Czechoslovak Mathematical Journal

Josef Galas
Contributions to the asymptotic behaviour of the equation $\dot{z}=f(t, z)$ with a complex-valued function f

Czechoslovak Mathematical Journal, Vol. 40 (1990), No. 1, 31-45

Persistent URL: http://dml.cz/dmlcz/102357

Terms of use:

© Institute of Mathematics AS CR, 1990

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz

CONTRIBUTIONS TO THE ASYMPTOTIC BEHAVIOUR
 OF THE EQUATION $\dot{z}=f(t, z)$ WITH
 A COMPLEX-VALUED FUNCTION f

Josef Kalas, Brno

(Received February 4, 1988)

1. INTRODUCTION

This paper deals with the asymptotic properties of the equation

$$
\begin{equation*}
\dot{z}=f(t, z), \tag{1.1}
\end{equation*}
$$

where f is a continuous complex-valued function of a real variable t and a complex variable z. It is convenient to write the equation (1.1) in the form

$$
\begin{equation*}
\dot{z}=G(t, z)[h(z)+g(t, z)], \tag{1.2}
\end{equation*}
$$

where G is a real-valued function and h, g are complex-valued functions, t or z being a real or complex variable, respectively. The function h is assumed to be holomorphic in a simply connected region Ω containing zero, and to satisfy the conditions $h(z)=0 \Leftrightarrow z=0, h^{(j)}(0)=0(j=1,2, \ldots, n-1), h^{(n)}(0) \neq 0$, where $n \geqq 2$ is an integer. The technique of the proofs of the results is based on the Liapunov function method with the ,,Liapunov-like" function $W(z)$ defined in [1]. Several results of this type were proved in [2], [3]. The assumptions of these results imply that $z(t) \equiv 0$ is a solution of (1.2). In the present paper, we attempt to remove this restriction. The last section deals with the application of the results to equations

$$
\begin{equation*}
\dot{z}=q(t, z)-p(t) z^{2} \tag{1.3}
\end{equation*}
$$

and

$$
\ddot{x}=x \psi\left(t, \dot{x} x^{-1}\right) .
$$

The asymptotic behaviour of solutions of the Riccati differential equation, which is a special case of (1.3), was investigated e.g. in [6], [7], [8], [9]. For completeness notice that the case $n=1$ was studied in several previous papers such as [4], [5].

Throughout the paper we use the following notation:
C \quad - Set of all complex numbers
$\mathbb{N} \quad$ - Set of all positive integers
$\mathbb{R} \quad$ - Set of all real numbers

I - Interval $\left[t_{0}, \infty\right)$
$\Omega \quad$ - Simply connected region in \mathbb{C} such that $0 \in \Omega$
$S(a, \varrho)-\operatorname{Set}\{z \in \mathbb{C}:|z-a|=\varrho\}$
$\bar{b} \quad$ - Conjugate of a complex number b
Re $b \quad$ - Real part of a complex number b
$\operatorname{Arg} z \quad$ - Principal value of the multivalued function $\arg z$
$C(\Gamma) \quad$ - Class of all continuous real-valued functions defined on the set Γ
$\widetilde{C}(\Gamma)$ - Class of all continuous complex-valued functions defined on the set Γ
$\mathscr{H}(\Omega)$ - Class of all complex-valued functions holomorphic in the region Ω
$\mathrm{Cl} \Gamma \quad$ - Closure of a set $\Gamma \subset \mathbb{C}$
$\operatorname{Bd} \Gamma \quad-\quad$ Boundary of a set $\Gamma \subset \mathbb{C}$
$\tilde{C}^{1}(I)$ - Class of all continuously differentiable complex-valued functions defined on I
$k, W(z)-$ see $[1, \mathrm{pp} .66-67]$
$\lambda_{+}, \lambda_{-}, \mathscr{T}^{+}, \mathscr{T}^{-}, \varphi-\operatorname{see}[1$, pp. 73-74]
Int Γ - Interior of a Jordan curve with the geometric image Γ.
Let $\mathscr{S}^{+} \in \mathscr{T}^{+} / \varphi$ and $\mathscr{S}^{-} \in \mathscr{T}^{-} / \varphi$ be fixed. Then $\mathscr{S}^{+}=\left\{\hat{K}(\lambda): 0<\lambda<\lambda_{+}\right\}$, $\mathscr{S}^{-}=\left\{\hat{K}(\lambda): \lambda_{-}<\lambda<\infty\right\}$, where $\hat{K}(\lambda)$ are the geometric images of Jordan curves such that $0 \in \hat{K}(\lambda)$, the equality $W(z)=\lambda$ holds for $z \in \hat{K}(\lambda) \backslash\{0\}$ and $\hat{K}\left(\lambda_{1}\right) \backslash\{0\} \subset$ $\subset \operatorname{Int} \hat{K}\left(\lambda_{2}\right)$ for $0<\lambda_{1}<\lambda_{2}<\lambda_{+}$or $\hat{K}\left(\lambda_{2}\right) \backslash\{0\} \subset \operatorname{Int} \hat{K}(\lambda)$ for $\lambda_{-}<\lambda_{1}<\lambda_{2}<$ $<\infty$. Define

$$
K\left(\lambda_{1}, \lambda_{2}\right)=\bigcup_{\lambda_{1}<\mu<\lambda_{2}} \hat{K}(\mu) \backslash\{0\} \text { for } 0 \leqq \lambda_{1}<\lambda_{2} \leqq \lambda_{+}
$$

and

$$
K\left(\lambda_{1}, \lambda_{2}\right)=\bigcup_{\lambda_{2}<\mu<\lambda_{1}} \hat{K}(\mu) \backslash\{0\} \quad \text { for } \quad \lambda_{-} \leqq \lambda_{2}<\lambda_{1} \leqq \infty .
$$

2. MAIN RESULTS

Consider the equation

$$
\begin{equation*}
\dot{z}=G(t, z)[h(z)+g(t, z)] \tag{2.1}
\end{equation*}
$$

where $G(t, z)[h(z)+g(t, z)] \in \widetilde{C}(I \times \Omega), \quad G \in C(I \times(\Omega \backslash\{0\})), \quad h \in \mathscr{H}(\Omega), \quad g \in$ $\in \widetilde{C}(I \times(\Omega \backslash\{0\}))$. Assume that $h(z)=0 \Leftrightarrow z=0$ and $h^{(j)}(0)=0(j=1,2, \ldots$ $\ldots, n-1), h^{(n)}(0) \neq 0$, where $n \geqq 2$ is an integer.

