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MEDIAL RINGS AND AN ASSOCIATED RADICAL 

GARY BiRKENMEiER and HENRY HEATHERLY, Lafayette 

(Received March 29, 1988) 

1. INTRODUCTION AND PRELIMINARIES 

This paper initiates the study in-depth associative rings with multiplicative semi
group satisfying the following identities: 

1.1 abcd = acbd (medialriiigs), 
1.2 abc = bac (left permutable rings), 
1.3 abc = acb (rightpermutablerings), 
1.4 abc = bac — acb (permutable rings). 

We call these "the four identities." The terminology used here comes from the 
groupoid theory work of Ježek and Kepka [13, 14]. Semigroups satisfying these 
identities have been studied in detail (for example, see: [4, 5, 6, 11, 19, 20, 21, 22, 23, 
25, 26]). The terminology used in semigroup theory is varied; e.g. "left (right) 
normal" and "right (left) commutative" for our "right (left) permutable," in Petrich 
[23, p. 121] and Nordahl [22]. 

Ringssatisfyingoneofthefour identities are special types of PI-rings; special 
enough so much more can be said than in the general PI situation. Immediate 
examples ofrings satisfying one ofthe four identities are commutative rings, nilpotent 
rings of index g 4 (for medial), ^ 3 (for the other three identities), and direct sums 
of theserings, examples which in some sense are trivial and which did not motivate 
this study. Instead semigroup and groupoidtheory werethemotivations, especially 
through (1) semigroup rings formed from a commutative ring over a semigroup 
satisfying one of the four identities and (2) some general algebraic operation con
struction methods developed recently by the authors [ l ] . In Section 3 we discuss 
examples arising from these two procedures and several other classes of examples 
of rings satisfying one of the four identities. These examples will illustrate the 
complexity of the class of rings under investigation. 

In some sense, most noncommutative rings are not medial (e.g., a medial ring with 
identity is commutative). Yet medial rings (and more generally, rings satisfying one 
of the four identities) are found as special subrings of every ring, and in a fashion 
that intimately ties them to the structure of the ring. This is shown in Section 4, 
through the development of a radical associated with medial rings. For any ring R, 
define Ji(R) = {^xJ^inbn-~bnan)yn\an,bn,xniyneR). Then J/(R) is an ideal 
of R which we call the medial quasiradical of R. Define Ji(R) to be the sum of all 
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ideals / of jR such that Ji{l) — L Then M defines a radical property and Jf(R) is 
called the medial radical of R. An ideal of R which is itself a medial ring is called 
a medial ideal. We will prove that there are ideals H £ T £ Lof R which are per
mutable, right permutable, and medial, respectively, such that .#(jR) + L and 
Ji{R^) + T are right essential in R and Ji(R) + Я ideal essential in R. If R has 
D.C.C. on ideals, then ^a(R) can be replaced by Ji(R). Examples are provided 
which illustrate and delimit the theory. 

In Sections 5, 6 and 7 rings satisfying one ofthe four identities, especially mediality, 
are studied in depth. Prime, maximal and primitive ideals of medial rings are found 
to have many of the same properties they do in commutative rings; e.g., all prime 
ideals are completely prime. Chain conditions on ideals are shown to give some 
results in the medial case which require chain conditions on left (right) ideals for 
rings in general. As an example of these results: if R is medial with either A.C.C. 
or D.C.C. on ideals, then every nil one-sided ideal is nilpotent; in the D.C.C. case, 
every nonnilpotent ideal contains a nonzero idempotent. We give a series of decom
position theorems for rings satisfying the four identities. 

The classification of subdirectly irreducible rings satisfying one of the four identities 
is taken up in Section 7. The heart of such a ring is either square zero or the ring is 
a field. In the former case, much can be said about the interrelations between the 
heart and the ring. As one moves from lesser to stricter conditions among the four 
identities, the results improve, finally yielding: if S is a permutable ring with D.C.C. 
on ideals,then S is a subdirect product of rings which are either commutative or 
nilpotent. 

Throughout most of the paper it is possible to obtain a dual result of a given result 
by judiciously interchanging left and right. Since this is clear in the context of each 
result, we have often omitted stating these dual propositions. 

In this paper ring will mean associative ring, not necessarily with identity (unity 
element). For any ring R, R+ denotes the additive group of R, Ropp the opposite 
ring to R (i.e., the multiplication in jRopp is given by a * b = b-a, where b-a is a prod
uct in jR), and N(R), (or often for convenience iV) the set of nilpotent elements of R. 
For medial rings, N is an ideal and contains the commutator ideal <jR, R}R. Recall 
<R, R}R is the ideal ofR generated by the set [JR, JR] = {[я, Ъ\ = ab — ba | я, b є R} 
For any nonempty subset S of R, (S)R will be the ideal of R generated by S. If no 
ambiguity will result, we will use <jR, R} and <£> for <R, R)R and <S>R, respectively. 
Also (S}1 and ($}r will denote, respectively, the left and right of R generated by S. 
The annihilator sets lR(S) = {r є R | rS = 0] , rR(Š) = {r є R | Sr = 0}, and 
annK(S) = {r є R | Sr = 0 = r5}, play a useful role in.the theory developed herein. 
The socle o f# , the sum ofthe minimal ideals ofjR, is denoted by Soc(R).-We use RnXn 

for the full ring of n by n matrices over R. 
A ring is reduced if it has no nonzero nilpotent elements and entire if it has no 

nonzero divisors of zero. A commutative entire ring is called a domain. An ideal 
which is itself a reduced ring is called a reduced ideal. 
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The symbol Z is reserved for the set of rational integers. Our notation for set 
inclusion is A c B and for proper set inclusion, A c= B. 

2. BASIC PROPERTIES OF MEDIAL RINGS 

Throughout this section jR will denote a medial ring. A routine calculation shows: 
jR. <R, #>• R = 0; so <R, R} £ N. If S is a left (right) permutable ring, then 
<S, S>. S - 0, (respectively: S.<S, S> = 0). 

The following useful and interesting identity was developed by Judith Covington 

[7]. 
Proposition 2.1. (Binomial Theorem for Medial Rings). If a, b e R, then for each 

integer n ^ 2, 

(a + b)n = S J n ~ 2 ) [a""*"^*a + Ьп'к~гакЬ + a""*-*b*-+1 + 

+ ь»-*-ѵ+1], 
where k — 0, ..., n — 2. [Here it is understood that if a0 or b0 appear, they are 
deleted.) 

The p r o o f is а straightforward induction on n; however, it differs somewhat 
from the proof for the Binomial Theorem for commutative rings. 

Although it is known from other considerations that N is an ideal for rings 
satisfying [x, j ] n = 0 identically for some fixed n [9, Th. 54], the Binomial Theorem 
for Medial Rings yields directly that N = N(R) is an ideal. 

We shall give a plethora of examples showing medial rings need not be com
mutative or nilpotent ofindex fg4, or direct sums of such rings. But in some ways 
the class of medial rings is delicately balanced away from the class of commutative 
rings, as the following shows. 

Proposition 2.2. If any of thefollowing properties hold, then R is commutative: 
(i) R contains a two-sided identity element; 

(ii) R contains an element which is not a left zero divisor and an element which 
is not a right zero divisor; 

(iii) R is a semiprime ring (e.g., R prime, reduced, simple, or von-Neumann 
regular). 

Proposition 2.3. If I is a minimal ideal of R, then either I2 = 0 or I is a field. 
Thus, if R is subdirectly irreducible, with heart H, then either H2 = 0 or R = H 
is afield. 

Proof. A minimal ideal of a ring is either square zero or is a simple ring [9, p. 135]. 
So Iі = 0, or / is a simple medial ring, a field. If H2 Ф 0, then H is a ring with non
zero identity. It is well known that if the heart of a ring contains a nonzero identity 
element, then the heart is the whole ring. 

From this we immediately obtain a medial version of the Birkhoff Lemma [3]. 
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If R ф 0 has no nilpotent elements and is subdirectly irreducible, then R is a field. 
Medial subdirectly irreducible rings will be considered in more detail in Section 7. 

Proposition 2.4. Let X be a one-sided ideal of a ring K. If [X, K\ Я X, then X 
is an ideal ofK and (K, K} £ X. If K is medial and N є X, then X is an ideal 
ofK andK|N is a commutative reduced ring. 

Proof. If xeX, reK, then rx — xr = ye[K,K] Я X. If X is a right ideal, 
then rx = xr + у є X, and X is a two-sided ideal of K. The left ideal case is similar. 
So <K, K} c X. Now take K to be medial. Since <K, КУ £ N, if N <= X, then Х/УѴ 
is an ideal in the commutative reduced ring K|N. 

lfN is a summand of Л, then R = N © C, where C is a reduced ring (and hence 
commutative). As both the theory developed herein and the examples in Section 3 
show, this is an exceptional case. However, it is possible to find a (right) ideal B 
which is a reduced ring such that N + B is in some sense close to being R. 

Theorem 2.5. There exists a commutative right ideal B of R which is maximal 
among reduced right ideals of R, and B ® N is an ideal of R which is essential as 
a right ideal of R. 

