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The first part of this paper is concerned with several characterizations of the
weakly convergent nets of real-valued, non-negative measures with the range of
definition on the o-algebra which is generated by the pavings of open Baire or Borel
sets of some abstract topological space. The methods used in this section were
developed by F. Topsee in [11], [12] and the assertions proved here represent some
sharping of thats in [11].

In the second section of the paper we derive necessary and sufficient conditions
which the w-convergent net must satisfy in order to be weakly tight and using a
result form [12] we show that the only types of regular and Hausdorff topological
spaces in which each w-convergent net is weakly tight are the locally compact ones.

The whole theory is developed from the set-theoretical point of view. This approach
shows quite well (from the view point of the classical probability theory) the relation
between the weak convergence and the set-wise convergence which plays also an
important role in the statistical testing.

0. PRELIMINARIES

Let us suppose that X is a non-empty abstract set and let ¢ be a non-empty class
of subsets of X which is closed under the formation of finite unions and intersections.
Let us denote by # the class of sets defined by the relation # = {F < X: F = G°,
G e %} and consider a class # < # (which is closed under the formation of finite
unions and intersections) and has the property that KF e # when Ke 4 and
F e #. If 9 separates the sets in A, that is, if to each couple K, K, of disjoint sets
from A" we can find two disjoint sets G, G, € ¢ such that G, o K;, G, o K,, we
can say that (X, ¥, #,') is a space. In the case when our considerations will not
involve the system  we shall speak shortly about the space X, 4. If % forms an
open topology on X, then under (X, %, #, &) we shall understand the space where
%, % and X, are the open, closed and closed compact subsets of X, respectively.
In this case the assumption that ¥ separates the sets in 2 will be dropped. Each
space X, ¢ determines a set algebra & generated by 4. If X, % is a topology, we shall
automatically assume that & is the Borel o-algebra generated by 4.

408



A measure is a non-negative real-valued set function defined on a set algebra.
If (X, 9, F, ) is a space and p is a measure on &(& is generated by %), then p
is said to be regular with respect to (wrt) # (or wrt ') if for each E€ &, uE =

= sup uF where Fe % (or Fe A, respectively). The measure p on & is called
FcE

o-smooth if for each countable class {F,} = & which filters downvards to the set
Fe % lim uF, = uF. If this relation holds for each subclass {F,,} < # which
filters downvards to the set F € & then u is said to be t-smooth.

If X, % is a regular topological space (or if X, % is a G, space, that is, if to each
G € % there are {G,} = % and {F,} = # with G = UG, = UF,, G > F, > G, for
all n=1,2,...) and if p is regular wrt #, then g is t-smooth (or o-smooth) iff
lim uFy = 0 whenever {F;} = % is a (countable) class filtering downvards to the
empty set.

We shall denote the system of all finite measures on & by .#*(&). .4* (6, 7) and
M*H(E. A) are the subsets of .4 *(&) which consist of all #-regular and 4 -regular
measures in .#*(&). The subsets of all T-smooth (s-smooth) measures in .4 *(&),
MH(&, F) and M (8, &) will be denoted by (&), 41 (6, F) and M} (8, KX)
(MI(E), M (6, F) and M](8,)), respectively.

Let (X, Y, F,A) be a space and y be a finite real-valued set function defined
on M . yis said to be tight wrt A if yK, — yK, = sup yK whenever K; o K,,

K<K;—K>
K,,K,e A and it is called t-smooth (c-smooth) if lim yK, = yK for each (countable)

class {K,} = & filtering downvards to K, Ke %"

Theorem 0.1. If (X, %, #, ') is a space and if y is a tight set function on X',
then y can be extended to a measure which is defined on & and regular wrt A.

If moreover vy is a-smooth and if A is closed under the formation of countable
intersections, then y can be extended to a o-smooth measure on the o-algebra
generated by 9 and this extension is regular wrt A .

The extensions are uniquely determined by the values of y on A.

Proof. See [11], theorem I.

We note that the assumption ‘¥ separates the sets in ™ is not necessary in 0.1
and clearly we can consider & instead of .

