = m.

2.7. Lemma. Let L satisfy the condition («). The mapping x: A — Z defined
in 2.5 is injective.
Proof. If xe A, »(x) = 0, then x = a, since n(a, x) = 1 for x * a. Let ke N,
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x, y € A with x(x) = %(y) = k. Then 2.5 yields
(1) k = n(a, x) = n(a, y),
(2) ad£xva, ad<yva.

According to (2) and 2.3 we get that either x < y v a’ or y £ x v a’; without loss

of generality assume that x < y v a’. Thus (al) implies
(3) x =uja’,y) forsome 0= )< n(a,y).
Further, (2), 1.12 and 2.2 yield

k = n(a,x) = n(a,a’) + n(a’,x) = 1 + n(a’, x),

k=n(a,y)=1+n(a,y),
hence

(4) n(a’,x) =n(a’,y)=k—1.
Since X = Uy, 0(a’, X) = u,-4(a’, x), 1.10 (in view of (3)) implies j = k — 1, thus
(5) . x = u_q(a’,y).
Further, according to (4) and (5),
. X =ty pf@sy) =y

Now let me Z, m < 0, z,ve A with x(z) = »(v) = m. Then
(6) ' —m = n(a, z) = n(a,v),
7 agzva, afvvad, zfazxv.

According to 2.3, either z S v v a or v £ z v a; we can suppose that z < v v a,
ie., z = ufa,v) for some 0 < i £ n(a, v). Analogously as above,

Z = Uy(2) = ua,v),

and 1.10 yields i = n(a, z), thus i = n(a, z) = n(a, v) (by (6)),
Z = Uy ,(a,0)=v.
2.8. Notation. Let the assumption of 2.5 be valid. For x € 4 put
(%) = %7 0dx) + 1).

. 2.9. Lemma, Let the assumption of 2.5 hold and let f be as in 2.8. Then f is a unary
operation on A and (A,f)e ¥ .

Proof. According to 2.6 and 2.7, x is a bijective mapping of A onto Z. Then f(x)
is defined for each x € 4 and it is obvious that (4, f) € 7.

2.10. Lemma. Let Lsatisfy the condition («) and let f be as in 2.8. If Be Co(A4, f),
then B = {pe A: p £ Ve b}.

Proof. Let Be Co(A,f). Then B < {pe A: p < Vyep b}. Suppose that pe A4,
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P < Ve b. According to (¢), P < x v y for some x, y € B, thus (al) yields
(1) p=uyx,y) forsome 0=i<n(x,y).

Since (4, f)e ¥y, without loss of generality we can assume that y = f*(x), ke
€ N U {0}. Then 1.9 implies

(2) n(x, y) =k s

(3) fi(x) = ujx,y) foreach 0<j<k.
By (1)—(3) we obtain

@ p=rix), 0i<k, y=rx),

therefore pe x v°y < B.

2.11. Lemma. Let the assumption of 2.10 hold. If ue L, then {pe A:p S uj e
€ Co(4, f).

Proof. Put B = {pe A: p < u}. Assume that x,yeB, y = fx), ke N, p =
= fi(x), 0 < i < k. According to 1.9 we obtain

(1) n(x,y) =k, p=ufxy),
therefore p < x v y < u. Hence p e B and B e Co(4, f).
2.12. Corollary. Let L satisfy the condition () and let f be as in 2.8. For Be

€ Co(A, f) put ¢(B) = Ve b. Then ¢ is a lattice isomorphism of Co(4, f) onto L,
and (A, f)€ V.

Proof. The assertion follows from 2.9, 2.10, 2.11 and 1.6.

2.13. Theorem. Let L be a lattice. Then L = Co(A,f) for some (A,f)e ¥, if
and only if Lsatisfies the condition ().

Proof. The assertion follows from 2.12 and 2.1.

3. THE CLASS 7,

In this part we shall investigate conditions under which a lattice L is isomorphic
to Co(4, f) for some (4, f) e ¥';.

3.0. Notation. Let L be a lattice, x, € A. The pair (L. x,) will be said to satisfy
the condition (B°), if L satisfies (1) and if, whenever p,a,be A, a +p+ b, p <
<a v b,theneithera < b v xgor b < a v x,.