Proof. A standard Zorn's Lemma argument yields a r ight idealBofKwhichis 
maximal among all reduced right ideals of R. Then B is commutative and by Propo
sition 2.4, B 0 N is an ideal of R. 

Suppose X is a nonzero right ideal of R such that X n (B + N) = 0. Then B n X = 
= 0 = X n N. Observe that XB = 0. Maximality of B yields (B 4- X) n N ф 0. 
So there exist nonzero elements x є X, b e B such that 0 = (b + x)2 = b2 + bx + x2, 
or b2 + bx = —x2 є B n X = 0, contrary to x not nilpotent. 

No te . If one replaces "right ideal" by ideal throughout the previous theorem and 
proof, a similar result is obtained. 

Note that if X and Y are right ideals of a left permutable ring and / is an ideal 
of this ring such that X n Y £ J, then {XY)2 c YXXY Є Yn X c /. In particular, 
i f X n 7 = 0 , then(X7) 2 = 0. 

Corollary 2.6. IfR is left permutable and B is as in Theorem 2.5, then B n К ф 0 
for each nonzero reduced right ideal K ofR. 

Proof. Assume B n K = 0. Then (BK)2 = KBBK c Б n К = 0. If Ь e Б, fc є К 
such that (b + fc)2 = 0, then kb + /<:2 = - fr2 є Б n X. This forces fc = b = 0, 
and Б + X is a reduced right ideal of ,R, contrary to maximality of B among such 
right ideals. 

This corollary does not hold for arbitrary rings, as can be seen by taking 

4")'*=P'-4-b 
where F is a field. 

Proposition 2.7. Let R be a right (left) permutable ring and X a left (right) 
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ideal of R. Then X2 and RX (respectively, XR) are ideals of R and are contained 
inX. 

Proof. X2R = XXR = XRX £ X2 , and (RX) R = RRX Я RX. 
We will make frequent use of the Peirce decomposition with respect to an idem-

potent in various guises. With this in mind, the following results, while elementary, 
are worth listing for future reference. 

Proposition 2.8. Let I be an ideal of R, and e a nonzero idempotent of R. Then 
(i) I = el © rj(e), as a direct sum of right ideals of R, with r^e) = rf(eR) an 

ideal of R; if e e I, then el is left permutable with left identity; 
(ii) if R is right permutable, then eR is commutative with identity and el is 

commutative; 
(iii) ifR is left permutable, then el is a two-sided ideal ofR; 
(iv) if R is permutable, then R — eR © vR(e) as a direct sum of ideals of R 

and eR is a commutative ring with identity; 
(v) if e is a right identity for R, then rr(e) — (R, Rx/ n 1; 

(vi) if e є 1 and 1 n ĵR, R^> = 0, then e is central in R; iffurthermore, e is a left 
identity of the ring 1, then R = / © rR(l). 

The p roo f s are straightforward, but medial or some version of permutable is 
used in each part. The obvious left-for-right or right-for-left interchanges give 
analogous results. 

Definition 2.9. A nonempty subset X of a ring K is a medial subset ofK if abcd = 
= acbd for each a,b,c,deX. Similarly, one can define left permutable subset, 
right permutable subset, and permutable subset. 

Proposition 2.10. lfX is a medial (left permutable, right permutable, permutable) 
subset of a ring K, then the subring generated by X is a medial (left permutable, 
right permutable, permutable) ring. 

Proof. First show the desired properties for products of elements from X and 
then for sums of products. 

3. EXAMPLES 

ln order to motivate and legitimatize the study of medial rings it behooves us to 
show via interesting examples that this class of rings is a rich one, indeed far richer 
than the class of rings which are direct sums of commutative or nilpotent rings. 
In this section we give several general procedures for constructing medial rings from 
other algebraic systems, including rings, and discuss some specific examples arising 
from these methods. At the end of the section we point out some places where not 
to look for medial rings. 

if one begins with a medial (left permutable, right permutable, permutable) ring R, 
which is not commutative, then the ring ofpolynomials in any number ofcommuting 
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indeterminants is a medial (left permutable, right permutable, permutable) ring 
which is not commutative. One can proceed similarly with formal power series rings 
or formal Laurent series rings over R. 

The above assumes a medial, noncommutative ring as input; the following example 
class makes no such assumption and produces many interesting medial rings. 

Example 3.1. Semigroup rings. Let S be a semigroup, written multiplicatively, and 
let R be a commutative ring. The semigroup ring # [S ] is medial (left permutable, 
right permutable, permutable) when S is medial (left permutable, right permutable, 
permutable). Semigroups with the desired properties abound (cf. [4, 5, 11, 20, 21, 
22, 23, 26]). 

Particularly far removed from both commutative rings and nilpotent rings is 
R[S] where S is a rectangular band [6]. Moreover, these rings are medial, but 
neither left nor right permutable if the component sets defining the rectangular 
band S each have at least two elements. 

An interesting class of left permutable semigroup rings arise from using a semi
group S defined via either 

(i) for each x є S, xy = y, for each y e S; or 
(ii) S has a two-sided zero z and given x є S, either xy = z for each y є S, or 

xy = y for each у є S, and each occurs. 
For these semigroups and any commutative ring R, #[<$] is a left permutable, right 
duo #-algebra [2]. The special case where R = Z2 and S is a two element semigroup 
of type (i) is the smallest left permutable ring which is not permutable (and also, 
of course, the smallest noncommutative ring). 

Note that a medial ring which is neither left nor right permutable can be obtained 
by using this four element semigroup ring, which for convenience we call V. Then 
V® Vopp is a sixteen element ring with the desired properties. There are none of 
order lower than eight. It will be shown in Section 6 that the smallest permutable, 
noncommutative ring has order eight. 

Because of the abundance of semigroups with the requisite properties, semigroup 
rings afford an excellent source of examples or counterexamples in the study of 
medial rings. 

Example 3.2. Let W be a left jR-module over a ring R, with #-homomorphisms 
/ : W~* R and h: W~^ W, satisfying h2 = h and fh = / . Define a * b = f(a) h(b) 
for each a, b є W. Then (W, + , *) is a ring a n d / i s a ring homomorphism; iff(W) 
is right permutable (commutative), then (W, + , *) is medial (left permutable) [1, 
Proposition 4.5]. Some special cases are ofparticular interest. 

3.2.1. Use as W the n by n matrices over a commutative ring R with identity, 
n > 1, and use f(A) = trace (Ä), h the identity map. This yields a left permutable 
ring (W, + , *), which is not permutable. Évery element in MTwith trace one is a left 
identity of (Ж, + , *), the trace zero elements form a nilpotent ideal, and the left 
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ideals are exactly the jR-submodules of W. Narrowing down to the situation where R 
is a field, we have that the proper right ideals of (W, + , *) are all contained in the 
set of trace zero elements, that set being the ideal N of nilpotent elements. So the 
proper ideals are exactly the R-submodules contained in N. For n = 2, (W, + , *) is 
subdirectly irreducible. 

If in the above, R is a right permutable ring which is not commutative, then 
( W, + , *) is a medial ring which in general is neither left nor right permutable. 

3.2.2. A variation on the theme of 3.2.1 is to use Н{аіз) = (bl7), where bV] = 0 if 
i #=jf and bn = aib the diagonalizer mapping. Other variations readily come to 
mind, e.g., h(ciij) = (cij), where clj = aXj and cřj. = 0 otherwise. 

3.2.3. Let Wbe a subdirect product of copies of a field R. F o r / u s e thej-th projec
tion mapping on P7and let h = 1ж . The proper right ideals of (W, + , *) are exactly 
those subgroups of W+ whose elements have a zero in the 7-th component. Left 
ideals are exactly the subspaces of W. The set of all elements of W with zero j - th 
component is N. 

3.2.4. Let Wbe a real or complex vector space with inner product < | >, and let u0 

be a fixed vector in W. Use f(v) = (v | w0> and h = lw. Then (W, + , *) is a left 
permutable algebra and if ||w0|| й 1, it is a normed algebra. If Wis a Banach space, 
the algebra is a Banach algebra. Every nonzero idempotent is a left identity and there 
are uncountably many idempotents. The algebra can be decomposed as W — Wl © 
© W2, where Wx is the subspace generated by u0 and is a left ideal, and W2 is the 
subspace perpendicular to u0 and is a maximal ideal with W2 * W2 = 0. 

This example suggests the study of normed medial algebras and more generally 
of medial topological algebras, which will be the subject of a subsequent paper by 
the authors. 

Example 3.3. Let(S, + , •) be a ring with additive endomorphisms / and h 
satisfying 

(1) for each y ef(S), x e h(S), f(yx) = yf(x) and h(yx) = y h{x), and 
(2) h2 = h,fh=f. 

Define a * b = f(a) h(b). Then (S, + , *) is a ring. If x, y ef(S) implies xy = yx, 
then(S, + , * ) is left permutable. If x,yef(S), teh(S) implies xyt = yxt, then 
(iS, + , *) is medial. Less generally, if (S, •) is commutative, then (5, *) is left per
mutable and if (S, •) is left permutable, then (S, *) is medial. These results can be 
obtained directly by calculation or as corollaries of more general results in [1, Cor. 
3.7, Cor. 4.2]. 

We next give a specific example of this class of rings. 