The w-topology is the weakest topology on .# *(&) for which the mapping u — uX
is continuous and all mappings u — pG are lower semicontinuous for every G € 4.
In other terms, if pe .#*(€) and if {g,} = 4*(&) is a net, then {y,} converges
to u in the w-topology and we write y, —,, u iff lim 1, X = pX and lim ¢1,G = uG
for all Ge 9. In this connection we shall say that the net {1} is w-convergent in
(&) and that g is the w-limit point of {,}.

The s-topology is defined as the weakest topology for which all the mappings
p— pE, where E € &, are continuous. If {y,} = #%(&) is a net and if pe 4*(5)
then {y,} converges to u in the s-topology iff lim p,E = uE for all E€&. In this con-
nection we say, that {,} s-converges to u and p is the s-limit point of {y,}.
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1. ON THE CONVERGENT NETS OF MEASURES

Our main aim in this section is to derive some characterizations of w-convergent
and s-convergent nets of non-negative measures. The convergence conditions we shall
give were at first used by F. Topsee [11], [12] for description of w-convergent and
s-compact nets of Radon measures defined on a Hausdorff topological space. We
will show that they are useful also for description of convergent nets connected
with regular topological spaces and G, spaces. We shall use the results obtained later
for the study of the weakly uniformly tight nets in spaces of non-negative measures.

Theorem 1.1. Let us consider the space (X, %, F, ) and the set M* (8, X)
with the w-topology. The net {u,} = M* (&, H) is w-convergent in M* (&, K)
iff the conditions

i)im p, X < o0;
ii) inf lim 1,G = inf im p,G for all K € A’;

Gsk ___ G=K
iii) inf sup lim j,F = 0
K FoKe
are fulfilled.

Proof. Let {yu,} = .#*(&, #) be a w-convergent net with the limit point pe
e M*(&, A'). Of course i) is true. In order to prove ii) we fix any K € # and ¢ > 0. As
RE = sup uK = inf uK¢ forall Eeé
K<E Ke¢oE
we can find K e o such that K < K¢ and puK > uK® — &. & separates the sets
in & . Hence there are Ge ¥ and F € # with K = G = F < K° such that
pK £ pG < lim p,G < Tim p,G < Tim p,F < pF < pKe < pK + 2.
Since ¢ can be made arbitrarily small we can conclude that
ii*) uK = inflim ,G = inf Tim u,G .
GoK G>K
The proof of iii) follows easily from the relation »
lim p, X = pX = sup puK = sup inf lim p,G < lim p, X .
K K G>=K
In order to prove the reverse implication we shall assume that we have a net { ,ua} =
< M (&, H) satisfying i)—iii). Let p be a set function defined by the relation iix).
We will show that pu is tight wrt ¢ and defines due to the theorem 0.1 uniquely
a measure i€ (&, A). Let us have two sets K, o K, in A and some ¢ > 0. We
choose G, o K, in ¥ with uK, > Iim 4,G, — ¢ and put K = K, — G,. Then for
every G o K
fim 4,6 =2 im p,G U G, — im p,G, = uK, — pK, — ¢.
Consequently uK = uK; —uK, —¢ and as ¢ can be made arbitrarily small sup uK >
= pK; — pK,. K<Ki-Kz
Using the fact that ¢ separates the sets in 4 and lim 4,G; U G, = lim x,G, +
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+ lim u,G, if G, G, € % are disjoint, it is not difficult to verify the reverse ine-
quality sup uK = pK, — uK,. Thus the tightness of p is established and the

K<K;—K>
set function ji defined by the relation

HE = sup inflim u,G forall Eeé&
KCEG>K
is a measure in .4 *(&, A'). For each G € ¢, G < lim ,G and iii) implies
fim p, X = fim p, X — infsup lim u,F < sup inf [im p,G =
K FcKe K G=K
= sup inf lim 1,G < lim p, X .
K G=>K
This means, that lim u,X exists, is equal to zX, and p, —,, ii.
The proof that u defined by ii*) is a tight set function resembles the proof given
by F. Topsee in [11], lemma 2. We have nowhere used the assumption {,} =
< JM*(&, A). Whence 1.1 can be reformulated in the form of

Corollary 1.2. The net {u,} = M *(&) w-converges to any pe M*(&, ) iff the
assumptions i)—iii) of the theorem 1.1 hold.