(B) Condition. There exists xo € L such that the pair (L, x,) satisfies the con-
dition (B°). :

3.1. Lemma. If (A,f)e?’y, x,€ A with f(x,) = x;, L= Co(A,f), then the
pair (L, x,) satisfies the condition (B°).

501



Proof. Put x; = x,. According to 1.9, Lsatisfies (al). Leta,b,peA,a + p + b,
pea v®b. Then cither b = f¥a) for some keN, k > 1 or a = f¥(b) for some
keN, k > 1. We can suppose that b = f*(a). Hence

bela f(a),...fa),....xo} = a vx.

3.2. Notation. Let (L, x,) satisfy the condition (B°). Put
. Xo, If X=X '
9= {30 :

uy(x, x0), if xed— {xo}.
3.3. Lemma. Let Land f be as in32. If a,be A,a+b,b<av x5, 0=Zi<
< n(a, b), then f(ufa, b)) = u;,,(a, b).
Proof. Let the assumption of the lemma be valid. Since b < a v x,, («1) yields
that b = ua, x,) for some 0 < j < n(a, x,). In view of 1.8,
(1) - i < n(a, b) = n(ug(a, xo), ufa, xo)) =j.
Let n = n(a, x,). We obtain
2) f(uia, b)) = uy(ufa, b), xo) = uy(uu(a, xo), u;(a, xo)), ufa, xo)) .
According to 1.8 and (1) we have
ui(uo(a, xo), “j(a, xo)) = “o+i(a, xo) s
hence (2) implies
(3 f(ufa, b)) = uy(ufa, xo), w,(a, xo)) .
Since i < n,ie.,i <n — 1, 1.8 yields

“1(ui(as xo)a un(a; xo)) = ui+1(a7 xo) s
thus, by (3),

(4) fuga, b)) = u;44(a, xo) -

Further we obtain (in view of 1.8 and (1))

(5) uira(a, b) = uiy(uola, xo), uj(a, xo)) = u;41(a, xo) .
Therefore (4) and (5) yield

(6) f(ufa, b)) = u;y(a, b).

.3.4. Lemma. Let L and f be as in 3.2. If Be Co(A,f), then B = {pe A: p <
é VbeB b}

Proof. Let Be Co(A.f). Obviously, B < {pe A: p <V, b}. Assume that
P = Vi b, pe A. According to (¢), p<a v b for some a,be B and we can
suppose that a + p *+ b. In view of (f) we obtain that either a < b v x, or b <
< a Vv xy Let b £ a v x, (the second case is similar). Put n = n(a, b). Then 3.3
implies :
(1) f(ufa, b)) = u;4(a, b) foreach 0<i<n.
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Thus
f(a) = f(uo(a, b)) = uy(a, b),
. f3(a) = f(uy(a, b)) = uy(a, b), ...,
f™(a) = ufa,b)=>b.
Since (al) is valid and p £ a v b, we obtain
p e{ug(a, b), us(a, b), ..., u,(a, b)} = {a,f(a),...,f"(a) = b} =a v®b < B.
3.5. Lemma. Let L and fbeasin3.2.1fue L, then{pe A:p < u} e Co(A,f).

Proof. Let ueL. Put B={pe A: p < u}. Assume that a,be B, b = f"(a)s
¢ = fa), xo = f™(a) + f™ *(a), where 0 < i < n £ m. We shall prove that c € B.
Since (4, f) € ¥4 (f(xo) = xo in view of 3.2), 1.9 yields

(1) n(a, xo) = m,n(a, b) =n,

(2 ufa, xo) = f(a) = uya, b).

Further, («1) implies

(3) {ped:p <av b} ={uya,b),ua,b),..., uab)}.

We have 0 < i < n, thus (2) and (3) imply
ce{ped:p<avblc{ped:ip=su}=B.

Therefore B e Co(A4, f).

3.6. Corollary. Let L and f be as in 3.2. For Be Co(A,f) put ¢(B) = Vep b.
Then ¢ is a lattice isomorphism of Co(A, f) onto L and (A, f)e V4.

