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EXISTENCE OF PRIME IDEALS AND ULTRAFILTERS
IN PARTIALLY ORDERED SETS

ALEXANDER ABIAN and WAEL A. AMIN, Ames

(Received August 10, 1988)

In the existing literature the algebraic notions of an ideal and a prime ideal [1,
p. 122] and the corresponding dual notions of a filter and an ultrafilter [1, p. 142] are
predominantly generalized to the case of lattices [2] and [3]. Here we introduce
these notions in partially ordered sets. An ideal in a partially ordered set can be
defined in various (not necessarily pairwise equivalent) ways. The same is the case
for the definitions of a prime ideal, a filter and an ultrafilter.

In what follows we refer to a partially ordered set simply as a poset. Also, we intro-
duce the following notations:

(2.1) [x,y] for sup{x,y}
(2_2) (x, y) for inf {x, y}

Based on the above notations, we introduce:

Definition 2.3. A nonempty proper subset I of a poset (P, <)is called an ideal of Piff
(2.4) xel and y < x imply yel forevery x,yeP.
(2.5) xel and yel then [x,y]el forevery x,yeP.
Moreover, an ideal D of P is called a prime ideal of P iff

(2.6) if (x,y)eD then xeD or yeD forevery x,yeP.

Lemma 2.7. Let (P, <) be a poset with a maximum 1. Then for every a, b, c € P
it is the case that:

(i) If b < c and [a,b] = 1 then [a,c] = 1.

(ii) Let [b, c] exist. Then [a,[b,c]] =1 iff [a,b,c] = 1.

Proof. (i) Let b < ¢ and [a, b] = 1. Then 1 is the only upper bound of {a, b}.
If x is an upper bound of {a, ¢; then x is an upper bound of {a, b}. Thus x = 1 and
consequently 1 is the only upper bound of {a, ¢;. Hence [a, c] = 1.

(ii) Assume [b, c] exists and [a, [b, ¢]] = 1. Again 1 is the only upper bound of
{a,[b, c]}. If x is an upper bound of {a, b, ¢j then x is also an upper bound of
{a,[b, c];. Thus x = 1. Consequently 1 is the only upper bound of {a, b, c}, i.e.,
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[a, b, c] = 1. Conversely, let [b, c] exist and [a, b, ¢] = 1. Since [b, c] Z ¢, by (i)
we have [a,b,[b,c]]=1. But [b,c] 2 b and therefore 1 =[a,b,[b,c] =
= [a, [, c]]. Thus (ii) is established. Q.E.D.

Let (P, <) be a poset with a maximum 1 such that:

(2.8) The supremum of every two elements of P exists.

And for every finite subset {x, Agynny a,,} of P, the following distributivity condition
holds:

(2.9) If [x,a;] =...=[x,a,] =1 and [x,(a;,...,a,)] exists then

[x, (ag,...,a,)] = 1.
Moreover, as usual, a subset A of P is said to have the finite supremum property iff:

(2.10) 1 is not the supremum of any finite subset of A.

Theorem 2.11. Let (P, <) be a poset with a maximum 1 satisfying (2.8) and (2.9).
Let D, be a nonempty subset of P satisfying (2.10). Then there exists a subset D
of P such that:

(i) 1¢ D and D, < D.

(il) xe D and y £ x imply y e D for every x, y € P.

(iii) [dys ..., d,] € D for every finite subset {dy, ..., d,} of D.

(iv) If (ay, ..., a,) € D then a,e D for some 1 < i < n.

Proof. Let

H ={H:H < P and D, < H and H satisfies (2.10)} .

Clearly, (H', <)is a nonempty partially ordered set since D, € H'. By Zorn’s Lemma,
it can be readily verified that H' has a maximal element D. We show that D satisfies

(i) to (iv).
Clearly, 1 ¢ D and D, < D so that D satisfies (i). Let us observe that by the maxi-
mality of D we have:

(2.12) If x ¢ D then [x, dy, ..., d,] = 1 for some finite subset {d,, ..., d,} of D.
Now, let xe D and y < x and let y ¢ D. By (2.12) [y, dy, ..., d,] = 1 and by (i)

of Lemma 2.7 we derive that [x, dy,...,d,] = 1 which is a contradiction since D
satisfies (2.10). Hence y € D, i.e., (ii) is established.
Let {t;, ..., t,} be a subset of D and assume that ¢ = [t,, ..., t,] is not an element

of D. Then [t,d;,...,d,] =1, by (2.12). But then (ii) of Lemma 2.7 implies
[t4, ..., tm dy,...,d,] =1 which is a contradiction since D satisfies (2.10). Thus
t e D. Hence (iii) is established.