Remark 1.3. Let X, ¥ be a compact Hausdorff topological space such that
M(E) R MF(6, ). Such a space exists due to J. Dieudonné (see [9], sec. 1,
theorem 3.5). If p is a measure in .#*(&) not contained in ./#*(&, ') then the
sequence {u,} = 4 *(&) defined by the relation y, = u for each natural n satisfies
i)—iii). By the proof of 1.2 p, —,, ii where ji is defined by the relation iix). We see
that {y,} has two w-limit points, u and fi.

This example shows, that .# *(&) need not be a Hausdorff space wrt the w-topology.
In spite of it the theorem 1.1 guarantees that if ¢ separates sets in A", 4 *(&, A")
provided with the w-topology is a Hausdorff space (compare with Topsee, [12]
theorem 11.2).

Theorem 1.4. Let us consider the space (X, ¥, %, ") and the set M* (&, X)
with the w-topology. Let us assume moreover that X is a topological space with
at last one from these properties: o) Hasudorff’s property, B) regularity, v) com-
plete regularity, 8) X is a G, space. Then the net {u,} <= M*(&, A’) is w-convergent
in M*(&, A) iff the conditions i)—iii) of 1.1 hold.

Proof. Considering &) or y) we see, that the assertion can be proved in the same
way as 1.1. We have only to keep in mind, using the theorem 0.1, that now & is
a o-algebra.

Let us treat the proof of 1.4 under the assumption ﬁ) We fix an arbitrary closed
set Fe%. By the regularity of X we can find two classes {Gy} = &, {Fs} =« #
filtering downwards with ) G, = ﬂ Fy = F and such that F; o Gy o F for each f.
Whence for each f 4

uF £ pG < lim 1,G, < Tim p,Fy < pFy.
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Since p is regular wrt the paving of closed compact sets u is 7-smooth and
pF = inflim u,G; = inf im p,G, = inf uG, .
B ] ]
It is easy to see that this is equivalent to the relation
uF = inf lim p,G = inf lim p,G
G>F GoF
If we take into account only F € £, then ii) is established.
In order to prove the converse implication we shall assume that {§1,} = A& *(&, X')
is a net satisfying i)—iii). By iii) and from the proof of 1.1 it follows that lim x,X
exists and
lim p, X = sup inf lim p,G .
K G>K
Let {G;} = ¢ be a net with G, 1 X and ¢ > 0 be a fixed number. Now we can
find a K € X such that .
lim p, X < inflim ¢,G + €.
GoK

Since K = | Gy is a compact set there is any Gy, € {G,} such that G4, contains K and
B

lim p, X < lim p,Gp, + €.

This inequality holds for all § = f,. Thus Iim ;G < ¢ for all = B, and we
can conclude that the function lim g, is T-smooth at § wrt &

Let p be the set function on /" defined by the relation iix) and let K; > K, bz

in A". The inequality sup wpuK = uK,; — uK, can be proved in the same way as in
K<K;i—K3
1.1. In order to prove the reverse inequality (and hence the tightness of p) we need
to know that u is additive on # . Clearly u is subadditive on & If K,, K, € A~
are disjoint, then the class of all sets F{F, € % such that F; o G, o K, F, o
o G, o K, for some Gy, G, € ¥ filters downwards toward the empty set. From the
relation
pK, + pK, < lim 4,G; + lim ,G, < lim (1,G, + §1,G,) =

= lim (4,G, U G, + §1,G,G,) £ lim 4G, U G, + Tim 4, F,F,
and from the t-smoothness of Tim y, at @ it follows that

pKy + pK, £ inf limp,G = pK; U K, .

G2 K VK>
The additivity of p is established. The verification of the inequality sup uK <
K<Ki—K>
< uK, — pkK, is left to the reader. Thus p is tight wrt a compact paving A and it
can be uniquely extended to a Borel measure (see the theorem 0. I) The rest of the

proof is analogous to that one in 1.1. The G; case is now clear.

Corollary 1.5. The net {y,} = M*(&), where (X, 9, F, A') is the space from 1.4,
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w-converges to any e M (&, X') iff the assumptions i)—iii) of the theorem 1.1 hold.