Proof. According to 3.2, (4, f) € ¥"y. Further, 3.4, 3.5 and 1.6 imply that ¢ is
a lattice isomorphism of Co(4, f) onto L.

3.7. Theorem. Let L be a lattice. Then L= Co(A,f) for some (A,f)e ¥, if
and only if Lsatisfies the condition (B).

Proof. The assertion follows from 3.1 and 3.6.

4. THE CLASS 7,

In this section we shall characterize the lattices L satisfying the relation L~
= Co(4, f) for some (4, f) e ¥,. ‘
(y1) Condition. L satisfies the condition (g) and there is a finite set C = A with
card C > 1 such that
() Veec ¢ covers ¢, for each ¢, € C;
(i) for each x e A there is a uniquely determined c(x)e C with x v ¢(x) %

i VceC c; )
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(iii) if xe A—C, yeC, peA, p<x vy, pfyVx), then p<x v ¢(x)
and c(x) £ x Vv y;
(iv) if x, ye A = C, ¢(x) # c(y), then {pe A:p = x v y} = {x, y}.
4.1.1. Remark. The condition (i) in (y1) is equivalent to the condition
(i) ¢4 V €3 = Veecc for each ¢y, c,€ C, ¢y + ¢,
4.1.2. Remark. If (al) is valid, we shall always take a fixed set C with the property
as in (y1). ¢
4.2. Notation. Let Lsatisfy the condition (y1). If ¢ € C, we shall denote
X(c) = {xeA: e(x) = ¢},
L(c) = {Vses b: B = X(c)} .
From (y1) (i) we conclude
‘A= UecX(c), X(c;)nX(c;) =0 for ¢y,c,€C, ¢y Fc;-
4.3. Lemma. If (y1) is valid, then {pe A: p £ V.cc} = C.

Proof. It is obvious that C = {pe A: p < V. cc}. Let pe A4, P < Veec ¢ and
suppose that p ¢ C. In view of (y1) (ii) there is ¢(p) € C with

(1) P Vv C(p) % VceCc .
Further, card C > 1 and 4.1.1 yields that there is a € C with
(2) av C(p) = VceC c.

Then p < a v ¢(p), hence

(3) pvep)<avp).
Combining (1), (2) and (3) we obtain

(4) avep £pvep)<avp).

Then p v ¢(p) + a v ¢(p) and p v ¢(p) < a v ¢(p). Therefore
C(p) <pyVv C(p) <ayv c(p) = VceCc,
which is a contradiction to (y1) (i) (¢(p) is not covered by V ec ¢).

(v) Condition. The condition (y1) is satisfied. If c€ C, then the pair (L(c), 0)
satisfies the condition (B°).
4.4. Lemma. If (4, f) € ¥, then L= Co(A, f) satisfies the condition (7).

Proof. The condition (¢) is satisfied by 1.4. Let C be the cycle of (4, f). If x ¢ 4
then there exists a least non-negative integer k such that f*(x) € C. Put ¢(x) = 14x).
It is routine to verify that the conditions (i)—(iv) of (y1) are valid. Let c € C. pop

X(e)={xed:ic(x)=c} ={c}u{xed — C:fi(x) =c, f*7'(x) ¢ C, keny

L(c) = {Viss b: B = X(c)} .
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It is obvious that L(c) is a sublattice of Co(4, f). Further, put

x, if x=c
9(x) = flx), if xeX(c)— {c}.
Then
(1 1) = Co(X(e) ).
Since (X(c), g) € ¥y, g(¢) = ¢, 3.1 implies that the pair (Co(X(c), g), c) satisfies the
condition (B°).

4.5. Lemma. Let Lsatisfy the condition (y), c € C. Then there is (X(c), g.)e ¥,
with g{c) = ¢, such that ¢.: Co(X(c), g.) = L(c), where ¢B) = Ve b for each
Be Co(X(c), g.), is a lattice isomorphism.

Proof. The assertion follows immediately from 3.6 and from the fact that the set
of all atoms of L(c) is X(c).