Theorem 1. Let $0<\vartheta \leqq \lambda_{+}$. Suppose that $s_{0} \in I$ and that for any $T>s_{0}$ there are $\delta_{T} \geqq 0$ and $E_{T}(t) \in C\left[s_{0}, T\right)$ such that
(i) $\inf _{z \in \operatorname{Bd} \Omega}|z|>\delta_{T}$ for any $T>s_{0}$,
(ii) $\vartheta<\lambda_{+}$or $E_{T}(t) \leqq 0$ for $t \in\left[s_{0}, T\right), T>s_{0}$,
and
(iii) the inequality

$$
\begin{equation*}
G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E_{T}(t) \tag{2.2}
\end{equation*}
$$

is fulfilled for $t \in\left[s_{0}, T\right), z \in K(0, \vartheta),|z|>\delta_{T}$.
If a solution $z(t)$ of (2.1) satisfies

$$
z(t) \in K(0, \vartheta) \cup\{0\}
$$

for $t \in\left(t_{1}, \omega\right)$, where $\left[t_{1}, \omega\right)$ is the right maximal interval of existence of $z(t)$ and $t_{1} \geqq s_{0}$, then $\omega=\infty$.

Proof. Suppose $\omega<\infty$. Then $\vartheta=\lambda_{+}$and there is $t^{*} \in\left(t_{1}, \omega\right)$ such that $|z(t)|>\delta_{\omega}$ for $t \in\left[t^{*}, \omega\right)$. For $t \in\left[t^{*}, \omega\right)$ we have

$$
\dot{W}(z)=G(t, z) W(z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\},
$$

where $z=z(t)$. Using (2.2) we get

$$
\dot{W}(z(t)) \leqq E_{\omega}(t) W(z(t))
$$

and

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{W(z(t)) \exp \left[-\int_{t^{*}}^{t} E_{\omega}(s) \mathrm{d} s\right]\right\} \leqq 0 \tag{2.3}
\end{equation*}
$$

Integrating (2.3) over $\left[t^{*}, t\right] \subset\left[t^{*}, \omega\right)$ we have

$$
W(z(t)) \exp \left[-\int_{t^{*}}^{t} E_{\omega}(s) \mathrm{d} s\right]-W\left(z\left(t^{*}\right)\right) \leqq 0,
$$

whence

$$
W(z(t)) \leqq W\left(z\left(t^{*}\right)\right) \exp \left[\int_{t^{*}}^{t} E_{\omega}(s) \mathrm{d} s\right] \leqq W\left(z\left(t^{*}\right)\right)=\vartheta^{*}<\vartheta .
$$

Thus $z(t) \in \mathrm{Cl} K\left(\vartheta^{*}\right) \subset K(0, \vartheta) \cup\{0\}$, which is a contradiction with the supposition $\omega<\infty$. Therefore $\omega=\infty$.

Theorem 2. Let $0<\vartheta \leqq \lambda_{+}$. Assume that $s_{j} \in I, \delta_{j} \geqq 0$ for $j \in \mathbb{N}$. Suppose there are functions $E_{j}(t) \in C\left[t_{0}, \infty\right)$ such that
(i) for $j \in \mathbb{N}$

$$
\begin{equation*}
\liminf _{t \rightarrow \infty} \int_{t_{0}}^{t} E_{j}(s) \mathrm{d} s=-\infty \tag{2.4}
\end{equation*}
$$

holds;
(ii) the inequality

$$
\begin{equation*}
G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E_{j}(t) \tag{2.5}
\end{equation*}
$$

is fulfilled for $t \geqq s_{j}, z \in K(0, \vartheta),|z|>\delta_{j}, j \in \mathbb{N}$. Define

$$
\delta=\inf _{j \in N} \delta_{j}
$$

If a solution $z(t)$ of (2.1) satisfies

$$
z(t) \in K(0, \vartheta) \cup\{0\}
$$

for $t>t_{1}$, where $t_{1} \geqq t_{0}$, then

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}|z(t)| \leqq \delta \tag{2.6}
\end{equation*}
$$

Proof. Put $\mathscr{M}_{j}=\left\{t \geqq s_{j}: z(t) \in K(0, \vartheta),|z(t)|>\delta_{j}\right\}$. For $t \in \mathscr{M}_{j}$ we have

$$
\dot{W}(z)=G(t, z) W(z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\}
$$

where $z=z(t)$. By virtue of (2.5) we get

$$
\dot{W}(z(t)) \leqq E_{j}(t) W(z(t))
$$

for $t \in \mathscr{M}_{\boldsymbol{j}}$. This inequality is equivalent to

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\{W(z(t)) \exp \left[-\int_{t_{1}}^{t} E_{j}(s) \mathrm{d} s\right]\right\} \leqq 0 \tag{2.7}
\end{equation*}
$$

If (2.6) is not true, there exist $\varepsilon_{0}>\delta$ and $\tau>t_{1}$ such that $|z(t)| \geqq \varepsilon_{0}$ for $t \geqq \tau$. Choosing $j \in \mathbb{N}$ so that $\delta_{j}<\varepsilon_{0}$ and integrating (2.7) over [T, t], where $t \geqq T=$ $=\max \left(\tau, s_{j}\right)$, we obtain

$$
W(z(t)) \exp \left[-\int_{t_{1}}^{t} E_{j}(s) \mathrm{d} s\right]-W(z(T)) \exp \left[-\int_{t_{1}}^{T} E_{j}(s) \mathrm{d} s\right] \leqq 0
$$

Hence

$$
W(z(t)) \leqq W(z(T)) \exp \left[\int_{T}^{t} E_{j}(s) \mathrm{d} s\right]
$$

for $t \geqq T$. From (2.4) it follows that

$$
\liminf _{t \rightarrow \infty} W(z(t))=\underset{t \rightarrow \infty}{\liminf }|z(t)|=0,
$$

which is impossible. Thus we have proved (2.6).
Analogously we can prove the following two theorems:
Theorem 1'. Let $\lambda_{-} \leqq \vartheta<\infty$. Assume that $s_{0} \in I$ and that for any $T>s_{0}$ there are $\delta_{T} \geqq 0$ and $E_{T}(t) \in C\left[s_{0}, T\right)$ such that

$$
\inf _{z \in \operatorname{Bd} \Omega}|z|>\delta_{T} \quad \text { for any } \quad T>s_{0}
$$

$\vartheta>\lambda_{-}$or $E_{T}(t) \leqq 0$ for $t \in\left[s_{0}, T\right), T>s_{0}$, and the inequality

$$
-G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E_{T}(t)
$$

is fulfilled for $t \in\left[s_{0}, T\right), z \in K(\infty, \vartheta),|z|>\delta_{T}$. If a solution $z(t)$ of (2.1) satisfies

$$
z(t) \in K(\infty, \vartheta) \cup\{0\}
$$

tor $t \in\left(t_{1}, \omega\right)$, where $\left[t_{1}, \omega\right)$ is the right maximal interval of existence of $z(t)$ and $f_{1} \geqq s_{0}$, then $\omega=\infty$.