It is convenient to note that if X € " then every net {u,} = .#*(&) w-converging
to some pe ./ * (&) has at the same time a w-limit point ie . #*(&, A). If moreover
(X, 9, #F, &) is one of the spaces considered above in 1.1 or 1.4, then i is uniquely
determined by the values of the function lim u, on %. The proofs of the following
theorems can be easily derived from that in 1.1 and 1.4.

Theorem 1.6. If X, % is a G; space then {yu,} = 4 *(&) is w-convergent to any
we MH(E, F) iff the conditions
i) im p,X < o0;

i) inf lim #,G = inf im u,G for all F e &,
GoF GoF

iv(o)) infTim p,F, = 0 if {F,} =« #, F, |0
n
hold. u is uniquely determined by the values of Tim p, on &.

Theorem 1.7. If X, % is a regular topological space then {u,} < M*(&) is w-
convergent to any pe (8, F) iff i) with ii) from 1.6 hold and
iv(1)) inf lim p,Fy = O whenever {Fz} = F, Fy | 0.
B

u is uniquely determined by the values of Tim p, on F.

Theorem 1.8. Let us consider the space (X, 9%, #, ) and the space .M*(&)
with the s-topology. The net {p,} = M*(&) is s-convergent to pe M*(&, A) iff
it is w-convergent to p and

v) inf im u,K¢ — K = 0 for all Ke A"

KCKC .

Proof. Assume that pu, —,, pu where pe #*(&, ') and that v) holds. Using v) we

can prove that im 4,K¢ = sup Iim p,K for all K € %#". Choose some K € # and some

K<Ke

g > 0. Then we can find K = K€in # with lim p,K¢ < Tim y,K + e. It follows from
the relation

im y,K¢ — & < im ,K < pK < inf lim 4,G < lim ,K°
G=>K

that lim u,K° exists and this holds for all K € /#". For an arbitrary E € & we have
UE = sup pK = sup lim x4, K < lim p,E

K<E K<E
and using the equality lim p, X = uX it is easy to verify the reverse inequality.
Hence p, —pu.
The proof of the reverse implication is left to the reader.

Remark 1.9. In the proof of 1.8 we did not use the assumption that ¥ separates
sets in A", Clearly & can be a o-algebra as well as an algebra generated by 4.

Using 1.2 and 1.8 we can establish for a space (X, 4, #, X")
Corollary 1.10. The net {y,} = #*(&) is s-convergent to a point in M*(E, X')
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iff infTim p,K° — K =0 and Tim ,F £ lim 4,G < oo whenever F c G, Ge 9,
K<Ke .
FeZ.
By 1.5and 1.8 this assertion is true also for that kind of topological spaces which
are considered in 1.4. The theorems 1.6 and 1.8 are leading to

Corollary 1.11. If (X, %, #, &) is a G, space or if G separates the sets in F then
{u,} = M7*(&) s-converges to a point in My (&, F) iff the smoothness condition
iv(c)) holds, Tim p,F < lim p,G < o for F = G, Ge %, Fe # and inf Iim ,G —
- F=0. Fee

We leave to the reader the formulation of the t-smooth analogy of 1.10 {using 1.7
and 1.8) for the regular topological spaces. If {¢,} = .#*(&) is an arbitrary net with
lim 4, X < o, then it contains a subnet {4,,} with the property lim y,,E exists for
all E € &. In other words every bounded net {y,} < .#*(&) contains a subnet which
satisfies the conditions 1) and ii) of 1.1. Now it is easy to observe that every bounded
net that satisfies the condition iii) in 1.1 contains a w-convergent subnet with a limit
in M*(&, A). From the foregoing propositions we can derive a number of similar
criteria (see Topsee [11]).

2. SOME GLOBAL CHARACTERISTICS OF CONVERGENT NETS

We shall call the net {u,} = #*(8) weakly o-equicontinuous if for every decreasing
sequence {F,} = &# with the empty intersection and for each &¢ > 0 we find «,
and n, such that sup p,F, < e If the foregoing property holds for every class

aZag
{F;} = Z filtering downvards to the empty set we shall call the net weakly t-equi-
continuous. The net {y,} = .#*(&) such that to every ¢ > 0 we can find a Ke ¢

and any o, satisfying the relation sup u,K¢ < ¢ will be called weakly tight wrt A .

aZao

10

Theorem 2.1. Let (X, %, %, A') be a space, {y,} = .4 *(&) be a net w-convergent
to some pe M*(8). If pe.d)(&) then {u,} is weakly o-equicontinuous. If X is
a Gs space, pe M*(6, F) and if {u,} is weakly o-equicontinuous then pe 4} (&).