3.3.1. Let R be a commutative ring with identity and define / and h on the full 
ring S of n by n matrices over R, n > 1, via: for any A = (a 0 ) є S, f(A) = (Ьіу), 
where bu = 0 if і Ф j and bu = an; h(A) = (ci7), where cl7 = 0 i f i > j , and 
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Čij = аи otherwise. Then (<$, + , *) is a left permutable, but not right permutable 
ring. There are no left identity elements. Every element with all zeroes on the main 
diagonal is a left annihilator of the ring; if R is a field, these elements are the only 
nilpotents. 

Since a medial group is commutative, group rings are of no interest to us in the 
context of Example 3.1; however, they do serve as useful examples of medial rings in 
the context of the following. 

Example 3.4. Let R be a medial ring which is not commutative and let G be 
a commutative group. The group ring #[G] is medial. 

Example 3.5. Extending the line ofthought in Examples 3.1 and 3.4, ifjR is a medial 
ring which is not commutative and S is a commutative semigroup, then R[S] is 
medial and not commutative. Analogous results accrue when R is left permutable 
(right permutable, permutable). 

Example 3.6. Let W be a free module over a commutative ring R with free basis 
bl9 ..., bn. Define bt. bj = Yj^ijkbk> where Xijk є JR. Then extend linearly to all of W. 

k 

This yields an algebra over R (not necessarily associative). If the structure constants 
Xijk are chosen so that (Ь г . bj) . bt = ftf. (bj . bj), then the algebra W will be as
sociative. If the structure constants are chosen so bu ..., bn is a medial set (left 
permutable, right permutable, permutable set), then the algebra W is medial (left 
permutable, right permutable, permutable). 

3.6.1. Let R be a commutative ring and W a free Я-module with a basis indexed 
by jR, say J* = {ba | oteR]. Define ba. bß = abß. This yields an associative, left 
permutable algebra which in general will not be right permutable. (lfRis anintegral 
domain, the algebra will not be right permutable.) 

We next consider a class of rings which are only medial under very special circum
stances. 

Proposition 3.7. Let R be thefull ring of n by n matrices, n ïjZ 2, over a ring K. 
Then 

(i) R is medial if and only ifK4 — 0; 
(ii) R is left (right) permutable if and only ifK3 = 0. 

Proof . The idea of the proof is conveyed fully in the case n = 2. If jR is medial, 
then for each a, b, c, d є K, 

and 

0 0 \ / 0 0 \ fc 0 \ id 0 \ / 0 0\ . 
0 a) \b OJ \0 OJ \0 OJ \abcd oJ 

/ 0 0 \ fc 0 \ / 0 0 \ fd 0 \ /0 0 \ 
\0 a) \0 OJ {b OJ \0 OJ \0 OJ ; 

so abcd = 0 and hence X 4 = 0. I fK 4 = 0, then # 4 = 0 and R is medial. 
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If R is left permutable, then for each a, b, c є К, 

/ 0 0\ / 0 0\ / c 0 \ = / 0 0\ / 0 0 \ / c 0 \ / 0 0\ _ / 0 0\ 
^0 a) {b Oj \0 OJ {abc o) a n d \0 a) \0 Oj {b Oj " \0 0j' 

So K3 = 0. If X 3 = 0, then R3 = 0. 
The right permutable case is similar. 
Note that if X 4 = 0, but K3 + 0, then R is medial but not left (right) permutable 

unless K is left (right) permutable. 
Similar arguments hold for the lower triangular and upper triangular matrix 

rings. This shows matrix rings are not a convenient place to look for nonnilpotent 
medial rings. 

It is worth noting that anti-commutative rings (those satisfying ab = —ba 
identically) are always permutable. 

Further examples of rings satisfying one or more of the identities 1.1 — 1.4 will 
be given in subsequent sections as the need arises to illustrate the theory. The richness 
of the class of medial rings should now be abundantly clear. 

4. THE MEDIAL RADICAL 

In section R will denote a ring not necessarily medial. Let Jf(R) = (R[R, Ř] R} = 
= {Ъхп(апЬп — bnan)yn | an, bn9 xn, yneR]. Thus JÍ is a function defined on the 
class of associative rings that assigns to every ring R a uniquely determined ideal 
^#(jR) of R such that: (i) h(JZ(R)) я Jf(h(R)) for every ring homomorphism h; 
(ii) Jt(R|Jf(R)) = 0 (i.e., R|J((R) is medial); (iii) Jf(X) Я Ji(R) for any subring X 
of R. Hence M is a complete quasiradical in the sense of Maranda-Michler [24, p. 54]. 
Consequently, we will call J/(R) the medial quasiradical ofR. Furthermore, a radical 
property, in the sense of Amitsur and Kurosh [24, p. 12] or [9, p. 3], can be defined 
via Ji by saying a ring X is a radical ring if Jt(X) = X. We define the radical of jR, 
Jt(R^), to be the sum of all radical ideals of R. The ^f-semisimple class of rings 
(i.e., jR is semisimple if for any ideal I Ф 0, Jt(l) Ф /) is the same as the class of rings 
which are semisimple with respect to the upper radical property determined by the 
class of medial rings [9, pp. 5 — 7]. In this section we will discuss the structure of 
a ring R in terms of J/[R) and Jï(R) and show that R is a right essential extension 
of M{R) + &(R), where &{R) - IR([R, R] R) is a medial ideal of R. Furthermore, 
if(R) is a right essential extension ofan ideal TofRwhich is right permutable. Also T 
is a left essential extension ofapermutable ideal ofjR. These relationships are indicated 
in Diagram 4.4. &(R) occupies a prominent position among medial ideals in that iiK 
is a medial ideal of R and K n &{R) = 0, then there exists an ideal Yof R such that 
У4 = 0 and 7is right essential in K. Finally, an iterative procedure is developed which, 
in the case of a ring with D.C.C. onideals, allows us to "shrink" Jf(R) down to 
^#(JR) and to expand &(R) to a larger medial ideal H of R such that ^#(R) + H is 
right essential in R. 
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The following basic facts and definitions will be used throughout this section. 
(i) Let X be a right Я-submodule of a right X-module Y. We write X SR У if, 

whenever y e Y and у ф X, then there exists s e R such that 0 Ф ys e X. Observe 
that this condition implies that X is right essential in 7(i.e., every nonzero R-sub-
module ofYhas nonzero intersection with X). 

(ii) Ji{R) с <Я, K>. 
(iii) If X has a right identity, then &{R) = /Ä([jR, jR]) and K[R, X] <= y//(#). 

Thus, iïR has an identity, then Ji{R) = <#, X>. 
(iv) If / is a left, right, or two-sided ideal of R, then Ji(l) is a left, right, or two-

sided ideal of R, respectively. 
(v) Let I be an ideal of R. If Ji(l) = J, then Iі = I; hence [J?(R)]2 = Jt(R). 

(vi) Ji\R) = .# (#) , ,//2(R) = Ji(ya(R%..., Jr + \R) = ,a"(Ji(R%... . 
(vii) ^#(jR) Ç J/n(R) £ (R4)n for all positive integers n. Hence any nilpotent ring 

is ^#-semisimple. 
(viii) If there exists a positive integer k such that J/k+1(R) = Jík(Ř), then 

JP(R) = Ji{R). 
(ix) I f Z i s a subring oï R such that Ji{X) = X, then -#(<X>) = <X>. Thus Л 

is a strong radical since it contains all one-sided ^-ideals of Я [16, p. 49]. In fact, 
Jl(R) is the sum of all ^/-right (left) ideals of jR. 

(x) If/ is a minimal ideal, either J/(l) = /, or / 2 = 0, or J is a fie3d. 

Theorem 4.1. Let I be an ideal of R. Then: 
(i) Se{l) = /,([I, Í ] / ) /s a medial ideal ofR. Hence &{l) <J^(/), JSP(J)>Ä J^(/) = 0 

(ii) JSf(/) ^ ; h{Jt{l)) and [/,(ufr(J))] / £ if(/) . ^ o , ï / X is a n#ftr ideal ofl such 
that X n Ji{l) = 0, ifcen X e J2f(/). 

(iii) i / X is a ngfftř ídca/ o/J and K ^ j ^f(/), f/ten Jf(l) + X ^ /. In particular, 
Jt{l) = 0 if and only ifI = JSf(j). 

(iv) I / X is a r/#/u řdea/ o / / , ř/ісл (X n ЛГ(/)) + (X n Jž?(J)) ^ X . 
Proof, (i) Clearly if(i) = {x e / | xafec = xbac for all a, b, c eI) is a left ideal 

of R. Let a, b, c є / , x є J^(I), and v e R. Then xy(afr — ba) c = х(уя) bc — 
— х(уЬ) ас = x(by) ас — x(ay) bc = xabyc — xbayc = x(ab — Ьа) ус = 0. Thus 
^f(l) is a medial ideal of # . 

(ii) Assume x є //(^#(i)) but x ф <&(l)- Then there exists d є [J, J] I such that 
0 Ф xd. Hence 0 = x(d(ab — ba) c) = xd(ab — ba) c for all a, b, c eI. Thus 
Se{l) ui(Jf(l)y Similarly, [h(Jt(l))]I £ Se{l) and X <= if(J). 