Theorem 2'. Let $\lambda_{-} \leqq \vartheta<\infty$. Assume that $s_{j} \in I, \delta_{j} \geqq 0$ for $j \in \mathbb{N}$. Suppose there are $E_{j}(t) \in C\left[t_{0}, \infty\right)$ such that
(i) for $j \in \mathbb{N}$
(2.4') $\quad \liminf _{t \rightarrow \infty} \int_{t_{0}}^{t} E_{j}(s) \mathrm{d} s=-\infty$
holds;
(ii) the inequality

$$
-G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E_{j}(t)
$$

is fulfilled for $t \geqq s_{j}, z \in K(\infty, \vartheta),|z|>\delta_{j}, j \in \mathbb{N}$. Define

$$
\delta=\inf _{j \in N} \delta_{j} .
$$

If a solution $z(t)$ of (2.1) satisfies

$$
z(t) \in K(\infty, \vartheta) \cup\{0\}
$$

for $t>t_{1}$, where $t_{1} \geqq t_{0}$, then
(2.6') $\quad \underset{t \rightarrow \infty}{\liminf }|z(t)| \leqq \delta$.

Theorem 3. Suppose there exist a region $\Omega_{1} \subset \Omega$, an $R>0$ and a nonnegative function $B(t) \in C\left[t_{0}, \infty\right)$ such that $G \in C\left(I \times \Omega_{1}\right), g \in \widetilde{C}\left(I \times \Omega_{1}\right)$,

$$
\int_{t_{0}}^{\infty} B(s) \mathrm{d} s<\infty
$$

and

$$
\begin{equation*}
G(t, z) \operatorname{Re}\{\bar{z}[h(z)+g(t, z)]\} \leqq|z| B(t) \tag{2.8}
\end{equation*}
$$

for $t \geqq t_{0}, z \in \Omega_{1},|z|<R$. If a solution $z(t)$ of (2.1) satisfies

$$
\begin{equation*}
\liminf _{t \rightarrow \infty}|z(t)| \leqq \delta<R \tag{2.9}
\end{equation*}
$$

and $z(t) \in \Omega_{1} \cup\{0\}$ for $t>t_{1}$, where $t_{1} \geqq t_{0}$, then

$$
\limsup _{t \rightarrow \infty}|z(t)| \leqq \delta
$$

Proof. It can be easily derived that

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}|z(t)|=G(t, z(t))|z(t)|^{-1} \operatorname{Re}\{\bar{z}(t)[h(z(t))+g(t, z(t))]\} \tag{2.10}
\end{equation*}
$$

holds for $t \in \mathscr{M}=\left\{t>t_{1}: z(t) \neq 0,|z(t)|<R\right\}$. Let $\tau>t_{1}$ be such that $z(\tau)=0$. Then

$$
\lim _{t \rightarrow \tau+} \frac{|z(t)|-|z(\tau)|}{t-\tau}=\lim _{t \rightarrow \tau+} \frac{|z(t)|}{t-\tau}=|\dot{z}(\tau)|=|G(\tau, 0) g(\tau, 0)| .
$$

Similarly

$$
\lim _{t \rightarrow \tau_{-}} \frac{|z(t)|-|z(\tau)|}{t-\tau}=\lim _{t \rightarrow \tau^{-}} \frac{|z(t)|}{t-\tau}=-|\dot{z}(\tau)|=-|G(\tau, 0) g(\tau, 0)| .
$$

Therefore $\mathrm{d}|z(\tau)| / \mathrm{d} t$ exists if and only if $G(\tau, 0) g(\tau, 0)=0$. In this case $\mathrm{d}|z(\tau)| / \mathrm{d} t=0$.
Put $\mathscr{M}_{1}=\left\{t>t_{1}: z(t)=0\right\}, \mathscr{M}_{0}=\left\{t>t_{1}: G(t, 0) g(t, 0)=0\right\}$. It is known that the set $\mathscr{M}_{\mathbf{1}} \backslash \mathscr{M}_{\mathbf{0}}$ is at most countable. Using (2.10) and (2.8), we obtain

$$
\begin{aligned}
& \left|\frac{\mathrm{d}}{\mathrm{~d} t}\right| z(t)||\leqq|G(t, z(t))[h(z(t))+g(t, z(t))]| \\
& \frac{\mathrm{d}}{\mathrm{~d} t}|z(t)| \leqq B(t)
\end{aligned}
$$

for $t \in \mathscr{M}$. Define

$$
B^{*}(t)= \begin{cases}\frac{\mathrm{d}}{\mathrm{~d} t}|z(t)| & \text { whenever } \\ 0 & t \in \mathscr{M} \\ 0 & \text { whenever } \\ t \in \mathscr{M}_{1}\end{cases}
$$

It is clear that

$$
\begin{align*}
& \left|B^{*}(t)\right| \leqq|G(t, z(t))[h(z(t))+g(t, z(t))]|, \tag{2.11}\\
& B^{*}(t) \leqq B(t) \tag{2.12}
\end{align*}
$$

for $t>t_{1}$ such that $|z(t)|<R$. By (2.10) and (2.11), the function $B^{*}(t)$ is continuous on $\mathscr{M} \cup \mathscr{M}_{0}$. Any set $\mathscr{M}_{2} \subset \mathscr{M}_{1} \backslash \mathscr{M}_{0}$ is at most countable. Moreover, $B^{*}(t)$ is bounded on any compact subinterval of $\mathscr{M} \cup \mathscr{M}_{1}=\left\{t>t_{1}:|z(t)|<R\right\}$.

Hence, taking (2.12) into account, we get

$$
\begin{equation*}
|z(t)|-|z(\sigma)|=\int_{\sigma}^{t} B^{*}(s) \mathrm{d} s \leqq \int_{\sigma}^{t} B(s) \mathrm{d} s \tag{2.13}
\end{equation*}
$$

for $t>\sigma>t_{1}$ provided $\sigma, t \in \mathscr{M} \cup \mathscr{M}_{1}$.
Choose $\varepsilon, 0<\varepsilon<R-\delta$. Let $T>t_{1}$ be such that $T \leqq t_{2} \leqq t_{3}$ implies

$$
\int_{t_{2}}^{t_{3}} B(s) \mathrm{d} s<\varepsilon / 2 .
$$

In view of (2.9), there is $\sigma_{1} \geqq T$ such that

$$
\left|z\left(\sigma_{1}\right)\right|<\delta+\varepsilon / 2 .
$$

Suppose there is $t^{*}>\sigma_{1}$ such that $\left|z\left(t^{*}\right)\right|=\delta+\varepsilon,|z(t)|<\delta+\varepsilon$ for $t \in\left[\sigma, t^{*}\right]$. By (2.13) we have