We omit the proof (see the theorem 1.6) and show that both the assumptions
pe #*(8, ) and X is G, are in 2.1 necessary. The necessity of pe #*(&, F)
- follows easily from the remark 1.3. To prove the second proposition we recall

a counter-example of A. D. Alexandroff [1]. '

Example 2.2. Let X = <0,1)> U N and & be the closed topology generated by
the finite unions of sets

{a,b), where b<1, {(a,1>U N, where ae<0,1) and"
N-{1,2,...,n}, where neN.

X provided with the closed topology & is a normal separable locally compact T,
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space which is not T,. Let J, be the one-point measure concentrated in x € X. Then
the net {4,,}, where x, = 1 — I/n for n = 1,2, ..., w-converges to the measure p
which is defined by the relations pE = 0if En N=0Q and uE =1if En N £ 0.
& is the Borel o-algebra generated by ¢, E is taken in &. Clearly pe .4#*(8, F)
but g is not o-smooth since for the sequence {F,} = # defined by F, =
={m,m + 1,...} we have F,, | 0 and lim uF,, = 1. At the same time it is easy
to see {J,,} is weakly o-equicontinuous.

If X is a locally compact separable topological space then . #;(&, 7} = . (6, X).
2.2 shows that the assumption about the o-smoothness is essential for the validity
of this equation.

Theorem 2.3. Let us consider a space (X, %, 7, X’) and a net {p,} < .4*(&)
w-converging to some pe M*(&). If pe #7(&) then {p,} is weakly t-equicon-
tinuous. If X is a regular topological space, if {u,} is weakly t-equicontinuous and
peM*(&, F) then pe M} (6).

The proof of this assertion follows from 1.7. By 2.2 the assumption about the
regularity of X cannot be dropped.

Theorem 2.4. Let (X, %, %, A’) be a space and {u,} = .#4*(&) be a net w-con-
verging to any pe M*(&). Consider the conditions

i) {u,} is weakly tight wrt A;

ii) for each ¢ > 0 there is any ay and K € A such that sup i, F < ¢ for each
F c K°. a2a0 v

Either of them implies that {y,} has a w-limit point in M*(&, &) and if {n,} =
c M*(8, F) then they are equivalent.

The first part of the proof follows easily from 1.2. We omit the simple proof of the
second part. It is natural to ask under what assumptions the conditions i) and ii)
in 2.4 are necessary for the w-convergence to ue 4 *(&, X).

Theorem 2.5. Let us consider a space (X, 9, #, ') and any net {u,} < %*(6’)
w-converging to e M (8, A'). Then {u,} is weakly tight wrt A" iff
(T) uK, = inf sup lim u,K for each Kye A .

Ke>Ko KeKe

Proof. Let us suppose that {u,} = .#*(&) is weakly tight wrt #" and g, —, g,
where pe #*(8, F). Fix any Ko, Ke &', K, < K® and ¢ > 0. To K, and K we
can find Ge % and F e # such that K, = G = F < K*. Since {1,} is weakly tight
there is K, € A" and a, with p,X < 4, K, + ¢ for all « = «,. Hence u,F < u,FK, +
+ & for each o = o, and lim y,F < lim u, FK, + &. FK,e ', FK, < K° thus

pKo £ 4G £ lim p,G < lim p F < lim 1, FK, + ¢ < sup lim 4,K + ¢
KcKe
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and the last relation is true for each K € 2 such that K, = K°. Hence
uKy < inf sup lim p,K + ¢
Ke>Ko KSKe

for every & > 0. The rest of the proof of (T) can be left to the reader.
To prove the reverse implication we use the same arguments as Topsoe [12]
theorem 9.3. For each fixed K, € o

uKy = inf sup lim p K < sup lim p, K
Ke>Ko KK¢

Now it suffices to a given ¢ > 0 choose any K,, K € # such that uX < uK, + ¢
and pK, < lim ¢, K + €. Since lim p, X = uX we can easily find «, with

sup 1, K° < Iim p,K° + ¢ < pK§ + 2¢ < 3¢

aZap

the weak tightness of {u,} wrt A is established.