(iii) Assume x є / , but x ф Ji(l) + X. If x e <= (̂/), then there exists y eI such that 
0 ф xy єK. If x £ =^(^), then there exists a, b, c eI such that 0 Ф x(ab — ba) c є 
є Jt(l). Therefore, J4(I) + K SiI. 

(iv) See proof of part (iii). 

Theorem 4.2. Let I be an ideal of R and S = £?(l). Then: 
(i) ls([S, 5]) = / S « S , S>Ä) anJ / / ( [ / , / ] ) = lr«I,iyR) are ideals ofR which are 

right permutable. 
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(ii) l;([lj])u'jls([S,S])SsS. 
(iii)^(/) + /X[/,i])^;/. 
(iv) Let H = / j ( [ / j ] ) . / / X <= / then lH(X) is an ideal ofL 
(v) Let P = ls([S, S]) + <5, S}R. Then P й'Р S and P is a right permutable 

ideal of R. 
Proof, (i) Clearly, /5([S, S]) = {x e S | xab = xba for all a, b e S) is a left ideal 

of R. Let a, b є S, x є /S([S, S]) and y є R. Then xy(ao — ba) = x(ya) ò — 
— x(yb) a = x(by) a — x(ay) Ь = xaby — xbay = x(ab — ba) y — 0. Thus 
/S([<S, S]) is an ideal of R. Similarly for //([/, / ) . The remainder ofthis part is obvious. 

(ii) Clearly / ,([/ , / ] ) <= ls([S, S]). If x є ls([S, S]) such that x ф / ,([/ , / ] ) , then 
there exists j ; e [ U ] such that 0 Ф хує / 5 (Я) c /S([S,S]). Hence /j([J,/]) ^ j 
g ; /S([S, S]). Similarly, /S([S, S]) ^ S. 

(iii) This part follows from part (ii) and Theorem 4.1 (iii). 
(iv) Clearly lH(X) is a left ideal of jR. Let a є lH(X), у є / , and x є X. Since a є Я, 

then a_yx = axy = 0. Thus lH(X) is an ideal of/. 
(v) Clearly P ^ p S. Let x, x l 5 x2 є /s([S, S]) and c, c l5 c2 e <5, S>R. Then 

(x + c) [(xa + c,) (x2 + c2) - (x2 + c2) (xi + c t)] = 

= (x + c) [x t x 2 + c tx2 + c±c2 - x2Xi - c2Xi - c2ct] = 

= ( x + CJ (XXX2 — X 2 * l ) = C[XÍX2 — X 2 X j j , 

since all x's and c's are elements of S and x є /S([S, S]). Without loss of generality, 
assume c = k(ab — ba) h, where a, b є S and fc, h e R. Consider 

kabh(x^2 — x2Xi) = [ka)(bh)x^2 — (ka)(bh)x2x1 

— (ka) Xi(bh) x2 — (ka) x2(bh) xx (since S is medial) 

= {ka) x^2(bh) — (fca) x2Xi(bh) (since xJ? x2 є 4([S, S])) 

= (^a) [x!X2 — х 2 х ^ (bh) = 0 (since /ca є S). 

Similarly, кЬаЬ(хгх2 — x2xt) = 0. Hence, с(хіХ2 — x2xL) = 0. Therefore, P is 
a right permutable ideal of R. 

From Theorem 4.2 we see that if/ is medial, then/ is "essentially" right permutable, 
and that / is right permutable if and only if/ = /7([/, /]) . 

Theorem 4.3. Let I be an ideal of R, S = =^(/), tf/id T any ideal of R which is 
right permutable and T c S (e.g., T = /7([/, / ]) , or /S([S, S])). ГЛеи: 

(i) rr([T, T]) is a permutable ideal of R. 
(ii) / / x є T such that x ф r r([T, T]), then there exists y e [T, Г] swc^ ř^ař 

0 Ф ух є r r(S) Ç **r([^ т ] ) ' ^и particular, rT([T, T]) ís /e/Y essential in T. 
(iii) / / T^jS, then Ji(l) + *"r([^^]) ^ÎOS nonzero intersection with every 

nonzero ideal of the ring 1. 
(iv) There exists a left ideal YofT(ofR contained in T) such that <T, T}R n Y = 

= 0, (T,T)R Ѳ Y^ r r ( [T ,T] ) , flnJ <T, T}R ® Y is a commutative ideal of T 
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(and a left ideal ofR) which is left essential in T. Furthermore, jM{l) + {iT, T)R © 
© У) has nonzero intersection with every nonzero ideal of R. 

Proof, (i) Clearly rT([T, T]) = {xeT\ abx = bax for all a, b e T) is a right ideal 
of R. Let a, b e T, xє r r([T, T]), and у є Д. Then (afe - ba) ух = a(fej) x - feayx = 
= a(yb) x - bayx (since a є S) = [(ay) fe - fe(ay)] x = 0. Hence yx є r T ( [ ^ Tj)-
Therefore, rT([T, ^ ] ) is а permutable ideal of Я. 

(ii) Clear. 
(iii) Let x eI and x ф Ji(l) + r r([T, T]). If x £ S, then there exists a, fe, с є / 

such that 0 ф x(ab - fetf) c e Jf(l). So assume x є S. Either x e Г or there exists 
keI such that 0 Ф xk e T. Then from part (ii), we have either 0 Ф yx e f>([T, T]) 
or 0 ф yxfc є rT([T, T]) for some y or г; є / . 

(iv) By Zorn's Lemma there exists a left ideal of T (or R contained in T) which 
is maximal with respect to zero intersection with <T ,T%. Hence <Г, T)R 0 Y 
is left essential in T. Since T(T, T)R = 0, <T, T>R © 7 ç гГ([Т, T]) and <T, T}R ® 
© 7is a commutative ideal ofT(a left ideal ofR). 

Example 4.5. Let 

- ( » ? ) • 
where A and C are rings and X is an A, C — bimodule. 

4.5.1. Let A = X = C = F, where i7 is a field. Then # is a subdirectly irreducible 
ring which has D.C.C. on ideals and is ^#-semisimple, but which is not medial. The 
components ofDiagram 4.4 are as follows: 

Ji(R) = (°o
 F\ = <A, R} , M\R) = 0 = jg{R), 

^(А) = ( 2 > ) = 'я([А,А]); for T=JZ(R), 

then 

-r([T,T]) = C ^ = <T,T>,. 

We observe that in this case Ji(R) Я ^{R) and that &{R) is right permutable. Also 

'*([*,*]) = (oo) 
is a left permutable ideal of R. 

4.5.2. Let 

- r s ) . - ( o t ) -
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M{l) 

ideals oïR 

(right permutable) 

(permutable) 

й'х 

Jí (/) + <e (I) 

W 
(medial) 

ѣ\ á r ^ š s 

/ \ \ 
T < S, S > V /s ([S, S]) 

(left essential) йі 

([T,T]) 'r([Ul) 

(left essential) 

(commutative) < T, T>R © F 
Diagram 4.4 

Then R is a <JF-semisimple ring which is not medial </M(R) ф <K, Я>, 
= 0 = M\R\ Ji{R) ф JSf(A), and J2P(jR) is right permutable. Some of the com
ponents ofDiagram 4.4 are: 

0 2Z12g 

0̂ 2Z128/ 
0 

/ / 0 4Z 
<я,к> = V 0 0 

\ o 
//0. 16Z 

^f/(R) = ^0 0 
\ o 

Se{R) 
0 32Z 
0 32Z 

0 

0 8Z128 
0 8Z128 

0 
o z128 
o z m i | = /s([s,s]), 

2Z 

/ /0 64Z\ /0 Z128 

' * ( [ * . * ] ) = V > 6 4 Z / V0 Z128 
\ 0 2Z 
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for T = &(R) 
/ / 0 32Z\ / 0 Z 1 2 8 \ \ 

гг([Г,Г]) = К0 0 J \0Zl28)\. 
\ 0 64Z / 

4.5.3. Let A = X = D and C = F, where D is a noncommutative division ring 
and F is a subfield of Z> (e.g., center of D). Then R has D.C.C, on ideals, and 0 ф 
Ф ^ď(jR) = Jt(R) ф if(K). Some of the components of Diagram 4.4 are: Ji{R) = 

= ( o o ) = <R> R}> ^ = (o f) = №*])-Note t h a t ' * G M ) = 0,hence 
^f(R) is left essential in ,R and J&(R) is right essential in R. 

4.5.4. Let A = F2x2, where F is a field, X = 0, and C be a medial ring. Then 
R « Л 0 C, uF(R) = A and JSf(JK) = C. 

The next two results exhibit some connections between J£(Ř) and arbitrary medial 
ideals. 

Proposition 4.6. IfK is a medial ideal of R, then K2[R, R] K2 = K3[R, R] K = 
= (K[R, R] Kf = {K{R, R})4 = 0. In particular, if K n JSf(R) = 0, ^en X n 
n ЛҐ(Я) ^ K önJ (K n ^ / (#) ) 5 = 0. 

