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0. INTRODUCTION AND BASIC NOTIONS

The (O, 2)-graphs and the distance monotone graphs (DM-graphs) have been
introduced in [1] and [2], [4] and [5], respectively, in two characterizations of
hypercubes. H. M. Mulder [2] and independently J. M. Laborde-Rao Hebbare [3]
proved that (O, 2)-graphs are regular. In [5] and [6] the authors introduced the
following conjecture. '

" Conjecture. Every DM-graph G with minimal degree d(G) = 3 is regular.

We exhibit a family of counterexamples to this conjecture.

We first recall some definitions introduced in [2] and [5].

For any two vertices u, v in a simple graph G the interval /(u, v) is the set of vertices
lying on a shortest u, v-path. Let d(u, v) be the distance between u and wv.

A graph G is distance-monotone (DM-graph for short) if each interval I(u, v)
verifies w € V(G) — I(u, v) = 3w’ € I(u, v) such that d(w, w') > d(u, v).

DM-graphs of diameter 3 except P, can be obtained from K, , for n = 3 by
deletion of a perfect matching [5]. In [6] a matrix representation of DM-graphs
of diameter 4 with d(G) = 3 is introduced.

Consider a (0, 1)-matrix M = (m, ;) fulfilling the following conditions

(1) M has at least 4 rows and 4 columns.

(2) For any 3 different row indices i, j, k there are 4 column indices a, b, c, d
such that

Mg = Mjg F My,
My F My = My,
My = My F M.,
My = Mjg = Myy .

(2*) For any 3 different column indices a, b, ¢ there are 4 row indices i, j, k, [
such that
My F My,

Il

M,
Mj, F My = My,

My, = Mye F My,

Il

mla My = My .
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To every such a m by n matrix M we associate a graph G of order 2(m + n) in the
following way:

V(G) = {uy, ugy ooy ) O {uy, us, ooy up} U {0, 05, .., 0.} U
v {v}, 03, ..., v;}
and all the edges of G are obtained by:
m;; =1 ={u;. v, e E(G) and {uj, v;} € E(G),
m;; = 0= {u;,v;) € E(G) and {u},v}} € EG).

i» Ujj

It is easy to verify that G is a DM-graph of diameter 4, and furthermore all DM-
graphs of diameter 4 with d(G) = 3 can be obtained in this way [6].

We are going to construct an m X n matrix (m # n) fulfilling the conditions (1), (2)
and (2*). In the associated DM-graph vertices u;, u; corresponding to row indices are
of degree n and vertices v;, v; corresponding to- column indices are of degree m,
therefore, the associated DM-graph is not regular.

Let ey, e,, ..., e, be the canonic basis of V(p, 2) the vector space of dimension p

over GF(2).

Let uy, u,, ..., 4, and vy, v,, .... v, be some mutually different vectors of V(p, 2).
We can associate to these vectors a n X m matrix M = (m;;) in the following way:
m; = v = vyl + Vpplhjy + ... + Ul;, Where v; = (v, 03, ..., 0;p) and u; =
= (ujy, U5, ..., u;,) in the basis e, e,, ..., e,,.

Example. Let p = 3, m = 8 (then the u; are all the vectors of V(3,2))and n = 7
with v; = e;, v, =€), V3 = €3, Uy =¢; + €,, Vs = e + €3, Vg =€, + €3, V7 =
= e; + e, + e;. We obtain the following 7 x 8 matrix:

(1) 0000 1

Proposition 1. The matrix (1) verifies the properties (2) and (2*). The associated
DM-graph is therefore of order 30 with 14 vertices of degree 8 and 16 of degree 7.

Proposition 2. For p = 4 let u,, u,,...,u, and vy, v,,...,0, be some mutually
different vectors of V(p,2) such that the p basis vectors ey, e, ...,e, and the
p(p — 1)[2 sums of two basis vectors belong to the sets {uy, u,, ..., u,} and

{01, 025 05 0.} :
Then the matrix associated to these vectors verifies the properties (2) and (2%).

The proof is common to the propositions:
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Without loss of generality by permutations of rows and by permutation of columns

we can assume that the first p rows and the first p columns are associted to the basis
vectors.

We first prove the property (2*). Choose 3 columns i, j, k and consider the values
of the first p rows corresponding to the basis vectors. These are nothing else than that
the vectors u;, u;, u, expressed in the basis e;. e,, ..., e,
First case: we have a row index «, « < p, with m,; = m,; = my. Then there is an

other row f (still in the first p rows) such that for example my; = my; % my, (because
u;, uj, uy are distinct).

Therefore there is a third one y with m,; + m,; = m, or m,; & m,; & my,; in
both cases the row associated to e; + e, is the fourth required.

Second case: there is no row index o, & < p with m,; = m,; = my,.
Ifp=3 (therefore we study the matrix (I)) we may have:
My; = My; F My,
My F My; = My,
my; = My + My;.
In this case the 7" row is associated to e; + e, + e; and we have m,; = mq; = my,.

If we are not in this case, or if p > 3, we have two indices (in the first p ones),
say a and 8, with

My = My; F My,
My; = Mg; + My,
(possibly permuting i, j, k) .
The vectors u; and u; are different, therefore there exists an index y £ p with

My & My; £ My,
or

My F My; = My,

and we have the property (2*) with the row indices a, y,  and ¢, with e; = ¢, + ¢
and e, = ¢; + e,.

Thus the matrix verifies (2*), and by transposition verifies (2)

Therefore we have the following property:

Proposition 3. For p = 4 and every pair of integers n, m such that
pp+ 1)2<n<2°,
p(p + D2<m<2?

there exists a DM-graph with some vertices of degree n and others of degree m.
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