Theorem 2.6. If X, % is an arbitrary topological space such that there are classes
{Ky} « H,{Gg} = 9,G41 X and G, = K; < X for each f then every w-convergent
net {u,} = .M*(&) with the w-limit point pe M; (&) is weakly tight.

We omit the simple proof (see 2.3 and 2.4) and note that each topological
space satisfying the hypothesis of 2.6 must be locally compact. It is a characteristic
property of locally compact regular spaces that to each couple of sets K = G where
Ke A and Ge ¥ we can find any Ke # and Ge ¥ with K = G = K < G (see
[2] sec. 3.3 theorem 3.3.2). This makes us possible to prove several interesting
propositions.

Theorem 2.7. Let us suppose that X, % is a locally compact regular topological
space and {y,} = M*(&). Then the following conditions are equivalent:
i) there exists a pe M*(&, Ji’) such that p, -, p;

i) Im p,X < oo, 1r;f‘s(u;l)(chm u,K =0 and

inf lim u,K¢ = inf Tmu,K® for each Ke X .
KeoK KeoK

Proof. Suppose that i) holds. Since p is a smooth function and X, % is due to the
local compactness a completely regular space, the system %, of all open sets G,
with p 0G = 0(0G, is the boundary of G,) forms a base for 4. Fixany G, € ¢, and
¢ > 0. If we denote by {s7} and O the restrictions of {g,}, u from & to £ " G, =
={E;E,=En G,,, E € &} we see, that G, can be considered as a locally compact
topological space, u {ua} c M*(6 G, A,) where A, = A are closed compact
subsets of G, and u® -, 1. By 2.6 there is aK,ed, and o with pdG, < uSK +¢&
for all o = ay.

Using this procedure we can find to each G, € 9, a K, € A contained in G, w1th

lim 1,G, = lim p,K,, + & < sup lim p,K + .
K<Gy
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Hence for each G, € 4, we can derive that
#G, = sup lim u,K = sup lim »,K
K<Gy K<Gy
Since p is t-smooth and %, forms a base for ¢ it is easy to verify the analogous relation
for each G € 9. Particularly we obtain that
pKe = sup lim ,,K = sup im y,K for each Ke X .
KcKe K<Ke
Clearly this is equivalent with the third relation in ii). The remaining relations can
be established now as in 1.1.
The proof of the reverse implication is analogous to that in 1.4. We have only to
consider & instead of &

Theorem 2.8. Let us suppose that X, 9 is a Hausdorff topological space. Then
the following conditions are equivalent:

i) X is locally compact;
ii) every net {u,} = M*(8, ) which w-converges in M*(&, A') satisfies the
condition (T) from 2.5.

The theorem 2.8 was established by F. Topsee in [12], theorem 6.3.

Lemma 2.9. Let X, ¥ be a regular topological space and [x] be the closure of
the one-point set {x}, x € X. Let Y consist of all sets of the form [x], x € X and denote
by f the mapping x — [x]. Then

i) Yis a regular Hausdorff space in the quotient topology ¢' induced on Y by f
and 9,

ii) f is a continuous, open and closed mapping;

iii) if {F;} = & is a decreasing class then Fy | 0 iff f(Fj) | 0;

iv) Ke A iff f(K\e A (A" are all the compact subsets of Y);

v) the Borel c-algebra of X is of the form & = {E =« X:E = f~(E), Ee &'}
where &' is the Borel o-algebra of Y,

vi) the spaces M*(6, F), M (8, F) and M* (&, A) are homeomorphic with
MHEF), MI(E', F'), M*(8', A"), respectively, wrt the w-topology.

We omit the proof (see [5]). Notice that #” denotes the system of all closed compact
subsets of X! From 2.5, 2.8 and 2.9 we can conclude

Theorem 2.10. Let X, % be a regular or Hausdorff topologzcal space. Then the
following conditions are equivalent:

i) X is locally compact;

ii) every net {p,} < M* (6, H) which w-converges in M*(&6, A’) is weakly
tight.