4.6. Notation. Let Lsatisfy (y) and suppose that for each c € C, (X(c), g,) € ¥, is
asin 4.5.If xe A — C, then x € X(c(x)); put

F(x) = gew(x) -
Further, let f on C be such that C is a cycle of (4, f).

4.7. Lemma. If Lsatisfies (y) and f is as in 4.6, then (A,f)€ ¥ ,.
Proof. The assertion follows from 4.6 and 4.5.

4.8. Lemma. Let L and f be as in 4.6. If Be Co(A,f), then B = {pe A: p <
é VbeB b}

Proof. Let Be Co(4,f). Obviously, B < {pe A: p < Vyep b}. Assume that
peA — B, p £ Ve b. Since (¢) is valid, p < x v y for some x, y € B. We can
suppose that x, y, p are distinct. If x, y e C, then C = B and p £ V¢, thus 4.3
implies that pe C<=B. If x,y¢C, ¢(x) * c(y), then (y1) (iv) yields that {te A:
t<xvy}={xy}hence pe{x, y} = B.Let x ¢ C, ¢(x) = ¢(y) = d. Let v®and

v 4% be the lattice operations in L(d) and in Co(X(d). ga). respectlvely Then we
obtam (since x, y € X(d))

p<xVviy,
and by 4.5
p<xvi©®y.

From 4.6 it follows that then p £ x v y. Since x vy < B, we obtain that
pe B.Nowsupposethat ye C,x ¢ C,c(x) = a + y. Thenx vV a 2 Veec 6, X V y 2
= Veec ¢ = a v y (according to (y1) (i) and 4.1.1) and C < x vy < B. Since
p¢B, p¢C, thus p £ a v yin view of 4.3. According to (y1) (iii) we have p <
< x V a, hence x, a € X(a) and this case was already investigated.

4.9. Lemma. Let L and f be as in 4.6. If ue L, then {pe A: p Su} € Co(4, f).
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Proof.Letue L. Put B = {pe A: p < u}. Assume that x,ye B,z€ 4,n, meN,
m < n,y=f"x) =+ f¥x) for each ke N, k < n, z = f"(x) + f¥(x) for each ke N,
k < m. If x, y e X(d) for some d e C, then

zex vi©y,

zZxvly
(by 4.5) and thus (y) yields z < x v y S u, i.e., ze B. Now let a = ¢(x) * ().
From the assumption y = f*(x) it follows that then y e C. Further, ¢(x) = f'(x)
for some I < n. According to (y1) (iii) we have a £ x v y < u, therefore a € B.
If m < 1, then x, a, z€ X(a), ze a v x and 4.5 implies that z < a v x, thus (»
yields that z < av x Su,ie. zeB. If m> [, then zeC,z<a Vv y < u,ie,
z € B as well.

4.10. Lemma. Let L and [ be as in 4.6. For Be Co(A, f) put ¢(B) = Vep b-
Then ¢ is a lattice isomorphism of Co(A, f) onto Land (A,f)e ¥ ,.

Proof. The assertion follows from 4.7, 4.8, 4.9 and 1.6.

4.11. Theorem. Let L be a lattice. Then L= Co(A, ) for some (A, f)€ ¥, if and
only if Lsatisfies the condition (y).

Proof. The assertion follows from 4.4 and 4.10.

5. THE CLASS ¥,

In this section we shall investigate the question when a lattice Lis isomorphic to
Co(A, f) for some (A, f)e ¥ ;.

Let (P,, <) be the poset drawn in the following figure (vo, Wo, zo, to are distinct
elements):

ty

v ",
The lattice Co(P,, <) will be denoted by the symbol L.

