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WEAK BASES IN MODULAR LATTICES 

ZSOLT LENGVÁRSZKY, PécS 

(Received August 19, 1987) 

A subset H of a lattice Lis called weakly independent iff for all h, h1, ..., hn є H 
which satisfy h ^ hl v ... v hn there exists an i(l g i ^ n) such that & ̂  /if. 
A maximal weakly independent subset is called a weak basis of L. 

In a lattice of finite length any chain is aweakly independent subset and any 
maximal chain is a weak basis. In a finite distributive lattice any set ofjoin-irreducible 
elements is weakly independent and the set of all join-irreducibles is a weak basis. 
Thus the following theorem which was proved in [1] generalizes the well-known 
fact that in a finite distributive lattice the number of elements in a maximal chain 
equals the number ofjoin-irreducible elements. 

TheoremA. Any two weak bases of afinite distributive lattice have the same 
number of elements. 

An example given in [ l ] shows that Theorem A will not be true if we change 
distributivity for modularity. However, as it was proved in [2] any lattice of finite 
length with the property that any two bases of it have the same number of elements 
must be modular. The aim of this paper is to present two classes of modular lattices 
in which Theorem A is true. 

The breadth of a lattice L is the least natural number b such that for any finite 
X c Lthere exists Y ç X with \Y\ ^ b and V ^ = V^- w e shall use 

Theorem B (see [4]). Everyfinitely generated modular lattice offinite length 
and breadth at most two isfinite. 

We also need the notion of c-sublattices. A sublattice L of a lattice Lis said to be 
a c-sublattice iffor all u, v є L' u covers v in L' ifT u covers v in L. 

Theorem C (see [3]). A finite modular lattice is distributive if and only if it 
contains no c-sublattices isomorphic to M 3 (M3 is thefive-element non-distributive 
modular lattice). 

Theorem 1. Let Lbe a modular lattice offinite length and breadth at most two 
(or equivalently a dismantlable modular lattice offinite length, cf. [5]). Thenfor 
any two weak bases Hu H2 £ Lwe have | # x | = | # 2 | . 

Proof. First observe that in a lattice with no infinite chains any weak basis H 
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is finite. Indeed, let au a2, . . . be an enumeration of elements from Я such that for 
i = 1, 2, . . . cti is minimalin {ah ai+u . . .) .Then^defined by q>(at) = at v . . . v ai 

maps injectively {au a2,...} to some chain. 
Thus in view ofTheorem B, the sublattice L' generated by Hx u H2 is finite. Since 

Hx and H2 are bases in L' too, we may suppose that Litself is finite. 
Clearly, it is enough to show that the number of elements in any weak basis Я 

is l(L) + 1. For distributive lattices this is Theorem A, thus we can assume that L 
contains a c-sublattice M isomorphic to M 3 . 

Let xux2 and x3 be the pairwise incomparable elements of M and let a = 
= x1 л x2 A x3. For i = 1, 2, 3 choose a join-irreducible element jteL with 
a v ji = xt. It is striaghtforward to check thatji,j2 and j 3 are pairwise incomparable. 
Now there are three pairwise incomparable doubly irreducible elements yl9 y2 and v3 

in L(see [6]). Since yt v y2 v y3 = yt v y} for some 1 ^ i, j ^ 3, one of j / b y2 

and j 3 , say y l 5 is not contained in H. But then H is a weak basis also in the sublattice 
L = Ь\{уг}. Moreover, J(L') = J(L)andthe assertion follows by induction on |L|. 

Let Lbe a finite lattice. For any interval [a, b] of length two in Llet Na>b be а (pos
sibly empty) set of new elements such that Nütb n iVcd = 0 if a Ф c or b Ф d. We 
define a lattice Lcontaining Las a c-sublattice on the set L u U iVa>b by adding 

l(ia,b]) = 2 

to the Hasse diagram ofLthe covering relations a ~< u and u < Ь for any [a, b] of 
length two in Land for any u є Na>b. Then we say that Lcan be obtained by inserting 
new elements into L. Let Л0 denote the class of modular lattices which can be 
obtained by inserting new elements into some finite distributive lattice. 

We ntQ& the well-known 

Lemma D (see [3]). Let D be afinite distributive lattice. Iffor the elementsj, 
xl9...,x„eD we have jeJ0(D) (== the set ofjoin-irreducibles of D) and j S 
^ хл v ... v xn thenj S Xf for some i, 1 g i ^ n. 