We shall say that the set # < .#*(&) is uniformly tight wrt A if to each ¢ > 0
we can find any Ke#" such that uK¢ < ¢ for each p € /. It is easy to see that every
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sequence {#,} < M*(&, H') that is weakly tight wrt # is uniformly tight wrt 2.
Although by 2.10 the only type of regular topological spaces admitting that each
w-convergent net in . *(&, A") is weakly tight wrt 2 is the locally compact one, there
is a large class of spaces with the property that each sequence {y,} = #*(&, A)
which is w-convergent in .4 *(&, #’) is uniformly tight. Topsee [12] sec. 7 obtained,
by a simple modification of the proof from Le-Cam [6], theorem 4, this interesting
result:

Theorem 2.11. If X, ¥ is such a regular or Hausdorff topological space that
each Ke A has a countable base of neighbourhoods in % then each sequence
{m} © M*(&, H') which w-converges in M*(&, H) is uniformly tight wrt A .

Proof. See [12] sec. 7.

We note that K € & has a countable base of neighbourhoods if there is a sequence
{G,} =%, G, 2 G, =... 2K such that if Ge ¥ contains K then G 2 G, 2 K
for all n starting from any n,. 2.11 extends the classical Prohorov’s result which was
obtained for complete metric spaces.

X, % in 2.11 is of course first countable whence it is an image of any locally compact
HausdorfT space in a quotient mapping (see [2] theorem 3.3.20). Thus it is natural
to ask about some deeper relation between the local compactness and 2.11.

Remark 2.12. Each g-compact subset F, of a regular T, space X, ¢ is a completely
regular (even a normal) Hausdorff space in the induced topology ¢ n F,. To each
sequence {p, g<p < M (8, H), n, >, 1o we can find a o-compact set F, = X
such that 4, X = p,F, for all n =0, 1,.... Hence {u,}o<, can be identified with
a sequence {{o<, = M (6 A F,, H,), 1S —, 1o which is related to a completely
regular (even a normal) Hausdorff space.

Let X, 4 be a completely regular Hausdorff space. X, % is called complete in the
sense of Cech if it is a Gj set in its Stone-Cech compactification BX. X, & is locally
complete in the sense of Cech if each x € X has a neighbourhood which is G, in fX.
It is well known that each locally compact Hausdorff space and each complete metric
space is complete in the sense of Cech. If X, ¢ is paracompact and locally complete
in the sense of Cech then it is complete in the sense of Cech (see [2] sec. 5.5.8). Each G,
subset of X can be considered as a countable intersection of locally compact topo-
logical spaces and this motivates the following considerations. We note that 4", # ",
A" are the systems of all open, closed and closed compact subsets of fX. Next we
identify X with a dense subset of fX.

Lemma 2.13. Let X, 9 be a completely regular Hausdorff space. Then each
pe M*(8, A) has an extension e M* (6", A ") where &" is the Borel o-algebra
of BX.

Proof. If u is in 4 *(&, ) then fi defined by AE = puEX for each Ee " is
a t-smooth Borel measure. Since X is a regular topological space 4 must be regular.
Thus fie M7 (&, K).
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Lemma 2.14. If X, 9 is complete in the sense of Cech and if {1} = M*(&, H)
is w-convergent in M *(&, A') then {p,} is uniformly tight.

Proof. Suppose that p, —, po where poe . #4*(€, #). Let X = G, where
{G.} = %" If {f,} o<, are the extensions of {,}o<, from & to &~ defined by 2.13
we see that 1, —,, flo. We can consider the restrictions of {#,} ¢ <, from &* to & N G,
m =0, 1, ... as w-convergent sequences related to locally compact spaces G,, 4 N
A G,,. By 2.6 we can find to a given ¢ > 0 {K,,} = A" with 4,R¢, = 1,G,, — K,, <
< gf2"foralln = 1,2,...andeachm = 1,2,....Since K = NK,, = X is a compact
set and puK® = g U K& < Y ARS < & the proof is finished.

Theorem 2.15.1f X, % is locally complete in the sense of Cech and if {,} < M * (&, 4)
is w-convergent in M*(&, A) then {w,} is uniformly tight.