To show (iv), let us assume on the contrary that (ay, ..., a,) € D and a; ¢ D for
every i with 1 < i < n. Then by (2.12) we have [a;, dyy, ..., din,] = 1, for every
1<isn Nowletx =[dyg,....dimydagseees Aamy oo dugy oo d,,,,,,_]. Then x € D
by (iii) and if y; is an upper bound of {x, a;} then y; is an upper bound.of
{di1, ..., dim,}. But 1 is the only upper bound of {a;, d;, ..., d;p,}. Thus y; = 1 and
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consequently [x, a;] = 1. On the other hand, since [x, (ay, ..., a,)] exists, then by
(2.9) we have [x, (ay, ..., a,)] = 1 which is a contradiction since D satisfies (2.10).
Thus a; € D for some 1 < i < n. Hence (iv) is established. Q.E.D.

Remark 2.13. We note that Theorem 2.11 implies that the subset D of the poset P
is a prime ideal of P. We also observe that the same is true if condition (2.9) is replaced
by the weaker condition:

2.9y If [x,a,] = [x,a,] = 1 and [x, (ay, a,)] exists then [x, (ay, a,)] = 1.

The Theorem below which (in view of Remark 2.13) ensures the existence of a prime
ideal of a poset follows readily from Theorem 2.11.

Theorem 2.14. Let (P, <) be a poset with a maximum 1 satisfying (2.8) and (2.9) .
Let D, be a nonempty subset of P satisfying (2.10). Then there exists a prime
ideal D of P such that D, = D.

Remark 2.15. We observe that for every nonmaximum element x of a poset (P, <)
satisfying (2.8), the subset I(x) of P given by:

(2.16) I(x) ={z:zeP and z < x}

is an ideal of (P, <).
As usual, I(x) in (2.16) is called the principal ideal of P generated by x. Clearly,
for every x, y € P with x = y there exists an ideal of P containing, say, x but not y.
Next, we consider the case of the existence of a prime ideal of a poset without the
maximum element. For this purpose we replace the distributivity condition (2.9)’ by:

(2.17) ([x, 1], [, a2]) = [, (a1, a2)]

with the understanding that (2.17) holds whenever the right side of < exists, and,
this for every x, ay, a, € P.

We observe that (2.17) does not hold in every poset. For instance, it fails in the
poset ({e,a, b,c,m}, <)withe<a,e<b,esc,a<mbs<mc=<m

Theorem 2.18. Let (P, <) be a poset in which every two elements have a supremum
and which satisfies (2.17). Let x, y € P with y £ x. Then there exists a prime ideal D
of P such that xe D and y ¢ D.

Proof. From (2.16) it follows that I(x) is an ideal of P and that y is not the supre-
mum of any finite subset of I(x). This is because x is an upper bound of any subset
of I(x) and y £ x.

Let H' be the set of all the ideals H of P such that I(x) < H and y is not the supre-
mum of any finite subset of H. It is obvious that (H’, <) is a nonempty poset. By
Zorn’s Lemma it can be readily verified that H' has a maximal element D.

We claim that D is a prime ideal of P. Let us assume on the contrary, i.e., there
exist ay, a, € P such that (ay, a;) € D but a, ¢ D and a, ¢ D. Now, let us consider:

(2.19) D;=Du{z:zeP and z £ [a;,d] and de D} with i=1,2.
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One of the following two cases must occur:
Case 1. D; = P for some i € {1, 2}. For this case, from (2.19) we derive:
(2.20) y < [a;d;] forsome d,eD.

Case 2. D, is a proper subset of P. For this case we show that D; is an ideal of P
which contains D properly. Let ¢y, t, € D;. Thus, from (2.19) it follows that ¢, <
< [a;,d3] and 1, < [a;, d,] for some dy, dy € D. Based on the hypothesis of the
Theorem, we let d = [d3, d,]. Since D is an ideal of P, we have d € D. Also, itcan
be readily verified that ¢, < [a;,d] and t, < [a;, d]. Thus, [t,, 1,] < [a;, d] which
by (2.19) implies that [t,, t,] € D;. Hence, D; satisfies (2.5). Now, let t€ D;and r < t
with r € P. But then, again from (2.19) it follows that » € D;. Hence, D; also satisfies
(2.4). Consequently, D; is an ideal of P. However, the maximality of D implies that
y < [a;, d] for i = {1,2].