(51) Condition. L satisfies the condition (al) and there are v, w, z, t € A such that
the sublattice of L generated by v, w, z, t is isomorphic to Ly under an.isomorphism
such that v — vy, w = wq, z = 2, t = 1.
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Remark. If Lis lattice satisfying (51), we shall always take fixed elements v, w, z, t

as in (01).
pExvy}>2cardiped:ip<Lzvy}>2,t<zvy yfzvx

(02) Condition. Let (61) hold. For each x e A there is y e A with card{p e A:
Notation. Let L be a lattice, x € A. If y € A is such that the condition from (62)

then

is valid, then we shall say that y is convenient to x.
(03) Condition. Let (62) hold. If x,y,y' € A, y and y' are convenient to x,
eithery < xv yory £xvyIf x,x,ye A, y is convenient to x, x £ x' v y,

then y is convenient to x’ as well.
5.1. Lemma. Let L satisfy (63).If y, y' € A are convenient to x € A, then uy(x, y)
Sx vy
= ui(x7 )’)

= u,(x, y/).
or y) £ x v y; we can suppose that y’ < x v y. Since («l) is valid, y’
=i4+1,

for some i e {0, 1. ..., n(x, y)}. According to (62) we obtain

Proof. Let y, ' € 4 be convenient to x € 4. In view of (§3), either y
2<card{ped:p=<x vy} =card{ped:p < uyx,y) v ulx,y)

ie.,i>1 Wehave 0 <1 < i =< n(x, y), and 1.8 implies
ul(x’ y’) = ul(“o(xt y)! ui(xa y)) = u1+0(xs y) = ul(xa y) .

5.2. Remark. In view of 5.1, if (63) holds, then instead of u,(x, y) (for y con-
venient to x) we shall write u,(x, y) = u(x). Further put u°(x) = x. By induction we

define u*(x) = u(u*~'(x)) for each ke N, k > 1.
5.3. Lemma. Let (A,f)e ¥, L= Co(A,f). Then L satisfies the condition (51).

Proof. According to 1.9. L satisfies («l1). Since (4, f)e ¥ 5, there are distinct

elements v, w, z, t € 4 such that
fy=fw)y =z, flzy=1t, w+f(t)*v.

(1)
Now it can be easily shown that (61) is valid, e.g., v vt = {v, z, 1}, etc.
5.4. Lemma. If (A, f) is a monounary algebra such that L = Co(A, f) satisfies

(61), then
(v)y=fwy=z, flz)=1t, wxf)*v.

(1)
Proof. The assumption implies
zv®u={z,0}, zv®ew={z,w}, zv®@r={z1},
, tvew={tz,w}, vvew={v,w}.

)
Cop={1,2,0}
From the relation for t v v we conclude that one of the foliowing condition is

satisfied:
t, z, v form a 3-element cycle ,
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(3.2) )=z, fz)=v, f() +1,
(3.3) foy=z, fz=1t, f(t)*v.

From the relation for z v v we get that (3.1) fails to hold. Since analogous con-
ditions can be obtained if we use the relation for ¢ v w, we infer that (1) is valid.

5.5. Lemma. Let (A,f) be a monounary algebra and let L= Co(4, f) satisfy
(01). Suppose that x € A and that there is y € A such that y is convenient to x.

Then ye {f(x): keN, k > 1}.

Proof. Assume that y ¢ {f*(x): ke N, k > 1}. Since card (x v y) > 2, we get
that x = fi(y) for some i€ N, i > 1. According to 5.4 we have f(z) = 1, and then
the relation t € z v y implies that there is j € N with f%(t) = y. Thus f/*'(z) = y
and y ez v x, which is a contradiction, since y was convenient to x.

5.6. Lemma. Let (4,f)€ 73, L= Co(A4, f). Then L satisfies (03) and u(x) = f(x)
for each.x € A.

Proof. According to 5.3, Lsatisfies (51) We have (by 5.4)
(1) fo)y=fwy=z, fz)=1t, v+ft)*+w.
Let xe A. Since (4, f) is connected and possesses no cycle, there are m, neN,
yeAwithm > 1,n> 1,y = f"x) = f'(z). Then
card (x v y)=m+1>2, card(z v©y)=n+1>2,

t=f(z)ez v®y, yé¢zvex
i.e., y is convenient to x. Thus Lsatisfies (62).
If y' € A is also convenient to x 5.5 implies that y' = f'(r) for some ke N k> 1.
Then either k < m and y' e x vy orm<kand yex vy
Let X' € A, xex' v y’, where y' € A4 is convenient to x. Then x = ’(x) y
= fI(x) for some le N u {0} jeN,j > 1(by5.5), and it is obvious that y’ is con-
venient to x’ as well. Hence L satisfies the conditidn (3).
In view of 5.1, u,(x, y') does not depend on the choice of y’ (convenient to x),
hence
u(x) = uy(x, y) = uy(x, f"(x)) = f(x)
according to 1.9.
.(64) Condition. Let L satisfy (83). If x, y,x' € A, y is convenient to x and
card {pe A: p < x v x'} > 2, then either x < x' vy, or X £xvy, or y<
<xvx.