$$
\left|z\left(t^{*}\right)\right| \leqq\left|z\left(\sigma_{1}\right)\right|+\int_{\sigma_{1}}^{t} B(s) \mathrm{d} s<\delta+\varepsilon / 2+\varepsilon / 2=\delta+\varepsilon,
$$

a contradiction. Therefore $|z(t)| \leqq \delta+\varepsilon$ for $t \geqq \sigma_{1}$ and

$$
\limsup _{t \rightarrow \infty}|z(t)| \leqq \delta
$$

Theorem 4. Let $a_{j} \in \mathbb{C}, \alpha_{j}, \beta_{j}, \delta \in \mathbb{R}$ be such that $\beta_{j} \geqq t_{0}, 0 \leqq \delta<\alpha_{j}-\left|a_{j}\right|$ for $j \in \mathbb{N}, \alpha_{j} \rightarrow \delta$ as $j \rightarrow \infty$. Suppose there is a region $\Omega_{1} \subset \Omega$ such that

$$
\begin{equation*}
G(t, z) \operatorname{Re}\left\{\left(\bar{z}-\bar{a}_{j}\right)[h(z)+g(t, z)]\right\}<0 \tag{2.14}
\end{equation*}
$$

is fulfilled for $t>\beta_{j}$ and $z \in \Omega_{1} \cap S\left(a_{j}, \alpha_{j}\right), j \in \mathbb{N}$. If a solution $z(t)$ of (2.1) satisfies
$\underset{t \rightarrow \infty}{\liminf }|z(t)| \leqq \delta$
and $z(t) \in \Omega_{1} \cup\{0\}$ for $t>t_{1}$, where $t_{1} \geqq t_{0}$, then

$$
\limsup _{t \rightarrow \infty}|z(t)| \leqq \delta
$$

Proof. Clearly $a_{j} \rightarrow 0$ as $j \rightarrow \infty$. Choose $\varepsilon>0$. Pick $j \in \mathbb{N}$ such that $\left|a_{j}\right|+$ $+\alpha_{j}<\delta+\varepsilon$. Let $\gamma_{j} \in \mathbb{R}$ be such that $\delta<\gamma_{j}<\alpha_{j}-\left|a_{j}\right|$. From (2.15) it follows that there is $\sigma>\max \left(t_{1}, \beta_{j}\right)$ for which $|z(\sigma)|<\gamma_{j}$. Now we have $\left|z(\sigma)-a_{j}\right| \leqq$ $\leqq|z(\sigma)|+\left|a_{j}\right|<\gamma_{j}+\left|a_{j}\right|<\alpha_{j}$. Since (2.14) implies

$$
\left.\frac{\mathrm{d}}{\mathrm{~d} t}\left|z(t)-a_{j}\right|=\alpha_{j}^{-1} G(t, z(t)) \operatorname{Re}\left\{\overline{(z(t)}-\bar{a}_{j}\right)[h(z(t))+g(t, z(t))]\right\}<0
$$

for all $t \geqq \sigma$ such that $\left|z(t)-a_{j}\right|=\alpha_{j}$, we infer that $\left|z(t)-a_{j}\right|<\alpha_{j}$ for $t \geqq \sigma$, whence

$$
|z(t)| \leqq\left|a_{j}\right|+\alpha_{j}<\delta+\varepsilon
$$

for $t \geqq \sigma$. Thus

$$
\limsup _{t \rightarrow \infty}|z(t)| \leqq \delta
$$

3. APPLICATION TO EQUATIONS $\dot{z}=q(t, z)-p(t) z^{2}$ AND $\ddot{x}=x \psi\left(t, \dot{x} x^{-1}\right)$

In this section we shall consider the equation

$$
\begin{equation*}
\dot{z}=q(t, z)-p(t) z^{2} \tag{3.1}
\end{equation*}
$$

where $q \in \widetilde{C}(I \times \mathbb{C}), p \in \widetilde{C}(I)$ and

$$
\begin{equation*}
\ddot{x}=x \psi\left(t, \dot{x} x^{-1}\right), \tag{3.2}
\end{equation*}
$$

where $\psi \in \widetilde{C}(I \times \mathbb{C})$. Notice that the choice $\psi(t, z)=-P(t) z-Q(t)$ leads to a linear equation $\ddot{x}+P(t) \dot{x}+Q(t) x=0$. Supposing $\alpha, \beta \in \widetilde{C}^{1}(I), \varrho \in \widetilde{C}(I)$ and $\beta(t) \neq 0$ for $t \in I$, we can easily verify the following lemma:

Lemma 1. Put

$$
\begin{aligned}
& p(t)=\beta^{-1}(t)+\varrho(t) \\
& q(t, z)=\beta \psi\left(t,(z+\alpha) \beta^{-1}\right)+\varrho z^{2}+(\dot{\beta}-2 \alpha) \beta^{-1} z+ \\
& +(\dot{\beta}-\alpha) \alpha \beta^{-1}-\dot{\alpha}
\end{aligned}
$$

(i) A function $z(t)$ is a solution of (3.1) defined on an interval $J \subset I$ if and only if

$$
z(t)=\beta(t) \dot{x}(t) x^{-1}(t)-\alpha(t)
$$

where $x(t)$ is a solution of (3.2) on J.
(ii) A function $x(t)$ is a solution of (3.2) defined on $J \subset I$ if and only if

$$
x(t)=\Theta \exp \left[\int_{\omega}^{t}[z(s)+\alpha(s)] \beta^{-1}(s) \mathrm{d} s\right],
$$

where Θ is a constant different from zero, $\omega \in J$, and $z(t)$ is a solution of (3.1) on J.
In view of Lemma 1 we shall obtain the results concerning the asymptotic be-
haviour of the solutions of (3.2) as immediate consequences of the results concerning the solutions of the equation (3.1). If $a \in \mathbb{C}, a \neq 0$, then (3.1) may be written in the form

$$
\begin{equation*}
\dot{z}=G(t, z)[h(z)+g(t, z)], \tag{3.3}
\end{equation*}
$$

where $h(z)=-a z^{2}, G(t, z) \equiv 1$ and $g(t, z)=q(t, z)+a z^{2}-p(t) z^{2}$. From [1, Example 1], where $\Omega=\mathbb{C}, b=-a$, we have $h^{\prime}(z)=-2 a z, h^{\prime \prime}(z)=-2 a$, $n=2, W(z)=\exp \left[\operatorname{Re}\left(2 \bar{a} z^{-1}\right)\right], \lambda_{+}=\lambda_{-}=1, k=-\bar{a}$. The sets $\hat{K}(\lambda)$, where $0<\lambda<\lambda_{+}=1$ or $1=\lambda_{-}<\lambda<\infty$, are circles with centres $\bar{a}(\ln \lambda)^{-1}$ and radii $|a||\ln \lambda|^{-1}, K(0,1)=\{z \in \mathbb{C}: \operatorname{Re}(a z)<0\}, K(\infty, 1)=\{z \in \mathbb{C}: \operatorname{Re}(a z)>0\}$.