Proof. Let Let p, —,, u where pe .#*(8, #), X = U G(x) where G(x) € 4 is an

xeX
open neighbourhood of x € X and G(x) is G5 in fX. Since y is t-smooth the system
of all u-continuity sets contains a base for 4. As each open subset G € ¢ of an open
set which is G5 in BX is G, again we can assume that each G(x) is a u-continuity set
(i.e. 0 G(x) = 0). Using 2.1 and the t-smoothness of all {y,} we can find to a given
e>0
{X1, .. Xy = X with p,X < pn,G, + ¢ where

G, = G(x;) U ... U G(x,).

For each i€ {1, ..., m} the restrictions y, of p, from & to & n G(x;) are w-converging
to the restrictions p' of i from & to & N G(x;). By 2.14 we can find {K, ....K,,} = A&
such that g} G(x;) — K; = p, G(x;) — K; < g/m for all n =1,2,..., K; = G(x;)
foreachi =1,2,...,m. If we put K, = K, u ... U K,, we see that

u'uGa - Ke = “n(UG(xi)) (nKT) é My Y (G(Xl) - K:) é
= Hy G(xi) - Ki se¢
foralln =1,2,... and p,X < p,K, + 2¢ for all n which establishes the theorem.

We conclude this section by some facts about the relation between the relative
compactness wrt the w-topology and the uniform tightness in .#*(&, o).

Theorem 2.16. Consider the space (X,%,F,A’) and a set M = M* (&, X)
which is relatively compact wrt the w-topology. Then the conditions
i) M is uniformly tight wrt o;
it) there exists a uniformly tight subset M, = M which is dense in M ;

iii) there is My = M which is dense in 4 and every net {u,} = M, which is
w-convergent in M* (&, A) is weakly tight
are equivalent.If in addition each net {y,,} c M (&, A ) with lim p,=p, ue M * (&, A)
contains a countable subnet then i) is equivalent with

iv) each w-convergent sequence {u,} = M is weakly uniformly tight wrt A .
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Proof. i) = ii) = iii) are trivial. We prove iii) = i). Assume for the purpose of
an indirect proof that there is any ¢ > 0 such that to each Ke % we find any
Uk € M with uxK® > ¢. Since ., is dense in wrt the w-topology 4 to a given ug
we can relate puy e #, such that pgK® < pyK® + ¢/2. Put ¢ = ¢/2. A forms a
direction wrt the inclusion hence {ug} is a net and it ought to contain a subnet
{UR} kew+ (A = A') which is w-convergent in .# *(&, A'). By the assumption {sg} gex
must be weakly tight wrt 2. Thus to &’ we can find K,e % and K, & & such that

sup ugK§ < é. Since {1} x.cx is a subnet of {uy} we can find a Ke A" with
K2Ko

K2K,UK,2K, and

ueKe < pRKGKG < pgKg < é.
At the same time we have by the selection of {yx} the relation ugK® > ¢ and this is
a contradiction. The proof of i) < iv) is similar.

Corollary 2.17. If ﬁ*(éz‘, A) is metrizable then, under the assuptions of theorem
2.11, each compact set M = M (&, H') is uniformly tight.

Theorem 2.18. If X is a topological space which is locally complete in the sense
of Cech and if 4#*(&, ) is provided with the w-topology then each relatively
compact subset M = M*(&, K) is uniformly tight wrt A"

Proof. If X is locally compact then 2.17 follows from 2.16 and 2.10. If X is com-
plete in the sense of Cech, particulatly if X is a complete metric space, then 2.17 can
be proved analogically to 2.14. We can prove the general case by similar arguments
as 2.15 using the fact that if Ge ¢ is G; in fX and . is conditionally compact in
M (8, &) then for each F = G My = M*(6 " F, ) which consists of the
restrictions of pu € 4 from & to & N F is conditionally compact in L *(6 N F, A,)
and F is G;in BX.

The theorem 2.17 was established by J. Hoffmann-Jergensen [4], theorem 4.
Our foregoing considerations were based on the fact that each x € X has a neigh-
bourhood G € % such that each net (sequence) which is w-convergent in .#*(& N
NG, A) (A, are the closed compact subsets of G) is weakly tight. If we are
working with nets the local compactness of G (whence of X)in the 4 n G topology
cannot be droped. However if we work with sequences or relatively compact sets,
the local compactness is not necessary and we can consider instead of the neighbour-
hoods which are G; in X those with the property that, say, each sequence from
M* (6 NG, A,) is weakly uniformly tight. More about this idea can be found in [4].
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