(6) Condition. Let (64) hold.If x, a, y € A, y is convenient to x and either x + a <
<xvyory=xv a,then ulx,a) = u(x) for each i€{0,1, ..., n(x, a)}.

5.7. Lemma. Let (A, f)e ¥ 5, L= Co(A, f). Then L satisfies the condition (64).
Proof. According to 5.6, L satisfies (63). Let x, y, x' € A, let y be convenient
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to x. In view of 5.5 we have that y = f*(x) for some k e N, k > 1. Suppose that
(1) x¢x' vey, x¢xv®y, yéx vex
holds. Then x’ ¢ {f*(x): i e N u {0}}, x ¢ {f(x"): i € N}, which implies
card (x v x') = card {x, x'} = 2.
5.8. Lemma. Let (A,f)e ¥'3, L= Co(A4,f). Then L satisfies the condition (9).

Proof. In view of 5.7, L satisfies (54)‘ Let x, y,ae A, x * a, let y be convenient
to x and suppose that either ae x v y or y e x v a. By virtue of 5.5 we obtain
that y € {f(x): ke N, k > 1} and then a € {f*(x): ke N}. Let a = f(x), ke N.

Then 1.9 implies that n(x,a) = k, u(x, a) = f{(x) for each ie{0,1,...,k},
therefore we get (in view of 5.6) that u,(x, a) = f¥(x) = u(x) for each i€ {0, 1, ...
.., n(x, a)}. ’

5.9. Notation. Let L be a lattice satisfying the condition (). Put f(x) = u(x) for
each x € A.

5.10. Lemma. Let L, (A,f) be as in 5.9. If x, y€ A, y is convenient to x, then
ye{ff(x):keN}n {fz): keN}.

Proof. Assume that x, y € 4, y is convenient to x. Then y + x. Since y £ x v y,
(6) yields
1) uyx, v) = ui(x) = fi(x) foreach ie{0,1,...,n(x,y)}.

Further, y = (X, ¥), hence (1) implies that y e {f*(x): ke N}. The assertion
that y e {f*(z): ke N} can be proved analogously, since y is convenient also to z.

5.11. Corollary. If L. (A, f) are as in 5.9, then (A, f) is a connected monounary
algebra.

5.12. Lemma. If (A,f) is a connected monounary algebra possessing a cycle C
with card C > 2, then L= Co (4, f) does not satisfy (al).

Proof. Let x,ye C, x # y. Then x vy = C. Assume that (ocl) is valid. Then
there are distinct elements x = uy(x, y), u5(x, ), ..., Upep(, ¥) = y with
C=x vCo y = {“o(x, Y), ul(x’ Y), XN un(x,y)(xs y)} .
Thus ug(x, y) # uy(x, ¥) * ., (x, y) and
(1) un(x,y) =)E€ C= “o(x’ y) VCO ul(x’ }’) s

a contradiction to (a1).

5.13. Lemma. If (A, f) is a connected monounary algebra such that (A,f) ¢V s,
then L= Co(4, f) does not satisfy the condition (52).

Proof. Let (4, f) be a connected monounary algebra. According to (R) in
Section 1, there is (4, 9)e ¥y U ¥"; U ¥, U ¥ such that Co(4, f) = Co(4, g).
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Therefore we can suppose that (4,f)e¥ U ¥ U¥, U ¥ 5 If (4,f)e¥,,
then L does not satisfy (61) in view of 5.4. If (4, f) contains a cycle C with card C > 2,
then L does not satisfy(a1) by 5.12, hence L does not satisfy (32). Assume that (A, f)
satisfies (62) and that there is a cycle C with card C < 2.
~ Letx e C. Thereis y € A convenient to x. From 5.5 it follows that y € { f*(x): ke N,
k > 1}, thus y € C. Then

card(x v®y) < cardC £ 2,

which is a contradiction to the fact that y is convenient to x.