For $a \in \mathbb{C}, a \neq 0, A>0, B>0, \delta \in(0, \pi / 4]$ denote

$$
\Omega_{A, B}(a)=\left\{z \in \mathbb{C}:-A \operatorname{Re}\left[a^{2} z^{2}\right]-B\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right|>0\right\}
$$

$\Omega_{\delta}(a)=\left\{z=\mu e^{\mathrm{i} \vartheta}: \mu \in \mathbb{R} \backslash\{0\}, \operatorname{Arg} \bar{a}+\pi / 2-\delta<\vartheta<\operatorname{Arg} \bar{a}+\pi / 2+\delta\right\}$. It can be easily verified that

$$
\Omega_{A, B}(a) \subset \Omega_{\pi / 4}(a)=\left\{z \in \mathbb{C}: \operatorname{Re}\left(a^{2} z^{2}\right)<0\right\}
$$

for any $A, B>0$, and for any $A, B>0$ there exists $\delta_{0} \in(0, \pi / 4)$ such that

$$
\begin{equation*}
\Omega_{\delta}(a) \subset \Omega_{A, B}(a) \text { for } \delta \in\left(0, \delta_{0}\right] . \tag{3.4}
\end{equation*}
$$

The following lemma will be useful in our further considerations.
Lemma 2. Suppose there are $a \in \mathbb{C}$ and $C \geqq 0$ such that

$$
\begin{align*}
& \operatorname{Re}[\bar{a} p(t)]>0 \quad \text { for } \quad t \in I, \tag{3.5}\\
& \liminf _{t \rightarrow \infty} \operatorname{Re}[\bar{a} p(t)]>0, \quad \limsup _{t \rightarrow \infty}|\operatorname{Im}[\bar{a} p(t)]|<\infty, \tag{3.6}\\
& \operatorname{Re}[a q(t, z)] \geqq-C\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right| \text { for } t \in I, \quad z \in \Omega_{\pi / 4}(a) \tag{3.7}
\end{align*}
$$

and

$$
\begin{equation*}
q(t, 0) \neq 0 \quad \text { for } \quad t \in I \tag{3.8}
\end{equation*}
$$

Then every solution $z(t)$ of (3.1) satisfying at $t_{1} \geqq t_{0}$ the condition $\operatorname{Re}\left[a z\left(t_{1}\right)\right] \geqq 0$ fulfils $\operatorname{Re}[a z(t)] \geqq 0$ for all $t>t_{1}$ for which $z(t)$ exists.

Moreover, $\operatorname{Re}[\operatorname{az}(t)]>0$ provided $z(t) \neq 0$.
Proof. Let $A, B>0$ be such that

$$
\operatorname{Re}[\bar{a} p(t)] \geqq|a|^{2} A, \quad|\operatorname{Im}[\bar{a} p(t)]| \leqq|a|^{2}(B-C)
$$

for $t \geqq t_{1}$. There exists a $\delta_{0} \in(0, \pi / 4)$ with the property $\Omega_{\delta_{0}}(a) \subset \Omega_{A, B}(a)$. For $t \geqq t_{1}$ such that $z=z(t) \in \Omega_{\delta_{0}}(a)$ we obtain

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Re}[a z(t)]=\operatorname{Re}[a \dot{z}(t)]=\operatorname{Re}[a q(t, z)]-\operatorname{Re}\left[a p(t) z^{2}\right]= \\
& =\operatorname{Re}[a q(t, z)]-|a|^{-2} \operatorname{Re}\left[\bar{a} p(t) a^{2} z^{2}\right]= \\
& =\operatorname{Re}[a q(t, z)]-|a|^{-2}\left\{\operatorname{Re}[\bar{a} p(t)] \operatorname{Re}\left[a^{2} z^{2}\right]-\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.-\operatorname{Im}[\bar{a} p(t)] \operatorname{Im}\left[a^{2} z^{2}\right]\right\} \geqq-C\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right|-A \operatorname{Re}\left[a^{2} z^{2}\right]- \\
& -(B-C)\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right| \geqq-A \operatorname{Re}\left[a^{2} z^{2}\right]-B\left|\operatorname{Im}\left[a^{2} z^{2}\right]\right|>0 .
\end{aligned}
$$

If $z(t)=0$ we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Re}[a z(t)]=\operatorname{Re}[a q(t, 0)]>0 \tag{3.9}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Re}[a z(t)]=\operatorname{Re}[a q(t, 0)]=0 . \tag{3.10}
\end{equation*}
$$

With respect to (3.8) we infer that

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{Im}[a z(t)]=\operatorname{Im}[a q(t, 0)] \neq 0
$$

in the case (3.10). Taking into account that $\operatorname{Re}[a z]=0$ implies $z \in \Omega_{\delta_{0}}(a) \cup\{0\}$, we get $\operatorname{Re}[a z(t)] \geqq 0$ for all $t \geqq t_{1}$ for which $z(t)$ is defined. Clearly, $\operatorname{Re}[a z(t)]>0$ if $z(t) \neq 0$.
Remark. If the condition (3.8) of Lemma 2 is replaced by $\operatorname{Re}[a q(t, 0)]>0$, we get the assertion $\operatorname{Re}[a z(t)]>0$ for all $t>t_{1}$ for which $z(t)$ exists.

Combining Lemma 2, Theorem 1^{\prime} and Theorem 2^{\prime}, we obtain the following generalization of Theorem 1 of [7]:

Theorem 5. Let the assumptions (3.5), (3.6), (3.8) and

$$
\begin{equation*}
\operatorname{Re}[a q(t, z)] \geqq 0 \quad \text { for } \quad t \in I, \quad z \in \mathbb{C} \tag{3.11}
\end{equation*}
$$

be satisfied. Suppose there exist $D(t) \in C(I)$ and $\delta \geqq 0$ such that

$$
\begin{align*}
& |q(t, z)| \leqq D(t) \quad \text { for } \quad t \in I, \quad z \in \mathbb{C} \tag{3.12}\\
& |a| \limsup _{t \rightarrow \infty} D(t) \leqq \delta^{2} \liminf _{t \rightarrow \infty} \operatorname{Re}[\bar{a} p(t)] . \tag{3.13}
\end{align*}
$$