Proof. Let kx, fc2> fc3, k4 eK, and a, ò є R. Consider кх(к2а) (bk3) k4 = 
= к^Ькъ) k2(ak4) = кг{к2Ь) k3(ak4) = kxk3[k2ba) k4 = k1k2bak3k4. Hence, 
kik2(ab — ba) k3k4 = 0. The remainder of the proof follows from the fact that K is 
a medial ideal and Theorem 4.1 (iv). 

Corollary 4.7. If Ji(R) contains no nonzero nilpotent ideal of R, then J£(R) = 

= lR(jf(R)). Hence SP{R) contains every medial ideal of R. 

Proof . The prooffollows from Proposition 4.6 and Theorem 4.1 (ii). 

Proposition 4.8. If Я is a right permutable ideal of R, then Я3[К, Ř] = 
= (Я n <R, R})4 = H[R, R] H2 = 0. In particular, if H n lR([R, R]) = 0, řfcew 
Я 3 = 0. 

Proof . Let ftl9 h2, h3 є H and а, b є R. Consider hJi^h^a) b = Ігг(Іі3а) (h2b) = 
— h^h^h^a = hxh3h2ba = h{h2h3ba. Therefore, hih2h3(ab — ba) = 0. The 
remainder of the proof follows from the fact that Я is right permutable. 

Proposition 4.9. Lei i£ be a medial ideal ofR. Then: 

(i) N(X) is an ideal of R. In particular, N(<Sf(R)) is a nil ideal of R. 
(ii) If x є N(R) and у є R such that xy e K, then xy e N(K). 

(iii) IfX is any nil or nilpotent ideal ofK, then <X>R is a nil or nilpotent ideal 
of R, respectively. 

Proof. The proof is а straightforward application of the following observation. 
Let kuk2,...,kneK and yuy2,...,yneR where rc^4. Consider k^yJ^y^. 
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. къуъкАУА ••• КУп = k1fc3(j>1fc2J>23>3) fc4^4 • • • fen3^4 = ••• = feifc3 ••• 

...К-АУік2У2Уз-..Уп~і)Куп. 

Theorem 4.10. Let I be an ideal of R and Ix = Jt{l) + &{I), 12 = Jt{h) + 
4- X(Ix),...JH+1 = ^(JM) + &(Qfor n = 0, 1, 2 , . . . , and I = J0. Tnen: 

(i) i f( / ) s =^(/i) £ . . . £ <£?(/„) S . . . is an ascending chain of medial ideals 
ofR. 

(ii) I»+i š í n í „ , hence ln g ' j i . 

(m) ^2(i„) s л(ія+1) s ^2(jQ + D*(L)] № ) 1 
(iv) I»+i = , iP + 1 ( i ) + Se{QAn particular, ifJtn+1(l) = 0, íhen Jžf(Jn) ^ L 

Proof, (i) From Theorem 4.1 &(Q is а medial ideal of R. Let x є jSf(In) s /n + 1. 
Since i n + i s In, then x(ab - ba) c = 0 for all a, b, c e J r t + 1 . H e n c e x є J2f(JB+1). 

(ii) Assume x e I n , but x £ I n + 1 . Then there exists a,b,ceIn such that 0 ф 
Ф x(ab - ba) c є Jl(Q c íw + 1 . Hence І и + 1 .аҐІвІи. 

(iii) LetuG^(^+i) .Withoutlossofgeneral i ty,assumeu = (yx + ^ [ ( j ^ + я2)-
(уз + аъ) - (уз + а3) (у2 + а2)] (у4 + <u) where у, є Jt(In) and а, є # ( I , ) for 

і = 1, 2, 3, 4. Since [#(I , )3 [^r(i,)] = 0 (Theorem 4.1 (ii)) and ax є J2P(I,), then 

v = J>i[j>2y3 + У2«з + ^2% - ^зУ2 - Узй2 - a3a2] (y4 + а4) = 

= УіІУіУъ - УзУі] У4 + 

+ УхЪгУъ + Уг^ъ + а2аъ - у3у2 - уъа2 - а 3а 2] ^ е 
є^2(і„) + [^(/и)][^(іи)]. 

Hence ^ 2 ( J„) £ Jt(Iu+1) £ ^ 2 ( / „ ) + [ # „ ) ] № ) ] • 
(iv) Clearly, / i - Jt\î) + jSř(I0). By part (iii), Л\ї) c ^ ( / ^ c ^ 2 ( f ) + 

+ [**(')] [^0)1 B u t [**(*)] [^( J)] S ^ 0 0 £ ^(7і)> ЬУ P a r t (0- H e n c e J2 = 
- Ur*(I) + J2P(Ji). Again, by part (iii), Ji\h) s= ЛГ(/2) £ Л2(І±) + [ur(Ii)] . 
. [JSP(/i)]. Clearly, Ji\í) c uř2(Ji) s ЛГ(ЛГ2(7) + [ur(i)] JS?(í)]). If we take 
0! є ^ ( e ^ 2 ( í ) + [ ^ ( I ) ] [^( í ) ] ) and calculate in a manner similar to that for v 
in part (iii), we have ^ 2 ( / x ) s >Jt(Jí\í) + [Ji(l)] [<&(l)]) S ^ 3 ( / ) + 
+ [uT(i)] [J2r(J)]. Thus <JÍ3(/) s uř(/2) £ Jč\l) + Jar(Ii). Hence .#3(J) + JS?(J2) s 
S ur(I2) + if( í2) = /3 £ Ji\í) + JS?(íi) + J2?(/2) = ^ 3 ( J ) + jS?(J2). Therefore, 
/ 3 = c#3(l) + ^f(/2). Consequently, iterating on this process yields In +1 — 
= Jin+\1) + ^( /„) for n = 0 ,1 , 2 , . . . . 

We note that Theorem 4.10(iv) shows that a nilpotent ideal is "essentially" 
medial. This can also be easily verified directly. From Example 4.5.1 we observe that 

'K([K,K]) = [oo] 
is a left permutable ideal. Now R =7 K ( [# , R]) + rR([R, R]). Hence a sum of medial 
ideals is not necessarily medial. However, the next result shows that such a sum is 
"essentially" medial. 
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Corollary 4.11. Let К = £ j e l Kt, wftere řue iCg are medial ideals of R. Then 
there exists a medial ideal Wof R such that W g ^ ^ -

Proof. Let V= Е(К|П J/(K)). By Proposition 4.6, F i s a nilpotent ideal of R, 
Let P - V + Jzf(X). Let 0 Ф Efc, e K, where kt e Kt. If Sfc; ф jSf(X), then there 
exists a, b, c є X such that 0 Ф (Sfcj) (ab - ba) c є V. Thus P ^ i C L e t x e ^ST(P). 
Without loss of generality, assume x = (v1 + a ^ [u2 + ai) (ѵз + ^з) ~ (ѵз + а з) • 
. (ü2 + a2)] (y4 + a4), where ^ є F and a,- є <Sf(X) for j = 1, 2, 3, 4. Since 
[J2>(X)] [(^#(#)] = 0 (Theorem 4.1 (ii)) and at e &(K), then x = v1[v2v3 + v2a3 + 
+ a2a3 - tf3u2 - v3a2 - a3a2~] (v4 + a4) = ^[и 2и 3 - %^2] ^4 + ^1[^2^3 + 2̂<*3 + 
+ v2a3 + a2a3 - v3v2 - v3a2 - a3a2] a4 e Jt{V) + [Jt(K)] [<&(K)]. Hence^T(p) 
is а nilpotent ideal of R. Thus there exists a positive integer n such that Jtn(P) = 0. 
By Theorem 4.10 (iv), there exists W й'кК. 

Corollary 4.12. Let R be a ring with D.C.C. on ideals and Rt = Ji(R) + &(R) 
R2 = Jt{R^ + &(Ri),..., Rn + i = J((Rn) + &(&n) f°r n = °> 1. 2 , . . . and R = 
= P0- Гйеп: 

(i) There exists an integer n such that Jt(R) + ^(Rn) S>R R-
(ii) Let S = &(Rn) and H = ls([S, Sj). Then H is an ideal of R which is right 

permutable, H ^'s 5, and Jt(R) + H ^R R-
(iii) / / ^#(P) = 0 and I is an ideal of R, then there exists a medial ideal K of R 

such that K z=j/. 
(iv) IfJ£(Rn) = 0 andI is an ideal ofR, then there exists an ideal YofRsuch that 

Jt{i) + YuiI and 7 4 - 0. 
Proof, (i) From Theorem 4.10 there exists n such that Rn = Rn+x = . . . . Hende 

JT+1(R) = Jt(R). Thus Jf(R) + &(Rn) £'R R, 
(ii) This part follows from Theorem 4.2. 

(iii) This is a consequence of Theorem 4.10 and the fact that Jt(l) £ J£(R). 
(iv) From Theorems 4.1 and 4.10 there exists an integer n such that/,, = J n + 1 + . . . 

and/„ + 1 = Л(ї) + Se{Q ^ L L e t 7 = J^(J„)n^(P) .ByProposi t ion4.6 , Y4 = 0. 
By Theorem4.10(i), Se{R) = 0. FromTheorem 4.1 (iv), Y^f

T^(In). Now Theorem 
4.1 (iii) and Theorem 4.10 yield Jt(l) + Y^jI. 