Thus, (2.20) holds in both of the abovementioned cases. Let d = [dy, d,] which
exists by the hypothesis of the Theorem. Clearly, y is a lower bound of {[a,, d],
[a,.d]}. Since [d, (ay, a,)] exists by the hypothesis of the Theorem and since
[d,(a;, az)] € D, by (2.17) we have y < ([ay, d], [a,, d]) < [d, (ay, a,)] € D. Since
D is an ideal of P, by (2.4) we have y € D. But this contradicts that D e H'. Hence our
assumption is false and D is a prime ideal of P. Q.E.D.

The existence of prime ideals in structures related to order (e.g., semilattices,
lattices, Boolean rings, etc.) has been considered under assumptions generally
stronger than those stated in Theorem 2.18. In this connection reference is made

to [4], [5], [6]-

Remark 2.21. We observe that the existence of prime ideals in posets is proved
in Theorems 2.14 and 2.18 under the assumption that every two elements of the poset
have a supremum. Next, we consider cases where this assumption is not satisfied by
the posets. As shown below, for such cases we prove the existence of subsets of posets
which will act almost like prime ideals.

Definition 2.22. A nonempty proper subset D of a poset (P, < ) is called a pseudo
ideal of P iff

(2.23) xeD and y<x imply yeD forevery yeP

and
(2.24) if x,yeD and [x,y] existsthen [x,y]eD.
Moreover, a pseudo ideal D of P is called a pseudo prime ideal of P iff
(2.25) (a,b)e D implies aeD or beD.
Let P be a poset with the maximum 1 satisfying the distributivity condition:-

(2.26) [x1, a10s ooos agn ] = [*2 G215 s G2y ] = 1
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implies
[(xl’ xz)’ (xl’ all)s ceey (aln" XZ), LERE] (alnl’ a2nz)] = 1

for every Xy, X, a1, ..vy Qynys Xgy vy Ay, Ay, € P

Theorem 2.27. Let (P, <) be a poset with the maximum 1 satisfying (2.26).
Let D, be a nonempty subset of P satisfying (2.10). Then there exists a pseudo
prime ideal D of P such that D, < D.

Proof. Let H' be the set of all the subsets H of P such that D, = H and H satisfies
(2.10).

Clearly, (H’, <) is a nonempty poset and by Zorn’s Lemma H’ has a maximal
element D. We observe that D satisfies (2.12).

We show that D is a pseudo ideal of P. To show that D satisfies (2.23), we assume
to the contrary that x e D and y < x but y ¢ D for some y € P. Then by (2.12) we
have [y, dy, ..., d,] = 1 for some d, ..., d, elements of D. Using (i) of Lemma 2.7,
we obtain that [x, dy, ..., d,] = 1 which contradicts that D € H' and that D satisfies
(2.10). Hence, y € D. To show that D satisfies (2.24), we assume to the contrary that
for some 1y, t, € D it is the case that t = [t,, t,] exists but ¢ ¢ D. Again, from (2.12)
it then follows that [t,dy,...,d,] = 1 for some dy,...,d, e D. Also, by (ii) of
Lemma 2.7, we obtain that [tl, ty, dyy ey dk] = 1 which again contradicts that D
satisfies (2.10). Hence, t = [t4, t,] € D. Thus, D is a pseudo ideal of P.

Next we show that D is a pseudo prime ideal of P. We assume to the contrary
that (ay, a,) € D for some a,, a, € P but a; ¢ D and a, ¢ D. Then by (2.12) we have
[ai,diy,....d;,] = 1, for i = 1,2 and some dy, ..., d;,, € D. But then from (2.26)
it follows that

(2.28) [(ay, a3), (ay, day), ooy (dinps G2)s oo (dynys dany)] = 1

Clearly, for every term such as (a;, d;) which appears in (2.28) we have (a;, dy;) <
< dy; € D and therefore, (a;, dy;) € D by (2.23). Also, by our assumption (a,, a,) € D.
Consequently, the entire left side of the equality sign in (2.28) is an element of D.
But this contradicts that D satisfies (2.10). Thus, our assumption is false and the
pseudo ideal D satisfies (2.25) and therefore D is a pseudo prime ideal of P. Q.E.D.
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