Then any solution $z(t)$ of (3.1) satisfying $\operatorname{Re}\left[a z\left(t_{1}\right)\right] \geqq 0$, where $t_{1} \geqq t_{0}$, satisfies the condition

$$
\liminf _{t \rightarrow \infty}|z(t)| \leqq \delta
$$

and $\operatorname{Re}[a z(t)] \geqq 0$ for $t \geqq t_{1}$.
Proof. From Lemma 2 it follows that $\operatorname{Re}[a z(t)] \geqq 0$ for all $t \geqq t_{1}$ for which $z(t)$ exists. It is sufficient to prove that $z(t)$ exists for all $t \geqq t_{1}$ and that

$$
\liminf _{t \rightarrow \infty}|z(t)| \leqq \delta^{*}
$$

for any $\delta^{*}>\delta$. Choose $\delta_{T}>0$ such that

$$
|a| \delta_{T}^{-2} D(t)<\inf _{t \geqq t_{0}} \operatorname{Re}[\bar{a} p(t)] \quad \text { for } t \geqq t_{0}
$$

and put $\vartheta=\lambda_{-}=1, s_{j}=t_{0}(j=0,1,2, \ldots), E_{T}(t)=2\left[|a| \delta_{T}^{-2} D(t)-\operatorname{Re}[\bar{a} p(t)]\right]$.
Then

$$
\begin{aligned}
& -G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\}=2 \operatorname{Re}\left[\bar{a} z^{-2} q(t, z)\right]-2 \operatorname{Re}[\bar{a} p(t)] \leqq \\
& \leqq 2|a||z|^{-2} D(t)-2 \operatorname{Re}[\bar{a} p(t)]
\end{aligned}
$$

and hence

$$
-G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq 2|a| \delta_{T}^{-2} D(t)-2 \operatorname{Re}[\bar{a} p(t)]=E_{T}(t)
$$

for $t \geqq t_{0}, z \in K(\infty, 1),|z|>\delta_{T}$. In view of Lemma 2 we have $z(t) \in K(\infty, 1) \cup\{0\}$ for $t \in\left(t_{1}, \omega\right)$, where $\left[t_{1}, \omega\right)$ is the right maximal interval of existence of $z(t)$. Using Theorem 1^{\prime} we obtain $\omega=\infty$.

Put now $\delta_{j}=\delta^{*}, E_{j}(t)=2\left[|a| \delta^{*-2} D(t)-\operatorname{Re}[\bar{a} p(t)]\right]$. For $t \geqq t_{0}, z \in K(\infty, 1)$, $|z|>\delta^{*}$ we have

$$
-G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq 2\left[|a| \delta^{*-2} D(t)-\operatorname{Re}[\bar{a} p(t)]\right]=E_{j}(t) .
$$

Since

$$
|a| \limsup _{t \rightarrow \infty} D(t)<\delta^{* 2} \liminf _{t \rightarrow \infty} \operatorname{Re}[\bar{a} p(t)],
$$

we have

$$
\liminf _{t \rightarrow \infty} \int_{t_{0}}^{t} E_{j}(s) \mathrm{d} s=-\infty
$$

By Theorem 2' we get

$$
\liminf _{t \rightarrow \infty}|z(t)| \leqq \delta^{*} .
$$

Theorem 6. Let the assumptions (3.5), (3.6), (3.8) and (3.11) be satisfied. Suppose there exist $D(t) \in C(I)$ and $\delta \geqq 0$ such that

$$
\begin{align*}
& |q(t, z)| \leqq D(t) \text { for } \quad t \in I, \quad z \in \mathbb{C}, \tag{3.14}\\
& \int_{t_{0}}^{\infty} D(t) \mathrm{d} t<\infty . \tag{3.15}
\end{align*}
$$

Then any solution $z(t)$ of (3.1) satisfying $\operatorname{Re}\left[a z\left(t_{1}\right)\right] \geqq 0$, where $t_{1} \geqq t_{0}$, satisfies the condition

$$
\liminf _{t \rightarrow \infty}|z(t)|=0
$$

and $\operatorname{Re}[a z(t)] \geqq 0$ for $t \geqq t_{1}$.
Proof. Let $\delta>0$ be arbitrary. For any $T>t_{0}$ choose $\delta_{T}>0$ such that

$$
|a| D(t)<\delta_{T}^{2} \inf _{t \geqq t_{0}} \operatorname{Re}[\bar{a} p(t)] \quad \text { for } \quad t \in\left[t_{0}, T\right)
$$

and put $\vartheta=\lambda_{-}=1, s_{j}=t_{0}(j=0,1,2, \ldots), E_{T}(t)=2\left[|a| \delta_{T}^{-2} D(t)-\operatorname{Re}[\bar{a} p(t)]\right]$.

Then

$$
-G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq 2|a| \delta_{T}^{-2} D(t)-2 \operatorname{Re}[\bar{a} p(t)]=E_{T}(t)
$$

for $t \geqq t_{0}, z \in K(\infty, 1),|z|>\delta_{T}$, and $E_{T}(t) \leqq 0$ for $t \in\left[t_{0}, T\right)$. Because of Lemma 2 we have $z(t) \in K(\infty, 1) \cup\{0\}$ for $t \in\left(t_{1}, \omega\right)$, where $\left[t_{1}, \omega\right)$ is the right maximal interval of existence of $z(t)$. Making use of Theorem 1' we get $\omega=\infty$.

Put now $\delta_{j}=\delta, E_{j}(t)=2\left[|a| \delta^{-2} D(t)-\operatorname{Re}[\bar{a} p(t)]\right]$. As

$$
-G(t, z) \operatorname{Re}\left\{k h^{(n)}(0)\left[1+\frac{g(t, z)}{h(z)}\right]\right\} \leqq E_{j}(t)
$$

for $t \geqq t_{0}, z \in K(\infty, 1),|z|>\delta_{j}$ and

$$
\liminf _{t \rightarrow \infty} \int_{t_{0}}^{t} E_{j}(s) \mathrm{d} s=-\infty
$$

we obtain

$$
\liminf _{t \rightarrow \infty}|z(t)| \leqq \delta
$$

by Theorem 2^{\prime}. Since $\delta>0$ was chosen arbitrarily,

$$
\liminf _{t \rightarrow \infty}|z(t)|=0
$$

By virtue of Theorem we get 3
Theorem 7. Let the assumptions of Theorem 6 be fulfilled and let

$$
\int_{t_{0}}^{\infty}|p(t)-a| \mathrm{d} t<\infty .
$$

Then any solution $z(t)$ of (3.1) satisfying $\operatorname{Re}\left[a z\left(t_{1}\right)\right] \geqq 0$, where $t_{1} \geqq t_{0}$, satisfies the condition

$$
\lim _{t \rightarrow \infty} z(t)=0
$$

Proof. Choose $R>0$ and put $\Omega_{1}=K(\infty, 1), B(t)=D(t)+|p(t)-a| R^{2}$. Obviously