Corollary 4.13. Let R be a semiprime ring. Then: 
(i) ^f(P) is a reduced commutative ideal ofR which contains all medial ideals 

of R. 
(ii) Se{R) - lR([R, jR]) = lR(Jin(R% and Jt%R) ® &(R) йРп Rfor n = 1, 2, . . . , 

where Pn = Jín(R) ® &{R). 
(iii) IfR has D.C.C. on ideals, then =af(P) (as a ring) has D.C.C. on annihilators, 

Jžf(jR) contains all Л-semisimple ideals of R, and Jt(R) © ^f(R) ^ p where P = 
= Jt(R) Ѳ Se{R). 

Proof, (i) By Theorem 4.1 (i), <if(P), ^ ( ^ ) > R is a nilpotent ideal of P , hence 
^ ( P ) is commutative. From Corollary 4.7 and Proposition 4.9, ^f(P) is reduced and 
contains all medial ideals of R. 
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(ii) From Proposition 4.6, &(R) n [R, R] = 0, hence &(R) = /*([jR, jR]) by 
Theorem 4.2(ii). From part (i) and Theorem 4.10, J*f(jR) = &(Rn) for all n. Since 
IR(Jf(R))nJ((R) = 0, Theorem 4.1 shows that JSf(jR) = lR(Jt(R)). By Theorem 
4.10, лГ(Д) 0 Se{R) ^'R R for all n. Now let X be a nonzero right ideal of R such 
that 0 = X n ^#"(jR) for some n > 1. Assume 0 + y e X n лГ(Я). There exists 
x є JP"(R) and a є i r (# ) such that either y = x + a or there exists d e R such that 
0 ф yd = x + a. Hence a є Jzf(K) n ЛГ(Я) = 0. Thus 0 Ф xeXn JT(R). Con
tradiction! Hence X s jSf(jR). Therefore, lR(Jtn(R)) £ jžP(jR). Consequently 
/А(лГ(Я)) = JSf(jR). Hence P ^ p Ä . 

(iii) From part (ii) and Theorem 4.2 (iv), j£?(iť) has D.C.C. on annihilators. There 
exists n such that JT(R) = Jt(R). From part (ii), Se(R) = lR(Jt(R))9 so JaP(jR) 
contains all ^#-semisimple ideals of Я; and л^(Я) © Jsf(#) S'R R-

Proposition 4.14. (i) LetX be an ideal ofR such that Jt(X) = X. Then Ji(XnXn) = 
= XnXnfor any positive integer n. Consequently, (Jiï(R))nXn Я M(RnX„). 

(ii) R is medial (right permutable) if and only if the left ideal 

И 
ofR2x2 is medial (right permutable). 

Proof, (i) The result is a consequence ofthe following calculation which generalizes 
to the n x n case. Let aj9 bj9 xj9 yfeX forj = 1, 2, 3, 4. Then 

Гх1(а1Ьі ~ b1al)y1 x2(a2b2 - Ь 2 а 2 )у 2 1 = 

lx3(a3b3 - b3a3) y3 x4(a4b4 - b4a4) y 4 J 

Гх, хЛ /r f l l о 1 Гьх о 1 _ \bx о 1 Гв1 о Tv ГУі о 1 
L° 0JvL° *JL0 ^J L° ь2Цо a2])lo y2\ + 

Г0 0 ] (\a3 0 1 ГЬз 0 1 _ ГЬз 0 1 \a3 0 1 \ fr, 0 1 
L̂ 3 * J VL0 аЛ L0 b J L0 M L0 аЛ> L° ^ J * 

(ii) The part is also a straightforward calculation. 
We note that in Proposition 4.14 (ii) the size of the matrix ring could be n x n and 

any left ideal with R's in a column and zeros elsewhere could be used in place of 

m 
This leads to the surprising fact that a ^#-radical ring can be a direct sum of medial 
lcft ideals. Let 

«-№ 
where F is a field. Then R is a simple ^-radical ring. However, 

Ч-М 
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is a direct sum of right permutable left ideals of R. Also observe that Jt(F)2xl = 
= 0 Ф Jt(F2x2) = F2X2- More generally, if R is any semiprime ring, Proposition 
3.7 shows that RnXn (n > 1) contains no medial ideals. lfR also has D.C.C. on ideals, 
then by Corollary 4.13, RnXn is "essentially" a ^-radical ring. 

Proposition 4.15. LetR[x^ and # [ [* ] ] denote the ring of polynomials and the 
ring of formal power series over a commuting indeterminate x, respectively. 
Then (Jf(R)) [x] = Jt(R[x]) and {Ji{R)) [[x]] = ^ ( # [ [ x ] ] ) . Hence {Jt{R)) [x] я 
S ^#(#[x]) and (ur(K)) [[x]] c *#(#[[*]])• 

Proof. A straightforward calculation shows that .#(#[x]) Ç (^#(R))[x]. Let 
a, b, c, d є R and consider c(ab — ba) dxn e {Ji(R)) [x] . Then с(яЬ — ba) dxn = 
= c(a(bx") - (bxn) a) J є J((R[xJ). It follows that (ufT(R)) [x] = .#(#[x]) . Simi-
l a r ly fo r (^ (A) ) [ [x ] ] = uT(A[[jc]]). 

5. PROPERTIES OF MAXIMAL AND PRIME IDEALS 

Throughout this section R will denote a medial ring. I fM is a maximal ideal*ofR, 
then jR/M is simple and commutative. If (R|M)2 — 0, then R2 £ M. Otherwise, 
JR/M is a field and M is prime. 

Proposition 5.1. Thefollowing are equivalentfor an ideal P ofR: 
(i) P is a completely prime ideal. 

(ii) R|P is an entire ring. 
(iii) P is a prime ideal. 

Proof. The first two implications are immediate. For (iii)=>(i), consider any 
x, y e R such that xy e P. Then xRyR Я xyR £ p . If yR c P, then (Ry)2 = 
= R(jR) y £ P. So either xR £ P or Ry £ p . For any r, s є R, m, и є Z, (rx + nx). 
. (sy + mj;) = rsxy + mrxy + nxsy 4- nmxyeP; so <x>] <y>/ ç P and hence 
<x>, c P or <зЛ; c p . 

Similarly, we have: 

Proposition 5.2. Thefollowing are equivalentfor an ideal S ofR: 
(i) If x2 є 5, then x є S (5 is completely semiprime). 

(ii) S is a semiprime ideal. 
(iii) R|S is reduced. 

We denote the prime radical of R by ß(R). 

Proposition 5.3. The nil radical and prime radical ofR coincide. 

Proof. N is the nil radical of R and by Proposition 5.1, N Ç ß(R)- However, 
N is also semiprime, so ß(R) c jV. 

Note that N is contained in the Jacobsonradical of R, J(R). Since there are com
mutative domains that are Jacobson radical rings, it is possible for N Ф ^(#), for R 
medial. For rings is general, D.C.C. on ideals does not guarantee the Jacobson 
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radical and nil radical will coincide, but for medial rings it does as will be shown in 
the next section (Theorem 6.5). 

Proposition 5.4. A proper primitive ideal of R is both a maximal and a prime 
ideal. 

Proof. If D is a proper primitive ideal of jR, then R|D is primitive (hence prime) 
and commutative. So R|D is a field [12, p. 7], and D is a maximal ideal and a prime 
ideal. 

An examination of the proof of Krull's theorem on prime ideals in Kaplansky 
[15, pp. 1 —2], shows this proof works, mutatis mutandis, for left permutable or 
right permutable rings (with no assumption of identity element). With the modifica
tion of using a product ofthree elements instead of two in equation (1) of that proof, 
the process can be carried through for medial rings. 

Theorem 5.5. Let S be a multiplicatively closed set in R and letI be an ideal ofR 
maximal with respect to the exclusion of S. Then 1 is a prime ideal. 

6. CHAIN CONDITIONS 

In this section some of the major results for rings with chain conditions on left 
(right) ideals are obtained for medial rings under the weaker hypothesis of a chain 
condition on two-sided ideals. Also, various decompositions are given for medial 
(one-sided permutable, permutable) rings with chain conditions. These decomposi
tions have no exact counterpart for nonmedial rings. 

Theorem 6.1. IfR is a medial ring with D.C.C. on ideals, then every nil one-sided 
ideal is nilpotent, and every non-nilpotent ideal contains a nonzero idempotent 
element. 

Proof. For some k ^ 1, Nk = Nk + 1. Let T= Nk and suppose Г Ф (0). Then 
T3 = T Ф (0). Select an ideal B minimal among those ideals S for which TST Ф (0). 
There exists b e B such that TbT Ф 0 and hence TbT = B. Write b = YjjbtP w h e r e 

j 

tj, ťj e T. Then for each t e T, bt = Jjfo'j1 = Yj/jbt = (Z'/i) bL L e t Z0 řý = u 

j j j J 

Then bt = ubt = unbt for each n ^ 1. Select n so that un = 0 to obtain bt = 0, 
which yields TbT= 0, a contradiction. Thus N is nilpotent. Each nil ode-sided 
ideal of R is contained in N and hence is nilpotent. If/ is a nonnilpotent ideal in R, 
then either I n N = 0 and / contains a minimal ideal of R which is a field, or / n N ф 
Ф 0, and I maps homomorphically onto a nonzero ideal / of R|N. Since R|N is 
a finite direct sum of fields, so is I. The unity element in I pulls back to a non
nilpotent element b є / such that b2 — b is nilpotent, a condition which guarantees 
the existence of a nonzero idempotent in / [10, p. 22]. 