Theorem 2. If Le Ji$ then for any two weak bases Hu H2 c L we have \Ht\ = 
= ! Я 2 І -

Proof. As in the proof of Theorem 1 we have to show that any weak basis H 
satisfies \H\ = l(L) + 1. 

Let D be a distributive lattice with the property that Lcan be obtained by inserting 
new elements into D. We may suppose that if [a, b] is an interval of length two in D 
and Na>b ф 0 then |[a, b] | = 4. Indeed, let |[a, b] | = 3 and Na>b + 0. Now we can 
add a new element from Na>b to D. By Theorem C, one can easily see that D remains 
then distributive. 

If L is distributive then the assertion follows from Theorem A. Suppose that L 
is not distributive. Now there is an interval [я, b] of length two in L such that 
|[fl, b] n D\ = 4 and Na>b Ф 0. Let [a, b] n D = {a, ft, x, y] and let ueNa>b. If 
w ^ Я then Я is also a basis in L' = L\{u] and the assertion follows by induction. 
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Let u є H. For any p є D set 

J(p) = {j\jšP mdjeJ0(D)}. 

Then we have J(x) = J{a) u {;} and J[y) = J(a) u {fc} for some j , fc є /0(£>)> 
moreover J v к = b. Indeed, if j , f e J(x) \ J(a) then a v j = a v j ' = x since x 
covers я. By Lemma D we have j ^ j ' and j ' ^ j , i.e. j = j ' . To see j v k = b 
recall that in a modular lattice the mapping z ~> z v g is an isomorphism between 
the intervals [p л #, p] and [#, p v q\ for any p and q. Choose p = j v к and 
g = a. Since p v # = j v /c v a = x v y = b, there is an element t; in Lsuch that 
p л q < v < p and v v a = u. As w is join-irreducible in L and a < u we must 
have v = u. Then7 v к = p > v = и, i.e. ; v fc = b. 

We define a mapping x -^ x of Lto D by 

- _ ( t n e U l n c u P P e r cover of x if x є L \ D ; 
[x if x 6 Z). 

For any join X! v .. . v xn in Lwe have either 

Xi V . . . V Xn = Xt V . . . V Xn 

or 
XL V . . . V Xn = X£ 

for some i, 1 ^ / ^ n. 

Define x є X c L and у є 7 £ L by 

X = {p e L | p ^ ; and p £ b and p §§iVa,&} , 

7 = {g e L | q ^ fc and g ^ b and g фNa}b} . 

Note that for any p e X and for any q є 7 we have p v g k j v fc = b ^ w and 
P Í u, q ^ M. This implies that either H n X = 0 or Я n 7 = 0 and without loss 
of generah'ty we mayassume that HnX = 0. First observe that L' = L\X is 
a sublattice of L. 

Indeed, if peNa>b or g eJVfljb then either p v q eNa$b or p v q ^ b and either 
p л g є Natb or p л g й a, i.e. p v q, p л g є L. If p £ ІѴяЬ and q ф Na>b then we 
have four possibilities: 

1. p ^ j and 5 žfe fe- Then p v ^ = p or p v q = g or p v # = p v q and in 
the latter case by Lemma D p v q J j , i.e. p v g є L. Since p л # ^ p, p л ^ є L 
is trivial. 

2. p J j and g ^ b. Then by p v q ^ Ь and by p л # ^ J w e have p v q, 
p л g є L. 

3. p ^ fo and q J k. This case is similar to case 2. 
4. p ^ b and q ^ b. Then p v g, p л q ^ b. 
On the other hand Z(L') = /(L) as A u {w} u B is a subset of L where A = 

= {a' є L | 0' S a) and Б = {b' є L; | b' ^ b}. This implies that if for some v є NCtd 

we have v є L then c, J є L holds too. Then L' can be obtained by inserting new 
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elements into D' = D n L'. H is obviously a basis in L' and by induction we have 
|Я| = l(L) + 1 = l{L) + 1. 

From [5] we know that any planar lattice is dismantlable. On the other hand it 
can be easily shown that MQ too contains the class of planar modular lattices. Thus 
either Theorem 1 or Theorem 2 implies 

Corollary. In a planar modular lattice any two weak bases have the same number 
of elements. 

Remarks. 1. The example exhibited in [l] shows that Theorem 1 will not be true 
in general for modular lattices of breadth three. The same example shows that 
Theorem 2 does not remain true if we consider modular lattices which can be obtained 
in two steps by adding new elements to some finite distributive lattice. 

2. It can be easily seen that not one of the classes of modular lattices considered 
in Theorem 1 and Theorem 2 contains the other one. 
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