$$
\begin{aligned}
& G(t, z) \operatorname{Re}\{\bar{z}[h(z)+g(t, z)]\}=\operatorname{Re}\left\{\bar{z}\left[q(t, z)-p(t) z^{2}\right]\right\}= \\
& =-|z|^{2} \operatorname{Re}[a z]+\operatorname{Re}\left\{\bar{z}\left[q(t, z)-(p(t)-a) z^{2}\right]\right\} \leqq \\
& \leqq|z|\left|q(t, z)-(p(t)-a) z^{2}\right| \leqq \\
& \leqq|z|\left[D(t)+|p(t)-a| R^{2}\right]=|z| B(t)
\end{aligned}
$$

for $t \geqq t_{0}, z \in \Omega_{1},|z|<R$. With respect to Theorem 6 and Lemma 2 the assumptions of Theorem 3 are satisfied with $\delta=0$ and therefore

$$
\lim _{t \rightarrow \infty} z(t)=0 .
$$

Similarly we obtain the following generalization of Theorem 2 of [9]:
Theorem 8. Let the assumptions of Theorem 6 be fulfilled and let $\operatorname{Im}[\bar{a} p(t)]=0$
for $t \geqq t_{0}$. Then any solution $z(t)$ of (3.1) satisfying $\operatorname{Re}\left[a z\left(t_{1}\right)\right] \geqq 0$, where $t_{1} \geqq t_{0}$, fulfils

$$
\lim _{t \rightarrow \infty} z(t)=0
$$

Proof. Choose $R>0$ and put $\Omega_{1}=K(\infty, 1), B(t)=D(t)$. It is clear that

$$
\begin{aligned}
& G(t, z) \operatorname{Re}\{\bar{z}[h(z)+g(t, z)]\}=\operatorname{Re}\left\{\bar{z}\left[q(t, z)-p(t) z^{2}\right]\right\}= \\
& =\operatorname{Re}[\bar{z} q(t, z)]-|z|^{2} \operatorname{Re}\left[a^{-1} p(t) a z\right] \leqq \\
& \leqq|z||q(t, z)|-|z|^{2}|a|^{-2} \operatorname{Re}[\bar{a} p(t)] \operatorname{Re}[a z] \leqq|z| B(t)
\end{aligned}
$$

for $t \geqq t_{0}, z \in \Omega_{1},|z|<R$. In view of Theorem 6 and Lemma 2 the assumptions of Theorem 3 are satisfied with $\delta=0$ and hence

$$
\lim _{t \rightarrow \infty} z(t)=0
$$

Using Theorem 4, we can generalize Theorem 1 of [9]:
Theorem 9. Let the assumptions (3.5), (3.8) and (3.11) be satisfied. Assume there exists $D(t) \in C(I)$ such that

$$
\begin{aligned}
& |q(t, z)| \leqq D(t) \quad \text { for } \quad t \in I, \quad z \in \mathbb{C}, \\
& \lim _{t \rightarrow \infty} D(t)=0
\end{aligned}
$$

and suppose

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p(t)=a \tag{3.16}
\end{equation*}
$$

Then

$$
\lim _{t \rightarrow \infty} z(t)=0
$$

for any solution $z(t)$ of (3.1) satisfying $\operatorname{Re}\left[a z\left(t_{1}\right)\right] \geqq 0$, where $t_{1} \geqq t_{0}$.
Proof. Choose $R>0$ and put $\Omega_{1}=K(\infty, 1), B(t)=D(t)+R^{2}|p(t)-a|$, $\delta=0$. Let $j_{0} \in \mathbb{N}$ be such that $j_{0}>3 R^{-1}$. Set

$$
a_{j}=|a| a^{-1}\left(j+j_{0}\right)^{-1}, \quad \alpha_{j}=2\left(j+j_{0}\right)^{-1}
$$

In view of Theorem 5 and Lemma 2 we have $z(t) \in \Omega_{1} \cup\{0\}$ for $t>t_{1}$ and

$$
\underset{t \rightarrow \infty}{\liminf }|z(t)|=0
$$

Putting $z=a_{j}+\alpha_{j} e^{i \vartheta}$, where $\vartheta \in \mathbb{R}$, we obtain

$$
\begin{aligned}
& G(t, z) \operatorname{Re}\left\{\left(\bar{z}-\bar{a}_{j}\right)[h(z)+g(t, z)]\right\}= \\
& =\operatorname{Re}\left\{\left(\bar{z}-\bar{a}_{j}\right)\left[-a z^{2}+g(t, \bar{z})\right]\right\} \leqq \\
& \leqq \operatorname{Re}\left\{-\alpha_{j} e^{-i \vartheta} a\left(a_{j}+\alpha_{j} e^{i \vartheta}\right)^{2}\right\}+\left|z-a_{j}\right||g(t, z)|= \\
& =\alpha_{j}\left\{\operatorname{Re}\left[-a a_{j}^{2} e^{-i \vartheta}-2 a \alpha_{j} a_{j}-a \alpha_{j}^{2} e^{i s}\right]+|g(t, z)|\right\} .
\end{aligned}
$$

For $t>t_{1}, \quad z \in K(\infty, 1) \cap\left\{z \in \mathbb{C}:\left|z-a_{j}\right|=\alpha_{j}\right\}$ we have $|z| \leqq\left|a_{j}\right|+\alpha_{j} \leqq$
$\leqq 3\left(j+j_{0}\right)^{-1}<R$ and therefore, using the inequality $\cos (\vartheta+\operatorname{Arg} a) \geqq-\cos \omega \geqq$ $\geqq-\left|a_{j}\right| \alpha_{j}^{-1}$ (see Fig. 1), we get

$$
\begin{aligned}
& \operatorname{Re}\left[-a a_{j}^{2} e^{-i \vartheta}-2 a \alpha_{j} a_{j}-a \alpha_{j}^{2} e^{i \vartheta}\right]= \\
& =-|a|\left|a_{j}\right|^{2} \cos (\vartheta+\operatorname{Arg} a)-2 \alpha_{j}|a|\left|a_{j}\right|-|a| \alpha_{j}^{2} \cos (\vartheta+\operatorname{Arg} a) \leqq \\
& \leqq|a|\left|a_{j}\right|^{3} \alpha_{j}^{-1}-\alpha_{j}|a|\left|a_{j}\right|
\end{aligned}
$$

and

$$
\begin{aligned}
& G(t, z) \operatorname{Re}\left\{\left(\bar{z}-\bar{a}_{j}\right)[h(z)+g(t, z)]\right\} \leqq \\
& \leqq \alpha_{j}\left[|a|\left|a_{j}\right|^{3} \alpha_{j}^{-1}-\alpha_{j}|a|\left|a_{j}\right|+\left|q(t, z)+(a-p(t)) z^{2}\right|\right] \leqq \\
& \leqq \alpha_{j}\left[|a|\left|a_{j}\right| \alpha_{j}^{-1}\left(\left|a_{j}\right|^{2}-\alpha_{j}^{2}\right)+B(t)\right]
\end{aligned}
$$

Since $\left|a_{j}\right|<\alpha_{j}$ and $B(t) \rightarrow 0$ as $t \rightarrow \infty$, it is clear that for any $j \in \mathbb{N}$ there is $\beta_{j}>t_{1}$ such that

$$
G(t, z) \operatorname{Re}\left\{\left(\bar{z}-\bar{a}_{j}\right)[h(z)+g(t, z)]\right\}<0
$$

for $t>\beta_{j}$ and $z \in \Omega_{1} \cap S\left(a_{j}, \alpha_{j}\right), j \in \mathbb{N}$. Now all assumptions of Theorem 4 are fulfilled and the assertion follows from Theorem 4.