Note that N nilpotent can be obtained by the ostensibly weaker hypothesis of 
D.C.C. on nil ideals, but the existence of the nonzero idempotent cannot. 
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As a consequence of Theorem 6.1 and Proposition 4.9 we have: if K is a ring 
with D.C.C. on ideals and I is a medial ideal ofiC, then N(l) is a nilpotent ideal of K. 

For right (left) permutable rings more can be said. 

Corollary 6.2. IfR is a right permutable ring with D.C.C. on ideals, then every 
non-nil, one-sided ideal contains a nonzero idempotent. 

Proof. If Lis a non-nil left ideal of R, then RLis a non-nil ideal of R which is 
contained in L. Thus, using Theorem 6.1, we have every non-nil left ideal of R contains 
a nonzero idempotent, i.e., R is an J-ring. However, every non-nil right ideal of an 
J-ring contains a nonzero idempotent [12, p. 210]. 

Theorem 6.3. If R is a medial ring with A.C.C. on nilpotent ideals, then every 
nil one-sided ideal is nilpotent. 

Proof. Select a maximaJ nilpotent ideal I. lf b eN, with bk = 0, then / + NbN 
will be a nilpotent ideal containing I. For if Г = 0, use the Binomial Theorem for 
Medial Rings with m = max {2k + 1, 2n + 1}, to obtain (/ + NbN)m = (0). So 
/ + NbN = I, or N3 £ I. Thus N and consequently all nil one-sided ideals of R are 
nilpotent. 

Example6.4. Let K be the real algebra defined via the basis {x,y] for R2 by 
x2 — x, yx = y, xy = y2 = 0. This yields a ring in which every proper, nonzero 
right ideal is a one dimensional subspace and which has neither D.C.C. nor A.C.C. 
on left ideals. (See Divinsky [9, Ex. 5, p. 37].) This ring is right permutable. Then 
the ring R = K © Kopp is a medial ring with D.C.C. and A.C.C. on ideals, but with 
neither chain condition on left or on right ideals. 

Theorem 6.5. IfR is a medial ring with D.C.C. on ideals, then 
(i) Every prime ideal P ofR is a maximal ideal ofR and R|P is afield. 

(ii) The number ofprime ideals isfinite. 
(iii) J(R) = N. 
(iv) IfR2 = R, then the sets of maximal and ofprime ideals coincide. 
Proof. R|P isa commutative domain with D.C.C., so it is a field and P is maximal. 

Because of the latter, mutatis mutandis the standard commutative ring proof can 
be used to obtain that there are finitely many prime ideals. From J(R)|N S J(R|N) = 
= 0, we obtain J(R) = N. 

From (ii) and Proposition 5.4 we have: 

Corollary 6.6. The structure space of a medial ring with D.C.C. isfinite. 

Main Decomposition Theorem 6.7. Let R be a medial ring with D.C.C. on ideals. 
Then R = F 0 A, as a direct sum of ideals, where: 

(i) F is either zero ofafinite direct sum offields. 
(ii) N c A and (Soc A)2 = 0. 

(iii) IfN Ф A, then A = lA(e) 0 Ae, as a direct sum of left ideals of R, where e 

277 



is a nonzero idempotent in A, lA{e) = Іл(Ае) is an ideal of R, and Ae is a right 
permutable ring with right identity and with D.C.C. on ideals. 

(iv) Ae = rAc(e) + eAe, as a direct sum of right ideals of Ae, where rAe(e) = 
= rAileAe) is an ideal of Ae, and eAe is a commutative ring with identity which 
has D.C.C. on ideals. 

(v) IfN Ф A, then there exists a nonzero integer k such that hlA(e) and k'VA{e) 
are contained in N. Ife has infinite additive order, then k = 1. 

Proof. For any minimal ideal / of R with I2 ф 0, / is a field with identity i. Then 
R = lR(i) © I, where lR(i) = lR(l) = аппд(1). Repeat this process in lR(l) and suc
cessive annihilators to obtain: R = Ix © .. . © In © A, where each minimal ideal Ij 
is a field and A is an ideal of R with N Ç A and (Soc A)2 = 0. 

If A ф N, then A|N is a finite direct sum of fields. Let u + N be the identity in 
A|N. This yields a nonzero idempotent of the form e = w q(u), where q(u) = Y,a^ 
is a polynomial with integer coefficients [10, p. 22]. Then A — lA(e) © Ae is a direct 
sum of left ideals of A (and hence of R), with lA{e) = lA(Ae) an ideal of R, Ae a 
right permutable ring with right identity and Ae « AjiA(e) satisfying the D.C.C. 
on ideals. Apply a similar, but right-sided, decomposition to Ae to obtain: 
Ae — rAe(e) + eAe, as a direct sum of right ideals of Ae, with rAe(e) = rAfeAe) 
an ideal of <4e, and eAe a commutative ring with identity and D.C.C. on ideals. 

Since u + N is the identity in A|N, then for each x e A, xun = x + cn, where 
cn є N; for each natural number n. So xe = (Sa7- + c, where c є ЛГ and c depends 
on x. Let Ea ; = /c. Note fc Ф 0, for otherwise, e = e2 = 0e + c є АГ. For each 
xe lA(e), 0 = kx + c, or kx = —ceN. Proceed similarly to get right annihilator 
results. 

Using x = e, we have e = e2 = ke + c, or (1 — /c) e = c. So (1 — k)n e = 0 for 
some n. If e has infinite additive order, then k = 1. 

In commentary on this theorem and its proof, note that lA(e) may be zero; but if 
lA{e) ф 0, then N n /4(e) ф 0, for otherwise lA(e) would contain a minimal ideal 
on R which is not square zero. If N n Ae = 0, i.e., if N = /^(e), then ^e is a finite 
direct sum of fields. Also, if A+ is torsion-free, then lA(e) £ iV. So if ЛҐ n Ae = 0 
and Л + is torsion-free, then /л(е) = N. Note that every right ideal of lJe) is a right 
ideal of A. 

Theorem 6.8. If R is a right permutable ring with D.C.C. on ideals, then R = 
— F © L © S, as a direct sum of ideals, where: 

(i) F is either zero or is afinite direct sum offields. 
(ii) L ç N, hence Lis nilpotent. 

(iii) S is either zero or S has a right identity ê. 
(iv) If S ф (0), then either S is a commutative ring with identity, or S = r(e) © 

© êSê, as a direct sum of right ideals of S, with êSê being commutative with 
identity and having D.C.C. on ideals, and N(rs(e)) Ф (0). 

Proof. Proceed as in the Main Decomposition Theorem. For each a e A, r e R, 
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(ae) r = (ar) e e Ae. So A = lA(e) © Ae as a direct sum of ideals of A (and of R), 
If lA(e) $ N, then /A(e) will contain a nonzero idempotent ex and using Г = lA(e), 
T = / r(ei) © Tel9 as a direct sum of ideals of jR. Repeat this procedure until a left 
annihilator contained in N is reached, which must occur because of the minimal 
conditions. Each of the other summands obtained in the process will each have 
a right identity. So A = L © S, as a direct sum of ideals, where L s N and S has 
a right identity ê. Either ê is also a left identity for 5, and S is a commutative ring 
with identity, or we can decompose S as: S = rs(ê) © êS, as a direct sum of right 
ideals of S with the resulting properties listed above. 

In the following we use the notation of the Main Decomposition Theorem. 

Corollary 6.9. Let R be a ring which is either 
(i) Medial with D.C.C. on right ideals, or 

(ii) Right permutable with D.C.C. on ideals. 
U Іл(е) — N, then lA(e) is nilpotent with torsion additive group. Hence, if A+ is 
torsion-free, then lA(e) = 0 and R = F © Ae, as a direct sum of ideals. 

Proof. Either (i) or (ii) implies lJe) has D.C.C. on ideals and N is nilpotent. 
A nilpotent ring with D.C.C. on ideals has torsion additive group [17, p. 40]. If A+ 

is torsion-free, then lA(e) ^ jV. 

Corollary 6.10. If R is left permutable with D.C.C. on ideals, then Ae is a com
mutative ring with identity. 

Corollary 6.11. If R is permutable with D.C.C. on ideals, then R = F © L © S, 
where F and hare as in Theorem 6.8, and S is a commutative ring with identity 
and S n N Ф 0 with (Soc S)2 = 0. If also, R has a right identity, then L = 0 and R 
is commutative. 

There are many permutable, noncommutative rings with D.C.C. on ideals. The 
following example is the smallest such ring. 

Example 6.12. Let R be the set of all matrices of the form 

Г0 a b] 
0 0 c , 

[o o oJ 
where a, b, ceZ2, with the usual matrix operations. Then jR3 = 0, but R is non-
commutative and has eight elements. Note: Rings of orders n, 1 й n й 7, are all 
commutative, except for some one-sided permutable ones of order four. 