5.14. Corollary. Let L, (A, f) be as in 5.9. Then (A, f)e ¥ 5.

Proof. The assertion follows from 5.11 and 5.13.

5.15. Lemma. Let L, (4, f) be as in 5.9. Then

(i) B = {pe A: p < Viep b} for each Be Co(4,f).

Proof. Let Be Co(4,f), p€ A, p < Ve b. Since L satisfies the condition (&),
there are x; x’ e B with p < x v x’. We will show that p e B; thus assume that
p ¢ {x,x'}. According to (1), p = w(x,x') for some ke {0....,n(x,x")}. Let y
be convenient to X (such an element does exist in view of (62)). Then (64) yields
that some aof the following conditions is valid:

(1.1) x £x' vy,

(1.2) , X Sxvy,

(1.3) y £xvx.

Denote n = n(x, x'). If (1.2) or (1.3) holds, then (&) implies

(2) - ufx, x') = u'(x) = fi(x) foreach ie{0,....n},
hence

(3) X = ufx, x) = f'(x),

(4) p=u(x,x)=fx), 0<k<n.

Therefore (3) and (4) yield that pe x v x’ < B. ‘
Now let (1.1) hold. Then p = u,_,(x", x) (by Lemma 1.7). From (83) it follows
that y is convenient to x’ and (6) and (1.1) imply

(5) uyx’, x) = wl(x’) = fi(x) foreach je{0,1,...n}.
Analogously as above, p = f""¥x’), x = f"(x’) and therefore pex v x’ = B.

5.16. Lemma. Let L, (A, f) be as in 5.9.
(ii) If ue L, then {pe A: p < u} e Co(4, f).

Proof. Let ue L and B = {pe A: p < u}. Assume that x,x’ € B, x’ = f¥(x),
p = f¥(x), where 0 < k < j. By (82), there exists y € A which is convenient to x.
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Then (8) and 5.9 imply
(1) ufx, y) = uw'(x) = fi(x) = x',
@ . uy(x, y) = u'(x) = fx) = p.
From 1.8 we obtain
p = “k(Xs ,\’) = Uy +k(x’ )’) = ”k(“o(x7 y), uj(X, ,V)) = (uk(x, x’) s

therefore p < x v x' < u,i.e., pe Band hence Be Co(A,f).

5.17. Lemma. Let L, (A,f) be as in 5.9. Then the mapping ¢ such that ¢o(B) =
= Viep b for each B e Co(A4, f) is an isomorphism of Co(A, f) onto L.

Proof. The assertion follows from 1.6, 5.15 and 5.16.

5.18. Theorem. Let L be a lattice. Then L= Co(A,f) for some (A,f)e V5 if
and only if Lsatisfies the condition (9).

Proof. This follows from 5.8, 5.17 and 5.14.

6. THE GENERAL CASE

This short section will contain the main result of the present paper.

6. Theorem. A lattice L is isomorphic to Co(A,f) for some (partial) monounary
algebra (A, f) if and only if L= [ Li, where each L, (for i € I) satisfies one of
the conditions (o), (B)., (7). (9).

Proof. Let L = Co(4, f) and let { 4;} ., be the system of all connected components
of (4. f). Put L; = Co(A,. f} for cach i € I. Then

(1) L= [T L; -
Further, (R) of the first section yields that if i €I, then L, = Co(4,, g;) for some
(A, g)e VoV ¥ 1LY, 0¥ 5 By 213, 37, 411 and 5.18 we obtain that L;
satisfies one of the conditions («), (B), (7), ().

Let us prove the converse implication. By 2.13, 3.7, 4.11 and 5.18, for each i e[
there is (4;,f)e ¥ o U ¥y U ¥, U.¥ 5 such that

. (2) L= Co(Aiafi) .
Denote (A, f) = Y i (4, f:). Then (2) implies
(3) Co(A.f) = [Lies Co(4i. fi) = [Tiar Ly = L.
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