Let $\alpha, \beta \in \widetilde{C}^{1}(I), \varrho \in \widetilde{C}(I)$ and $\beta(t) \neq 0$ for $t \in I$. Defining functions $p(t), q(t, z)$ as in Lemma 1 and combining Lemma 1 with Theorems 5-9, we obtain the following results concerning the equation (3.2):

Corollary 1. Let the assumptions (3.5), (3.6), (3.8) and (3.11) be fulfilled. If there exist $D(t) \in C(I)$ and $\delta \geqq 0$ such that the conditions (3.12) and (3.13) hold, then any solution $x(t)$ of (3.2) satisfying

$$
\begin{equation*}
\operatorname{Re}\left[a\left(\beta\left(t_{1}\right) \dot{x}\left(t_{1}\right) x^{-1}\left(t_{1}\right)-\alpha\left(t_{1}\right)\right)\right] \geqq 0, \tag{3.17}
\end{equation*}
$$

where $t_{1} \geqq t_{0}$, fulfils the conditions

$$
\begin{aligned}
& \operatorname{Re}\left[a\left(\beta(t) \dot{x}(t) x^{-1}(t)-\alpha(t)\right)\right] \geqq 0 \quad \text { for } \quad t \geqq t_{1} \\
& \liminf \\
& t \rightarrow \infty
\end{aligned}
$$

Corollary 2. Let the assumptions (3.5), (3.6), (3.8) and (3.11) be fulfilled. Suppose there exist $D(t) \in C(I)$ and $\delta \geqq 0$ such that the conditions (3.14) and (3.15) hold. Then any solution $x(t)$ of (3.2) satisfying (3.17), where $t_{1} \geqq t_{0}$, fulfils the conditions

$$
\begin{aligned}
\operatorname{Re}\left[a\left(\beta(t) \dot{x}(t) x^{-1}(t)-\alpha(t)\right)\right] & \geqq 0 \quad \text { for } \quad t \geqq t_{1}, \\
\liminf _{t \rightarrow \infty}\left|\beta(t) \dot{x}(t) x^{-1}(t)-\alpha(t)\right| & =0 .
\end{aligned}
$$

Corollary 3. Let the assumptions of Corollary 2 be fulfilled and let

$$
\int_{t_{0}}^{\infty}|p(t)-a| \mathrm{d} t<\infty .
$$

Then any solution $x(t)$ of (3.2) satisfying (3.17), where $t_{1} \geqq t_{0}$, fulfils

$$
\lim _{t \rightarrow \infty}\left[\beta(t) \dot{x}(t) x^{-1}(t)-\alpha(t)\right]=0 .
$$

Corollary 4. Let the assumptions of Corollary 2 be fulfilled and let $\operatorname{Im}[\bar{a} p(t)]=0$ for $t \geqq t_{0}$. Then any solution $x(t)$ of (3.2) satisfying (3.17), where $t_{1} \geqq t_{0}$, fulfils

$$
\lim _{t \rightarrow \infty}\left[\beta(t) \dot{x}(t) x^{-1}(t)-\alpha(t)\right]=0 .
$$

Corollary 5. Let the assumptions (3.5), (3.8), (3.11) and (3.16) be satisfied. Assume there is $D(t) \in C(I)$ such that (3.14) and

$$
\lim _{t \rightarrow \infty} D(t)=0
$$

hold. Then

$$
\lim _{t \rightarrow \infty}\left[\beta(t) \dot{x}(t) x^{-1}(t)-\alpha(t)\right]=0
$$

for any solution $x(t)$ of (3.2) satisfying (3.17), where $t_{1} \geqq t_{0}$.
Remark. Putting $\quad \beta(t) \equiv 1, \quad \alpha(t)=-\frac{1}{2} P(t), \quad \varrho(t) \equiv 0, \quad a=1, \quad \psi(t, z)=$ $=-P(t) z-Q(t)$, where $P \in \widetilde{C}^{1}(I), Q \in \widetilde{C}(I)$, we obtain several results from [9].
[1] J. Kalas: On a "Liapunov-like" function for an equation $\dot{z}=f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 18 (1982), 65-76.
[2] J. Kalas: Asymptotic nature of solutions of the equation $\dot{z}=f(t, z)$ with a complex-valued function f, Arch. Math. (Brno) 20 (1984), 83-94.
[3] J. Kalas: Some results on the asymptotic behaviour of the equation $\dot{z}=f(t, z)$ with a complexvalued function f, Arch. Math. (Brno) 21 (1985), 195-199.
[4] J. Kalas: Asymptotic behaviour of the solutions of the equation $\mathrm{d} z / \mathrm{d} t=f(t, z)$ with a complex-valued function f, Colloquia Mathematica Societatis János Bolyai, 30. Qualitative Theory of Differential Equations, Szeged (Hungary), 1979, pp. 431-462.
[5] J. Kalas: On certain asymptotic properties of the solutions of the equation $\dot{z}=f(t, z)$ with a complex-valued function f, Czech. Math. J. 33 (1983), 390-407.
[6] C. Kulig: On a system of differential equations, Zeszyty Naukowe Univ. Jagiellońskiego, Prace Mat., Zeszyt 9, 77 (1963), 37-48.
[7] M. Ráb: Equation $Z^{\prime}=A(t)-Z^{2}$ coefficient of which has a small modulus, Czech. Math. J. 21 (1971), 311-317.
[8] M. Ráb: Geometrical approach to the study of the Riccati differential equation with complexvalued coefficients, J. Diff. Equations 25 (1977), 108-114.
[9] Z. Tesařová: The Riccati differential equation with complex-valued coefficients and application to the equation $x^{\prime \prime}+P(t) x^{\prime}+Q(t) x=0$, Arch. Math. (Brno) 18 (1982), 133-143.

Author's address: 66295 Brno, Janáčkovo nám. 2a, Czechoslovakia (Katedra matematické analýzy PF UJEP).