In the special situation where R is a medial ring with< right identity e, and hence R 
is right permutable, any x eI, I an ideal of R, can be written as x = ex + c, where 
c eI n <JR, R>. Also, eI is an ideal of the commutative unital ring eR « jR/<jR, jR>. 
Every one-sided ideal of R containing <jR, R> is a two-sided ideal. In this setting 
we obtain a result which is both an extension of Cohen's Theorem [15, Th. 8] and 
a variation on the theme of Hopkin's Theorem [9, Th. 15]. 
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Theorem 6.13. Let R be a medial ring with right identity e such that either (1) 
JR has D.C.C. on ideals, or (2) every prime ideal ofR isfinitely generated. If (R, R} 
isfinitely generated as an ideal ofR, then every right ideal ofR containing <JR, R} 
isfinitely generated. If every ideal ofR contained in (R, R} isfinitely generated, 
then R has A.C.C. on right ideals. 

Proof. I f ( l ) , then eR has D.C.C. on ideals and hence has A.C.C. on ideals. If(2), 
then every prime ideal of eR is finitely generated, which by Cohen's Theorem yields 
eR has A.C.C. on ideals. Any ideal / of R which contains {R, jR> yields yl9 ..., yn є / 
so that eyu ..., eyn generates eI as an ideal of eR. If gu ..., gm generate {R, R} as 
an ideal of R, then for any x = ex + ceI, with c e (R, JR>, we have ru ..., rn, 
su ..., sm є R such that x = Ъеуіегі + Ъдр} = Ее^г£ + tyjSj. (Note: 
R(R, R} = 0, so the gu ..., gm generate (R, R} as a right ideal of R.) 

Now assume every ideal of R contained in <jR, R} is finitely generated (as an ideal 
of jR). Then for any right ideal X of R, both X n <#, R} and X + <R, R} are ideals 
of R and are finitely generated as right jR-modules. Let yi9 ...,ymeXn (R,R} 
be a set of generators for X n <#, R}. Since X|(X n (R, R}) is an ,R-homomorphic 
image ofX + (R, R}, it is finitely generated by some set xx + X n <R, R}, ..., xn + 
+ X n <jR, R}, where each x} eX. Then y l 5 . . . , ym, xt, ..., xn generate X as a right 
ideal of R. 

The condition that each ideal of R contained in (R, R} be finitely generated as 
an ideal of R, could be replaced by (R, R} has A.C.C. on ideals, which is equivalent 
to the additive group of (R, R} having A.C.C. on subgroups. Each of these con
ditions is stronger than that of<jR, R} being finitely generated as an ideal of R, as the 
following example shows. 

Example 6.14. Let R be the matrix ring 

[oeJ' 
where Q is the rational number field. Then R is right permutable with right identities, 

<*4oo} 
R has A.C.C. and D.C.C. on right ideals, but neither A.C.C. nor D.C.C. on left ideals 
the only proper nonzero ideal of R is (R, R}, and <#, #> has neither A.C.C. nor 
D.C.C. on ideals. 

7. SUBDIRECTLY IRREDUCIBLE RINGS 

In this section we begin the classification of medial, subdirectly irreducible rings. 
The highly satisfactory classification of commutative, subdirectly irreducible rings 
by McCoy [18] and Divinsky [8] serves as a model. Nilpotent, subdirectly irreducible 
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rings have been considered by Kruse and Price [17, pp. 7 — 9]. An analysis herein 
which reduces matters to commutative or nilpotent rings will be considered satis
factory. 

We will use H to denote the heart of a subdirectly irreducible ring. Recall (Proposi
tion 2.3); either H2 = 0 or the ring is a field. 

Theorem 7.1. Let R be a subdirectly irreducible medial ring, with H2 = 0 and 
<R, R> Ф 0. / / HR = RH = 0, then H+ is isomorphic to a cyclic group of prime 
order. If one of HR and RH is not zero, it must be H and the other must be zero. 

Proof. If HR = RH = 0, then every subgroup of # + is an ideal of jR. This 
forces H+ « C(p). lfHR ф 0, then HR is an ideal o fRand must be H. Then RH = 
- R-(HR) c #<jR, R>- R = 0. 

Corollary 7.2. / / R is a subdirectly irreducible medial ring with H2 — 0, <R, R> ф 
ф 0, and R+ torsionfree, then one ofHR or RH is nonzero. 

Theorem 7.3. Let R be a subdirectly irreducible medial ring, with H2 = 0, 
<R, R> Ф 0, and HR Ф 0. Then 

(i) There exists h0eH such that h0R = H and r0eR, г0фМ, such that 
h0r0 = h0. 

(ii) J / S is a nonzero subgroup ofH+, then SR = H. 
(iii) N с гя(Я) = аппя(Я) c R, (so N Ф JR). 
(iv) Я is a minimal right ideal ofR. 
(v) If d is a left zero divisor in R (i.e., there is a nonzero d' e R such that dd' = 

= 0), the either Hd = 0 or rR(d) £ апп#(Я). 
Proof. Since HR = H, there exists h0 є Я such that n0R Ф 0. But h0R is an ideal 

of jR, sQ h0R = Я. Then there exists r0 e R such that h0r0 = n0. So n0 = n0r0 = 
= ^orO' f ° r au* n> a n d consequently r0 фЫ. For a nonzero subgroup S of Я + , if 
SR = 0, then 5 = Я ; while if SR ф 0, then SR is a nonzero ideal ofR and must be Я. 

If /z є Я and и-ІѴ ф 0, then h-N = H. So there exists x with xn = 0, such that 
nx = n. Then й = nx - nx" = 0. So h-N = 0 for all n є Я. Since R-Я = 0, we 
have N s гл(Я) = аппя(Я). 

Any nonzero right ideal T of R which is contained in Я is also an ideal of R. 
And finally, if Hd Ф 0, then either HdR = 0 and Hd = Я, leading to 0 = ЯсШ = 
= HR = Я, or Я ^ is a nonzero ideal of R and Я = HdR. Then for any h є Я, 
there exist hteH, rteR such that n = ^Lhidr, or Ы ' = Eftťdrřď = Sft,r,dd' = 0. 
Thus rÄ(d) Є гА(Я). 

Theorem 7.4. Lei R Ье ri#nr permutable and subdirectly irreducible with H2 = 0 
and <R, R> Ф 0. I / R contains a nonzero idempotent e, then 

(i) e is a ri#nr identity, R = Re, and /Ä(e) = 0. 
(ii) Я-R ф 0 and Rff = 0. 
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(iii) R = (R, R} © eR, as a direct sum of right ideals of R, with eR a com
mutative ring with identity, H ç (R, R}. 

(iv) Any left ideal ofR contained in eR is square zero and no nonzero ideal ofR 
is contained in eR. 

Proof. Any left ideal of a right permutable, subdirectly irreducible ring is either 
square zero or contains the heart. Since Re is not square zero, then H £ Re, which 
forces 1R(e) to be zero and ,R = Re. Then rest of the conclusion follows immediately 
from Theorem 7.1 and Proposition 2.8. 

Corollary 7.5.IfR si a right permutable, subdirectly irreducible ring with D.C.C. 

on ideals, then either 

(i) R is commutative, 
(ii) R is nilpotent, or 

(iii) <jR, R} Ф 0, e is a right identity element in R, and R = <R, R} © eR, 
as a direct sum of right ideals, where eR is a commutative ring with identity and 
with D.C.C. on ideals. (H <= rR(e) = <R, R>.) 

Proof. If it is noncommutative and non-nilpotent, then Theorem 7.4 yields the 
right identity e, and rR(e) ф 0, because otherwise R = Re is commutative. 

Corollary 7.6. A permutable, subdirectly irreducible ring S with D.C.C. on ideals 
is either commutative or nilpotent. Every permutable ring with D.C.C. on ideals 
is a subdirect product of rings which are commutative or nilpotent. 

Proof. If S is not commutative nor nilpotent, then S = rs(e) © eS, but this is 
a direct sum ideals in the permutable case, so S = <S, 5> = rs(e), or S = eS, which 
are nilpotent or commutative, respectively. Invoking BirhofTs Theorem [3] completes 
the proof. 

Added in Proof . It has recently come to our attention that S. Pellegrini Manara 
has considered medial near-rings (c.f., Medial near-rings in which each element is 
a power of itself, Riv. Mat. Univ. Parma (4) 11 (1985), 223-228 (MR 88a: 16070); 
On regular medial near-rings, Boll. Un. Mat. Ital. D(6) 4 (1985), 131-136 (MR 
88a: 16071); On medial near-rings, Near-rings and Near-fields (Tübingen, 1985), 
199-209, North-Holland Math. Stud., 137, North-Holland, Amsterdam-New 
York, 1987 (MR 88c: 16051)). In the paper On medial near-rings, she has a section 
on medial rings in which her main result (Theorem 9) is contained in our Propositions 
2.1 and 5.1. However, our methods are independent of hers. 

Acknowledgment. We wish to acknowledge the helpful comments of some of the 
participants in the U.S.L. algebra seminar (where the authors first presented the 
ideas on medial rings), in particular, those of Awad Iskander and Judith Covington. 
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